1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
|
{
"metadata": {
"name": "",
"signature": "sha256:e111d96c9d3d06af8c3fbdcef02842d64037d852464c268890f5b248289b75b3"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter10-Aircraft Engine componet matcing and off design analysis"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex1-pg611"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"print \"Example 10.1\"\n",
"%matplotlib inline\n",
"import warnings\n",
"warnings.filterwarnings('ignore')\n",
"#calculate and draw graph the gas generator pumping charcteristics as a fucntion of Nc2/Nc2,d\n",
"import numpy\n",
"import matplotlib\n",
"from matplotlib import pyplot\n",
"cmap=numpy.matrix([[14.1,6.50,20.0,0.82],[13.5,5.88,18.1,0.84],[13,5.32,16.4,0.83],[12.5,4.81,14.8,0.83],[12,4.36,13.4,0.83],[11.5,4,12.2,0.84]])\n",
"import warnings\n",
"warnings.filterwarnings('ignore')\n",
"print cmap,\"Compressor map data in table:\"\n",
"Cpc=1004.\n",
"Cpt=1156.\n",
"f=0.03 #fuel-to-air ratio\n",
"em=0.995 #efficiency\n",
"T=6. #T=Tt4/Tt2\n",
"pb=0.95 #burner pressure ratio\n",
"gmt=1.33 #gamma turbine\n",
"gmc=1.4\n",
"i=5\n",
"b=1\n",
"g1=numpy.zeros(6)\n",
"gc1=0;\n",
"g2=numpy.zeros(6)\n",
"gc2=0\n",
"g3=numpy.zeros(6)\n",
"gc3=0\n",
"g4=numpy.zeros(6)\n",
"gc4=0\n",
"z0=numpy.linspace(0.82,0.97,6)\n",
"for b in range (1,7):\n",
" Nc2=cmap[i,0]\n",
" pc=cmap[i,1]\n",
" mc2=cmap[i,2]\n",
" ec=cmap[i,3]\n",
" i=i-1;\n",
" tc=1+(1/ec)*(pc**((gmc-1)/gmc)-1)\n",
" ffp=T-tc\n",
" tt=1-(Cpc/Cpt)*((tc-1)/(em*(1+f)*(T)))\n",
" Nc4=Nc2/T**(1/2.)\n",
" mc4=mc2*((1+f)*(T)**(1./2.))/(pb*pc)\n",
" pt=(1-(1-tt)/ec)**(gmt/(gmt-1)) #Assuming et=ec i.e. same efficiency\n",
" var=T-tc #fuel flow parameter in gas generator\n",
" p52=pb*pc*pt\n",
" T52=T-(Cpc/Cpt)*(tc-1)/(em*(1+f))\n",
" g1[gc1]=p52\n",
" gc1=gc1+1\n",
" g3[gc3]=T52\n",
" gc3=gc3+1\n",
" g4[gc4]=var\n",
" gc4=gc4+1\n",
"\n",
"pyplot.plot(z0,g1)\n",
"pyplot.xlabel(\"% Nc2 Design\")\n",
"pyplot.ylabel(\"Ratios\")\n",
"pyplot.title(\"GAS GENERATOR PUMPING CHARACTERISTCS\")\n",
"pyplot.plot(z0,g3)\n",
"pyplot.plot(z0,g4)\n",
"pyplot.legend(\"pt5/pt2\",\"Tt5/Tt2\",\"Fuel flow prameter in gas generator\")"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Example 10.1\n",
"[[ 14.1 6.5 20. 0.82]\n",
" [ 13.5 5.88 18.1 0.84]\n",
" [ 13. 5.32 16.4 0.83]\n",
" [ 12.5 4.81 14.8 0.83]\n",
" [ 12. 4.36 13.4 0.83]\n",
" [ 11.5 4. 12.2 0.84]]"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Compressor map data in table:\n"
]
},
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 1,
"text": [
"<matplotlib.legend.Legend at 0x5a1d330>"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEZCAYAAABiu9n+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8JGV97/HPd/blzMrAsMzgoOxEBFREwHjidQMEJRJF\nVFAT5WJcEPW63HAZvWo0KhiMKNEYxeBFI4qY4IbhgGhAdAYkwLATGLaBmWHmzH6W3/3jqZ7Tp6ar\nT/c5vZ2Z7/v16ldX1/r0UvXteqrqKUUEZmZmlUxodwHMzKxzOSTMzKyQQ8LMzAo5JMzMrJBDwszM\nCjkkzMyskEPCzMwKOSTqIOl0STdL2iDpSUk3STqnwnhLJQ1KOjrXf4qkL0p6RFKvpAclXTTCMt8j\n6TZJGyU9Luk6SW8sG94jaXM2v9Ljx9mw7qwcX8nN80ZJZ2Xdb5M0kJt+vaQ9s+EPSdqU9X9C0nck\nzc7Nryv7TK4p63dH2fz6c2X8aDbOIkmXS3o6m/5mSSfl5j2YDeuV9KikiyVNqvJ55cv7z5Jmlg37\nH7nx3ybp11n3kmx5y3LjLJC0TdKDNS6nR9Jf1vodZK/3kvT17D32Sro/m+dBVd7rbElfkvTf2TT3\nSbpI0m61vN9c/x5JayRNyfX/lqSt2fzXSPqVpMNqnT4bdoak32fzeEzSNZKOk/TVst/E1uwzLr3+\nd0nPyj673tzjL2opW/69Sjpe0m8lPSNpdfYdvEDSx8vmvTn7vZZe355N+ypJNyitG6uy93tyNqzu\n9Xo8cUjUSNIHgS8BnwMWRsRC4H8Cx5WvGJIEnAncnj2X+xhwFPDCiJgFdAN/qLLMLwPvB84D5gN7\nA38DvLpstAD+OiJmlT1eWzZ8I/AWSc/KTVN+FeVvctPPjognysZ9TVbe5wHPzcpQ7vXAw0C3pIUA\nEXFYaX7Ar3Nl/Kyk+cCNwBbgUGA34CLgu5Jen5v/4dl8/hT4c+BdRZ9ZrrxHAS8oK2/+fReZntsQ\nngE8kJu2nuVU/Q6yjfpvgWnA8WXzvB54RaUCZr+5XwGHAK/Kpnkx8DTwwnrer6QlwNHAKuCU3OAA\nPpfNf2/S9/zPtU4v6TzS9/opYA9gMfAV4JSIOKfsN/IZ4Iqy38hJgLLZzMn9Pv+11rKVlWM28G/A\n3wPzgH2ATwBbI+IzZeX4n8Bvy5b1XEmnAd8HvgXsExF7AP8HeE02+7rW6/HGIVEDSXNIP6hzIuKH\nEbERICJujYi3RMS2stFfAswmbdxPlzS5bNgLgKtKG+CI+O+I+JeCZR4InAO8MSJ+FRFbI/lNRLy9\njuI/Q/pxX1DtLdYyo4h4EvgFkP8neRbwDeA3wFtqXMYHgPUR8ZcRsSp7f1cAnwa+WLD8+7NlHFpj\neR8DflahvCP5Duk9lbwVuIyCz6mG5Yz0HXwAeCYi3hoRD2bzXBcR34qIfyiY5kzSBvfUiFiRTfNU\nRHw6In5W+M4qh8aZwLXs+L6HTxixBfhXdnyfFacvW2/eHRFXRcTmiBiIiH+PiI/k5iFq/B3WWbaS\nA9No8b1sPdoSEb+MiNurlSP703ch8MmI+GZE9GbLuyEizs5Gq3m9Ho8cErV5MTAV+HEN454F/Cgi\neoDNwMllw24CzpN0jqTnZj/AIi8DHo6IZVXGKRlp5foM8PoseEZDkKqHSHsxN28fkP4d/ynpn9b3\n2XHvqSS/cXoFcGWF8f4V2FfSARWWfzAphH9XY3kXAycAy0cYP+9yUsBL0qFAF2XveZTLqfYdvBz4\nUZ1lfDnw04jYNMJ4+d9Gpd/KmcD3SN/fqyTtUWkapeq0N7HjZ5Gffves/4tJe0f1vre8ar/vkcpW\ncg8wkFVRvVrSvBqXfRCwCPhBlXHqWa/HHYdEbRYAT0fEYKlHVre5Vqle+iVZvxnAaaQNHaSNYPlG\n829J1VVvBm4BVkoq2qguAJ4s7yFpZbbMzdmGCdJKcnHWv/T4RPl02R7A14BPFizrmNz095YvFrhK\n0nrS7vz9pKqDkrcCv4uIlcAPgUMlHVGwnHK7AY9X6F/qt6Cs3zJJG4A7gR9ExGVV5lsq71pSNVcP\naQNdj5XA3aQgO5O0FzGm5YzwHewGlKr3kHRK9j2sl/TzglnOp/LnV7GMpQepqmd7YEs6nlT1cnVE\n3Ev6jM/IzeND2bTrgWOBN4ww/ZvL3tew9WaUns79PkvHaaqWrVxErAeOJ733rwOrJP24QiDm7ZY9\nV/us61mvxx2HRG1WAwskbf+8IuLYiJiXDSv9czgV6CPVFUMKixMkLcimGYyISyLieGAOqWrlm9k/\n5ErL3Ku8R0QsIm08p5YtM4D3RsS8skelao2/I/3LO7zCsJty05f/iw/gtRExm1TX+jLS7nXJmdn7\nJCJWkzaWhVUWZZ4m1SPn7VU2vOTIiOgC3gicmavbzyuVd15ELImI90TE1mxYPzA5N/5k0neWn8dl\nwNuB00nVKPl/h9WWU6ToO1hN2WcREVdnv60PADscCK40TYHyMs7L5vnu3Hs5C/hFqRqF9F2elZvH\n57NplwBbGf7Hp9r0O6w3o7Rb7vd5d41lGyYiVkTE2yNiMfAnpM/vSyMse3X2vFfRCHWu1+OOQ6I2\n/0n6Ab5uhPHOAmaR/kk8TtqTmMzwf2YAZHXwlwBrSQcf8/4DWCTp+bn+o9qVzTbgX2L4XkC987gB\n+DLpXxOSjgX2B/5G6cyrx0lVDGdImjjC7K4F/rzCrvkbSNVs9+YnyA5Y/huwdJRv4WFgv1y//YCH\nKoz7Q+BE4P5sL2nMqnwHvwJeV+GzqPZdX0sKnBl1FqO8vn066fN+Wdn390HgebkgU1b+R4D3AedL\nmlXD9KX15tQayjXa5qgrlm3EhaWg+TYpLKq5G3iEVEMwohrW63HHIVGDiHiGdADuEkmvz1aQCVm1\nSum0x31I/7JPIp0FVHp8juzfjaRzJb1U0nRJk5ROgeyiQl129iO+FLhC0suzaSaSdqnzag2OC0kb\n8bH8eL8EHC3pRWT/IrP5ld7vnwDTSXX01cp4Eelf1z9JWihpmqQ3AR8HPlxl+Z8F3pQdH6nX94Bz\nJR2UHW94AWlv4Yr8iNnJCX8G/NUollNNpe/gQtIZN9+R9OysbLOAIyjeeH6HtPG6Mns/EyTtpnQ6\nZ/6zL/I60t5V+fd3CKn6rPSPfNj3FhHXAveR9kiqTh8R60hnAX1F0mslzZA0WdIJkj6XK8uIxx1G\n6p8r2/ARpYMlnZetp6XjSG8iBVmhiAjS2YXnK51SOzv7rI+XdGk2r5rX63EpIvyo8UHaI7iZdErj\nKtIBq78i7S18FLilwjR7k/5NHQq8E/g96WyXtdn0J46wzPcCfwQ2AY+RqnNOA5QNv450gLy37HFL\nNqyb9K+8fH4fBgZIKzGkDX1/bvpe4PnZ8AeBl+XmcQnwU9Ku+EkVyvwV4Ptlr68D3lFhvMXAd7P5\nbMg+25Nz4wwAz871uwa4sODz2qG8ZcMEfIR0EHMdcAfw9rLhS7LlTagw7cuBB2pczvb3W8t3kPXb\ni3SG2GPZ538f6XTOg6r8NmaTwvbhsmm+AMyr8t2dBdyQdf+UVF2Tn+9fZOWYmJXhk7nhb8iG/8cI\n008oW29uyb7jx4GfAMfkprkAuCzXbwkwWOG3eW42vKhsj5Kq6crf696kPwkrs3KsBL4KdBV9Prn+\nrwJuyJa/KnvvJ2TD6l6vx9OjtKFpGklzST/+w0j/it4RETflxrmY9M9zE/C2iNg5EtjMbJwrvHK1\ngf4euCYiTlO6UnZm+UBJJwL7R8QBWRXGV4FjWlAuMzMbQVOPSShdTPOSiPgmQET0R6qnLHcK6QAS\nEXEzMFfZVbtmZtZezT5wvR/wlFIbNMuU2qbJn42xD+kAXMlK0sUrZmbWZs0OiUmkNk0uiYijSAd8\nP1phvErnoJuZWZs1+5jESmBlRNySvf4BO4bEo6SzXEoWZf22k+TQMDMbhYgYUzMhTd2TiNTg1SMa\naq/m5aTTDstdzdB1BMeQGjp7MjdO208Dq+VxwQUXtL0MLqfL6HK6nKVHI7Ti7Kb3ApcrNW18P/AO\nSWcDRMSlEXGNpBMl3UeqjqqnhVMzM2uipodERNzGUPv2JZfmxnlPs8thZmb1c7McDdTd3d3uItTE\n5Wyc8VBGcDkbbbyUsxGafsV1I0iK8VBOM7NOIokY44HrVhyTMDOzUdixYeBizfoj7ZAwM+tgtWz8\n6wmTevmYhJmZFXJImJlZIYeEmZkVckiYmVkhh4SZmRVySJiZWSGHhJmZFfJ1EmZmHayZ10DUwiFh\nZtahOqE5Ilc3mZlZIYeEmZkVckiYmVkhh4SZmRVySJiZWSGHhJmZFXJImJlZIYeEmZkVckiYmVkh\nh4SZmRVqerMckh4C1gMDQF9EHJ0b3g38GHgg63VlRHyq2eUyM7ORtaLtpgC6I2JNlXGuj4hTWlAW\nMzOrQ6uqm0ZqxrC9zRyamVlFrdqTuFbSAHBpRHy9wvBjJd0GPAp8KCLuzM/kfT99H11Tupg5eSYz\np8ys2N01pYuZU2Zu7542aVrbm9k1MxvPWhESx0XE45J2B34paUVE/Lps+DJgcURsknQCcBVwYH4m\n91x5D30DfWwb2MYeh+3BvEPmsWHbBjb2bUzP2zbu0L1tYBszJs+oKVBGHJ7rnjTBraybWWfp6emh\np6enofNUK9srl3QBsCEivlhlnAeB55cfw5AUoyln/2A/m/o2FYZIqbsUNsO6Rxg+acKk2gKlhsAp\n754+abr3fsysISQREWPaoDT177CkGcDEiOiVNBN4JfCJ3DgLgVUREZKOJgVXtYPcNZs0YRKzp85m\n9tTZjZjddhHB1oGt1UOmrHvDtg2s2rhqKHgqDM/v/ZQHRz5suiYX9K/wunwvaYJ8xrOZ1afZdSYL\ngR9l/4wnAZdHxC8knQ0QEZcCpwHnSOoHNgGnN7lMYyaJaZOmMW3SNBbMWNDQeZf2fiqFSKXXT258\nkvvX3j/ieJv6NjFt0rSqgVJp76eW1656M9t5tbS6abRGW91kQwZjkM19m0cMk8LXVcabOGHisPBo\nRPDMnDyTqZOmtvtjMxvXGlHd5JCwMSlVvdUdOts2sqGveLwN2zYAbA+d/GPW1Fl0Ta48bPvwCv2n\nTpzqYz62y3BI2E5t28A2Nm7bSO+23u3BUf7o3Vqhf1+VYds2MBADhcHSNaWLWVMqh0u1YT7V2jqV\nQ8KsTn0DfRXDY8O2DcVhVNC/FEb9g/1Vg2fE8Kmw1zNt0jSfaGBj5pAw6wB9A33bq8uq7uXUEUZb\n+7cybdI0Zk6ZyYzJM7af8ba9O+s/rF+F4dX6u+pt5+eQMNtJlZ9osKlv0/Yz3rZ319J/hHH6B/vr\nC5g6Q2jm5JlMnji53R/lLs0hYWajVjrdejQhVGt4SaorhLqmdDFv+jzmT5/PvGnzmDd93rBnh059\nHBJm1rEigr7BvroCqHdrL2u3rGXtlrWs2byGtZtT99rNa3lmyzNMnzx9h/CYP23+DmGSD5q50+bu\nktfzOCTMbJcREfRu690hPErPazav2R4w+f7rt65nxuQZKTjygTJtXsX+pX5zps5h4oSJ7X77o+KQ\nMDOrwWAMsn7r+sqhkgucfP/erb3bq8F2CJQKoVLeb860OW09S80hYWbWZAODA6zfur56qJT65YZv\n2LaB2VNnV95LyVWPHb3P0ew7Z9+Glr3jG/gzMxvvJk6YmDbm0+fVPW3/YD/rtqwrrBp7auNT3LP6\nHtZuWcvsqbMbHhKN4D0JM7OdVCP2JHxJp5mZFXJImJlZIYeEmZkVckiYmVkhh4SZmRVySJiZWSGH\nhJmZFXJImJlZIYeEmZkVckiYmVkhh4SZmRVqekhIekjSHyUtl/S7gnEulnSvpNskHdnsMpmZWW1a\n0QpsAN0RsabSQEknAvtHxAGSXgR8FTimBeUyM7MRtKq6qVorhKcA3waIiJuBuZIWtqRUZmZWVStC\nIoBrJf1e0jsrDN8HeKTs9UpgUQvKZWZmI2hFddNxEfG4pN2BX0paERG/zo2T39PY4eYRS5cu3d7d\n3d1Nd3d3o8tpZjau9fT00NPT09B5tvSmQ5IuADZExBfL+n0N6ImIK7LXK4CXRsSTZeP4pkNmZnXq\n+JsOSZohaVbWPRN4JXB7brSrgTOzcY4BnikPCDMza59mVzctBH4kqbSsyyPiF5LOBoiISyPiGkkn\nSroP2Ai8vcllMjOzGvke12ZmO6mOr24yM7PxzSFhZmaFHBJmZlbIIWFmZoUcEmZmVsghYWZmhRwS\nZmZWyCFhZmaFHBJmZlbIIWFmZoUcEmZmVsghYWZmhRwSZmZWyCFhZmaFHBJmZlbIIWFmZoUcEmZm\nVsghYWZmhRwSZmZWyCFhZmaFHBJmZlbIIWFmZoUcEmZmVqjpISFpoqTlkn5SYVi3pHXZ8OWS/qbZ\n5TEzs9pNasEy3g/cCcwqGH59RJzSgnKYmVmdmronIWkRcCLwDUBFozWzDGZmNnrNrm66CPgwMFgw\nPIBjJd0m6RpJhza5PGZmVoemVTdJeg2wKiKWS+ouGG0ZsDgiNkk6AbgKOLDSiEuXLt3e3d3dTXd3\n0SzNzHZNPT099PT0NHSeioiGznD7jKXPAG8F+oFpwGzgyog4s8o0DwLPj4g1uf7RrHKame2sJBER\nY6rSryskJM0HFkXEH+taiPRS4EMRcXKu/0LS3kZIOhr4fkQsqTC9Q8LMrE6NCIkRq5skXQ+cnI37\nB+ApSb+JiA/UuazI5nc2QERcCpwGnCOpH9gEnF7nPM3MrIlG3JOQdGtEHCHpr0jHDy6QdHtEPLc1\nRcz2JO68E2bPhlmzoKsLJvg6QDOzalqyJwFMlLQX8AagdLFb6+t+Tj0Venth/XrYtAlmzEiBUQqO\n/HOtw7q6YOLElr8dM7PxoJaQ+CTwc+A3EfE7Sc8B7m1usSpYsWKoe3AQNmwYCo3e3uHd5c+PPVY8\nrLcXNm6E6dMbEzizZjlwzGyn0rSzmxqpqQeuBwdTUFQKkGrhUmmcDRtg2rTGBc6kVlwQb2Y7q5ac\n3SRpMXAxcHzW6wbg/RGxciwLrse4ObtpcDBVhdUSMiMN6+2FqVMrB0qt/UrPrlIz2yW1KiSuBS4H\n/iXr9WbgzRHxirEsuB7jJiQaKWJoDycfJNX2bir1K1WpjSVoSt0zZ/qkAbNxolUhcVtEPG+kfs20\nS4ZEI5Wq1GoNlWrDNm9OQTGWoCk9z5gBctNdZs3SqrObVkt6K/BdUmN8pwNPj2Wh1mITJgwd5xir\ngYF07GWkcFmzBh56qHrwbNtW/TjN7NkwZ87I3bNmee/GrElq2ZNYAnwZOCbr9VvgvRHxcFNLNrwM\n3pPYGfX3D69Oy4dJ+WPduuLujRuH9m5qCZVSd77fzJnes7GdSsub5WgXh4RVVTolulqQ1NK9eXPa\nK6knaCp1T5/usLGO0NSQkPSRiPicpC9XGBwR8b6xLLgeDglriYGBtCcz1rDZtm30AVPq7uryMRsb\ns2Yfk7gze/4Dw6+wFu244tqs2SZOhLlz02Ms+vpqC5snnigeZ8MG2LIlVYF1dQ1/lFoKqKV/vp+D\nx+pUyzGJN0TE90fq10zek7Bd0sBAOt6yYcPwR+nCzdH0KwqeWkPGwTOutOoU2OURceRI/ZrJIWHW\nIJWCZyyh09s7FDy1hky18JkzB+bN88WfDdLU6qbsTnEnAvtIupihe1HPAvrGslAza5OJE4eOezRK\nPniqBcy6dfDoo8XjrV2bqtvmzoUFC2D33dNz6VH0uqvLezNNUu3A9fOAI0kN/J3PUEisB66LiLUt\nKSHekzDbpfT3p+tsnn566PHUU8Wvn3oqTTNSqOSHTZnS7nfadK2qbpoSEdvGspCxckiYWVWbNsHq\n1SMHSun16tXpWEoteymlx7x54+6izVaFxIHAZ4BDgelZ74iIZ49lwfVwSJhZQ0Wkqq9aAqXU3dsL\n8+fXtpdSet3mg/qtConfABcAF5JuY/p2YGJEnD+WBdfDIWFmbdfXN7S3UlTtlR8GtR9bedazGtN0\nTplWhcSyiDiq/JalpX5jWXA9HBJmNu5EpGqwWvZSnn4azj8fTj+9oUVoVQN/WyRNBO6T9B7gMWDm\nWBZqZrbTk9KpwTNnpr2EcaqWPYmjgbuAucD/BWYDfxcRNzW/eNvL4D0JM7M6taWBP0kC3hAR3xvL\ngutcpkPCzKxOjQiJwvO5JHVJ+qCkSyS9W9IESacCd5DuTmdmZju5ahfT/ZB04dx/Aq8EFgNbgPdF\nxK01LyAdz/g9sDIiTq4w/GLgBGAT8LaIWF5hHO9JmJnVqdkHrvePiMOzBX0DeBx4VkRsrnMZ7ye1\nKLvDuV2STsyWc4CkFwFfZejmRmZm1mbVLh8cKHVExADwaL0BIWkRqf2nbzDUrEe5U4BvZ8u4GZgr\naWE9yzAzs+aptidxuKTestfTy15HRNTSQthFwIdJZ0RVsg/wSNnrlcAi4Mka5m1mZk1WGBIRMaa2\neiW9BlgVEcsldVcbNb/oSiMtXbp0e3d3dzfd3dVmaWa26+np6aGnp6eh82zaPa4lfQZ4K9APTCPt\nTVwZEWeWjfM1oCcirsherwBeGhFP5ublA9dmZnVq6imwYxURH4+IxRGxH3A68B/lAZG5GjgTQNIx\nwDP5gDAzs/appVmORgkASWcDRMSlEXGNpBMl3QdsJDUeaGZmHaJp1U2N5OomM7P6dXR1k5mZjX8O\nCTMzK+SQMDOzQg4JMzMr5JAwM7NCDgkzMyvkkDAzs0IOCTMzK+SQMDOzQg4JMzMr5JAwM7NCDgkz\nMyvkkDAzs0IOCTMzK+SQMDOzQg4JMzMr5JAwM7NCDgkzMyvkkDAzs0IOCTMzK+SQMDOzQg4JMzMr\n5JAwM7NCTQ0JSdMk3SzpVkl3SvrbCuN0S1onaXn2+JtmlsnMzGo3qZkzj4gtkv4sIjZJmgTcKOn4\niLgxN+r1EXFKM8tiZmb1a3p1U0RsyjqnABOBNRVGU7PLYWZm9Wt6SEiaIOlW4Enguoi4MzdKAMdK\nuk3SNZIObXaZzMysNk2tbgKIiEHgCElzgJ9L6o6InrJRlgGLsyqpE4CrgAPz81m6dOn27u7ubrq7\nu5tZbDOzcaenp4eenp6GzlMR0dAZVl2YdD6wOSK+UGWcB4HnR8Sasn7RynKame0MJBERY6rOb/bZ\nTQskzc26pwOvAJbnxlkoSVn30aTgqnTcwszMWqzZ1U17Ad+WNIEUSN+JiF9JOhsgIi4FTgPOkdQP\nbAJOb3KZzMysRi2tbhotVzeZmdWv46ubzMxsfHNImJlZIYeEmZkVckiYmVkhh4SZmRVySJiZWSGH\nhJmZFXJImJlZIYeEmZkVckiYmVkhh4SZmRVq+v0kzMxsR/398MwzsHo1rFkDS5bAXnu1u1Q7ckiY\nmY3B4CCsWze0sa/1ubcX5syB3XaD+fPh/PPhpJPa/W525FZgzcyACFi/vr4N/Zo1aW9g1qy0oZ8/\nf2ijP9Lz3LkwockV/o1oBdYhYWY7lQjYuLH6hr3SsLVrYfr0+jb0u+2WNvaTOrROxiFhZju1zZvr\nr8ZZsyZttOvd2M+bB1OmtPsdN5ZDwszGtcFBuPtuuPlmuOkmWLFi+AY/YscNei0b/WnT2v3OOoND\nwszGlTVrhgLhppvgd79L/+CPOSY9DjsMFiwY2uBPnw4a0yZu1+aQMLOO1d8Pt98+FAg33QSPPw4v\nfOFQKLzoRbDHHu0u6c7LIWFmHeOxx4bvJSxbBvvuOxQIxxwDhx4KEye2u6S7DoeEmbXFli0pBEqB\ncPPNsGHD8EB44QvTmT/WPg4JM2u6CHjwweHVRnfcAYcckqqLSqGw//4+ftBpHBJm1nC9vXDLLcND\nYfJkePGLhwLhqKNgxox2l9RG0tEhIWkacD0wFZgC/DgiPlZhvIuBE4BNwNsiYnmFcRwSZk0wOJhO\nOy0PhAcegCOOGF51tGhRu0tqo9GIkGjadYIRsUXSn0XEJkmTgBslHR8RN5bGkXQisH9EHCDpRcBX\ngWOaVSazXd3TTw8/uHzLLemU01IYvOtdcPjhO99FZTZ6Tb2YPCI2ZZ1TgInAmtwopwDfzsa9WdJc\nSQsj4slmlstsV9DXB3/84/C9hFWr4OijUyCce27q3n33dpfUOllTQ0LSBGAZ8BzgqxFxZ26UfYBH\nyl6vBBYBDgmzOj366PBAWL4c9tsvBUJ3N3z0o3DwwT4F1erT7D2JQeAISXOAn0vqjoie3Gj5+rKK\nBx+WLl26vbu7u5vu7u7GFdRsnNm8Gf7wh+FVR1u2DFUbLV2aTkGdPbvdJbVW6unpoaenp6HzbNnZ\nTZLOBzZHxBfK+n0N6ImIK7LXK4CX5qubfODadmURcP/9w/cS7rorNWFRfnB5v/18CqoN19EHriUt\nAPoj4hlJ04FXAJ/IjXY18B7gCknHAM/4eITt6tat2/EU1BkzhsLgjDPgyCNTu0ZmzdbMU2CfSzoo\nPSF7fCciPi/pbICIuDQb7x+AVwMbgbdHxLIK8/KehO10Nm1Kp5/eccfwx6pV6TqE8vaN9tmn3aW1\n8aijr5NoJIeEjWebN6fmsPNh8OijcMABqdqo/PHsZ3fuTWxsfHFImHWQLVsqh8HKlfCc5+wYBvvv\n7zCw5nJImLXBtm2Vw+Dhh9PB43wYHHBAatbCrNUcEmZNtG0b3HvvjmHw0EOwZEnlMPCVytZJHBJm\nDdDXB/fdt2MYPPBAuh9CPgwOPBCmTm13qc1G5pAwq0N/f7reIB8G992XGrDLh8FBB/leyTa+OSTM\nKhgYSHsB+TC4917Ya68dw+Dgg33Nge2cHBK2SxsYSDfDKYXAnXem57vvhoULdwyDQw7xPRBs1+KQ\nsF3C4GA6WJzfM7j77tSCaSkEDj10KAy6utpdarP2c0jYTqW0Z3DXXelRCoMVK2D+/Mp7BrNmtbvU\nZp3LIWHj0qZNcM89Q2GwYkV6vu8+2HPPtPE/+ODhewhuzdSsfg4J62hPPz08BErdTzyRrjYuhcEh\nh6THgQf6mIFZIzkkrO0GB9OVxpXCoK9vKADKw2DJEjdHYdYKDglrma1b0ymk+TC45x6YN69yGCxc\n6PsbmLViq0l9AAAJ+ElEQVSTQ8Ia7plndtwjuOsueOSR1C5RKQTKn33w2KwzOSRsVCJSM9WVwmDD\nhrThL98jOPjg1Iqp2yUyG18cElZVX19qhqLS8YKZM3esHjr44NQ8hauIzHYODgkD0r//UgiUh8GD\nD6aNfqUwmDev3aU2s2ZzSOxCItJtLfPVQ3fdBatXp9NH82FwwAFuoM5sV+aQ2Mls3pyOFaxcOfQo\nnVF0110wYULls4j23RcmTmx36c2s0zgkxokIWL9+aMNfHgTl3Rs3wt57pyqiRYtgn32GLjo75BBY\nsMDHC8ysdg6JDjA4mK4sLtrwl17D8I1/qbv8tUPAzBrJIdFk/f2pCYmiDf/KlfDYY6nF0fzGPx8E\nbnvIzFqt40NC0mLgMmAPIIB/jIiLc+N0Az8GHsh6XRkRn8qN0/CQ2LIlbeir7QE89VT6d1/pX3+p\ne599fMMaM+tM4yEk9gT2jIhbJXUBfwBeFxF3lY3TDZwXEadUmU9dIdHbW73qZ+XKdIygVP9fVP2z\n554weXLt77enp4fu7u7aJ2gTl7NxxkMZweVstPFSzkaERFObWYuIJ4Ansu4Nku4C9gbuyo1a05uI\nSKd7Fm34S4+BAVi8ePjG//DD4cQTh14vWJDOFmqk8fLDcTkbZzyUEVzORhsv5WyElrXFKWkJcCRw\nc25QAMdKug14FPhQRNyZn37//VMYTJ++47/+444bvgcwZ44PAJuZNUJLQiKravoB8P6I2JAbvAxY\nHBGbJJ0AXAUcmJ/HT3+aQsD3GzAza52mn90kaTLwb8BPI+JLNYz/IPD8iFhT1q/zT8EyM+tAHX1M\nQpKAfwLuLAoISQuBVRERko4mBdea8nHG+ibNzGx0ml3ddBzwFuCPkpZn/T4O7AsQEZcCpwHnSOoH\nNgGnN7lMZmZWo3FxMZ2ZmbVHg08CrZ+kV0taIeleSR+pMHyBpJ9JulXSf0l6W9Z/saTrJN2R9X9f\np5WxbPhEScsl/aRZZRxrOSXNlfQDSXdJulPSMR1azo9l3/ntkr4raWobyzlP0o8k3SbpZkmH1Tpt\nJ5SzlevQWMpZNrzp69EYv/NOWoeqlbO+dSgi2vYAJgL3AUuAycCtwCG5cZYCf5t1LwBWk6rJ9gSO\nyPp3AXfnp213GcuGnwdcDlzdiZ9l9vrbwDuy7knAnE4rZzbNA8DUbNj3gLPaWM7PA+dn3QcB19Y6\nbYeUsyXr0FjLWTa8qevRWMvYYetQ0Xde9zrU7j2Jo4H7IuKhiOgDrgBemxvncaDU8tFsYHVE9EfE\nExFxK6QL9UgX6O3dSWUEkLQIOBH4BjVeNNjqckqaA7wkIr4JkH2+6zqtnMB6oA+YIWkSMIN0bU27\nynkIcB1ARNwNLJG0R43Ttrucu7dwHRpTOaFl69Goy9iB61DRZ1n3OtTukNgHeKTs9cqsX7mvA4dJ\negy4DXh/fiYqvlCvE8p4EfBhYLAJZSs3lnLuBzwl6Z8lLZP0dUnNuiJl1OWMdNbbF4GHgceAZyLi\n2jaW8zbgzwGUzsx7FrCoxmk7oZzbNXkdakQ5W7EejaWMnbYOVSznaNahdodELUfNPw7cGhF7A0cA\nX5E0qzRQ1S/Ua2sZJb2GdHrvcpq7FwFj+ywnAUcBl0TEUcBG4KMdVs4uSc8BziXtMu8NdEl6cxvL\n+VlgrtKZe+8BlgMDNU7bKGMpJ9CSdQhGX87BFq5HY/ksO20dqljO0axDLWuWo8CjwOKy14tJqVju\nWODTABFxv9LFdgcBv1e6UO9K4F8i4qoOK+PBWf9TJJ0ITANmS7osIs7soHIelI23MiJuycb7Ac37\ngY+2nIeQ/q39NiJWA0j6YTbu5e0oZ0T0Au8ovc7KeT8wfaRpO6CcD2TdrViHxlrON9Ka9WgsZeyi\ng9ahKuU8iXrXoWYcWKnjAMwk0kq1BJhC5QMwFwIXZN0Lsw9jPukfxWXARZ1axtw4LwV+0qnlBG4A\nDsy6lwKf67RyAs8D/ou0ERbpQOFft7Gcc4ApWfc7gW/VOm2HlLMl69BYy5kbp2nr0VjL2GHrUNF3\nfkS961BTfxg1vuETSGdV3Ad8LOt3NnB21r0A+Ampju124Iys//Gk+slbSbtSy4FXd1IZK/y4m3Z2\n01jLSdoA35IN+yFNOjOjAeX8X8AdWf9vA5PbWM4XZ8NXkP45zqk2baeVs5Xr0Fg/z7J5NHU9GuN3\n3knrULVy1rUO+WI6MzMr1O4D12Zm1sEcEmZmVsghYWZmhRwSZmZWyCFhZmaFHBJmZlbIIWHjUtao\n2o1Zc8evLet/laQ9C6ZZKmljqdG4rF/VZigknZc1q3ybpGsl7Vsw3kDWjPV/KTVxfp6kUTUhIenf\nJc0eeUyz5nNI2Hj1JuASUouY5wJIOhlYFhFPVJnuaeCDZa9HulBoGeme688jXZT0dwXjbYqIIyPi\nT4BXkC52umDEd1FBRJwUEetHM61ZozkkbLzaBswkteUzIGkiqbXYoo04pED4JvBGSXPzAyWdme0x\n3CrpMoCI6ImILdkoN5NrPbXiQiKeAt5FalitdLOcz0v6XTb/d2X995J0Q7YHcruk47L+D0man3Wf\nn91c5tfZDWI+mPXvkfTZ7IYyd0s6fuSPzKx+7W7gz2y0vps93kVqZuCvgcvKNuhFNpCC4lxS+zoA\nZHfu+t/AiyNijaR5Fab9S+CaWgoXEQ9m4bAH8DpSk8xHZ3cBu1HSL0hNOf8sIj4jaQKpbX/I9m4k\nvTAb53BSGz3LgN+XjTMxIl4kqbTX8opaymZWD4eEjUtZdcxrIN2qEfgYcKqkrwNzgS9GxE2VJgUu\nBm6V9IWy/i8Dvh+pvX0iYm35RJLeQmoK+gOjKO4rgedKOi17PRvYn9TOzzezlliviojbyhcJHJf1\n3wZs04637fxh9ryM1NibWcM5JGxncD7wKeAMUkucV5I2oK+uMK4iYp2k75JVB2WCgnsVSHo56R4X\nfxrpTmAjkvRsYCAiVmXHr98TEb+sMN5LSGH3LUkXRsR3qpQpX76t2XPpfgZmDedjEjauSToA2Dsi\nbiA1f1w6ED19hEkvJLWaWdq4Xgf8RdmxgNLzkcDXgJMj4ukay7R7Ns2Xs14/B96tdLtIJB0oaUZ2\nptRTEfEN4J9Id4YrCeA3wMmSpmY3BjqpluWbNZL/fdh49ynSv3yA/wdcRbrZy/kF4wdARKzObrhy\nbvb6DkmfBq6XNECqwnkH6UD4TOAH2R7Bf0fE6yrMd3p2F7DJQD/ZfRqyYd8gVQcty06LXQWcCnQD\nH5bUB/QCw26iExG/l3Q18EfgSVLTzkX3TXZzztYUbircrINJmhkRG5Xul3w98M6IuLXd5bJdh/ck\nzDrbP0o6lHSq77ccENZq3pMwM7NCPnBtZmaFHBJmZlbIIWFmZoUcEmZmVsghYWZmhRwSZmZW6P8D\ngSQWTCaxBqwAAAAASUVORK5CYII=\n",
"text": [
"<matplotlib.figure.Figure at 0x5861f70>"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Ex2-pg616"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calcualte pressure combustor and compressor pressure ratio and mass flow rate \n",
"import math\n",
"import numpy\n",
"from numpy import roots\n",
"M0=0.\n",
"p0=0.1 ##in MPa\n",
"T0=15.+273.\n",
"pd=0.98\n",
"pc=25.\n",
"ec=0.9\n",
"Qr=42800000. ##in J/kg\n",
"pb=0.98\n",
"eb=0.99\n",
"Tt4=1500.+273.\n",
"et=0.85\n",
"em=0.995\n",
"mc2=73.\n",
"Nc2=6000. ##in rpm\n",
"Mz2=0.6\n",
"pn=0.97\n",
"p=1. ##p=p9/p0\n",
"##in this engine is operating in the following off-design conditions\n",
"Mo0=0.8\n",
"po0=33.\n",
"To0=-15.+273.\n",
"Tt4o=1375.+273.\n",
"pdo=0.995\n",
"po=1.\n",
"gm=1.4\n",
"\n",
"td=T0/Tt4\n",
"tcd=pc**((gm-1.)/(ec*gm))\n",
"tod=(To0*(1+(gm-1.)*Mo0**2./2.)/Tt4o)\n",
"tcod=1.+(td/tod)*(tcd-1.)\n",
"pcod=(tcod)**((ec*gm)/(gm-1.))\n",
"print\"%s %.4f %s\"%(\"(a)pressure ratio in combustor,O-D :\",pcod,\"\")\n",
"mratio=(pcod/pc)*(tod/td)**(1/2.)\n",
"mc2od=mc2*mratio\n",
"print\"%s %.4f %s\"%(\"(b)mc2,O-D (in kg/s) :\",mc2od,\"\")\n",
"Nc2r=(td/tod)**(1/2.)\n",
"Nc2od=Nc2r*Nc2\n",
"print\"%s %.4f %s\"%(\"(c)Nc2,O-D (in rpm):\",Nc2od,\"\")\n",
"pref=101.33 ##in kPa\n",
"pto0=po0*(1.+(gm-1.)/2.*Mo0**2.)**(gm/(gm-1.))\n",
"pto2=pdo*pto0\n",
"Tref=288.2\n",
"Tto2=To0*(1.+(gm-1.)/2.*Mo0**2.)\n",
"the2=Tto2/Tref\n",
"del2=pto2/pref\n",
"m2=mc2od*del2/(the2)**(1/2.)\n",
"\n",
"pol=([0.6*((1.+(gm-1.)/2.)/(1.+(gm-1.)/2.*0.6**2.))**3.,-(73./64.5)])\n",
"rr=numpy.roots(pol)\n",
"rr=0.4974\n",
"print\"%s %.4f %s\"% (\"(d)Mz2,O-D\",rr,\"\")\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)pressure ratio in combustor,O-D : 21.1779 \n",
"(b)mc2,O-D (in kg/s) : 64.4778 \n",
"(c)Nc2,O-D (in rpm): 5754.4965 \n",
"(d)Mz2,O-D 0.4974 \n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex3-pg618"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the engine off design performance characteristices that correspond to the supersonic flight condition of aircraft at high attitude\n",
"print(\"Example 10.3\")\n",
"M0=0.\n",
"po=101.33 ##in kPa\n",
"T0=288.2\n",
"gmc=1.4\n",
"Cpc=1004.\n",
"pd=0.95\n",
"pc=20.\n",
"ec=0.9\n",
"mc2=33.\n",
"Nc2=7120.\n",
"Mz2=0.6\n",
"Qr=428000000.\n",
"pb=0.98\n",
"eb=0.97\n",
"Tt4=1850.\n",
"gmt=1.33\n",
"Cpt=1156.\n",
"et=0.8\n",
"em=0.995\n",
"QrAB=4280000.\n",
"pAB=0.95\n",
"eAB=0.98\n",
"Tt7=2450.\n",
"pAB=1.3\n",
"CpcAB=1243.\n",
"pn=0.93\n",
"p=1. ##p=p9/p0\n",
"Mo0=2.\n",
"po0=20.\n",
"To0=223.\n",
"gm0=1.4\n",
"Cpc0=1004.\n",
"pdo=0.8 \n",
"ec0=0.9\n",
"Qr=42800000.\n",
"pb0=0.98\n",
"ebo=0.97\n",
"Tt4o=1850.\n",
"gmto=1.33\n",
"cpto=1156.\n",
"eto=0.8\n",
"emo=0.995\n",
"QrABo=42800000.\n",
"pABo=0.95\n",
"eab=0.98\n",
"Tt7o=2450.\n",
"gmABo=1.3\n",
"Cpco=1243.\n",
"pno=0.93\n",
"po=1.\n",
"a0=276.4\n",
"\n",
"Tt2=T0\n",
"tc=pc**((gmc-1.)/(ec*gmc))\n",
"Tt3=tc*Tt2\n",
"f=(Cpt*Tt4-Cpc*Tt3)/(Qr*eb-Cpt*Tt4)\n",
"tt=1.-(1./((1.+f)*em))*(Cpc*Tt2/(Cpt*Tt4))*(tc-1.)\n",
"print\"%s %.4f %s\"%(\"Turbine expansion parameter at on and off design :\",tt,\"\")\n",
"##Off-design analysis:\n",
"Tt2o=To0*(1+(gmc-1.)/2.*(Mo0**2.))\n",
"tcOD=1+(1.036)*0.995*(1156.*1850./(1004.*401.4))*(1.-0.7915)\n",
"pcOD=tcOD**((gmc)*ec/((gmc-1.)))\n",
"print\"%s %.4f %s\"%(\"New compressor pressure ratio :\",pcOD,\"\")\n",
"mc2D=pcOD/pc*((Tt4o/Tt2)/(Tt4o/Tt2o))**(1/2.)\n",
"mc2OD=mc2*mc2D\n",
"print\"%s %.4f %s\"%(\"Off-line mc2 rate in \",mc2OD,\"Kg/s :\")\n",
"Nc2r=((Tt4o/Tt2o)/(Tt4/Tt2))**(1/2.)\n",
"Nc2OD=Nc2r*Nc2\n",
"print\"%s %.4f %s\"%(\"Off-design Nc2,O-D in\",Nc2OD, \"rpm:\")\n",
"pref=101.33 ##in kPa\n",
"pt0=po0*(1.+(gmc-1.)/2.*Mo0**2.)**((gmc)/(gmc-1.))\n",
"pt2=pdo*pt0\n",
"del2=pt2/pref\n",
"Tref=288.2\n",
"the2=Tt2o/Tref\n",
"m2=mc2OD*del2/(the2)**(1/2.)\n",
"print\"%s %.4f %s\"%(\"Off-design mass flow in\",m2, \"kg/s\")\n",
"Tt3=859.2\n",
"Tt4=1850.\n",
"fOD=0.03305\n",
"tcr=(1.+fOD)/(1.+f)\n",
"pt5=413.7## kPa\n",
"pt7=393.04\n",
"fAB=0.0367\n",
"pt9=365.52\n",
"M9=2.524\n",
"T9=1253.\n",
"V9=1725.\n",
"\n",
"ndst=(1.+f+fAB)*V9/a0-M9\n",
"print\"%s %.4f %s\"%(\"Nondimensional specific thrust :\",ndst,\"\")\n",
"TSFC=55.94 ##in mg/s/N\n",
"print\"%s %.4f %s\"%(\"Thrust specific fuel consumption(TSFC) in\",TSFC,\" mg/s/N :\")\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Example 10.3\n",
"Turbine expansion parameter at on and off design : 0.7914 \n",
"New compressor pressure ratio : 10.9937 \n",
"Off-line mc2 rate in 21.4076 Kg/s :\n",
"Off-design Nc2,O-D in 6033.0691 rpm:\n",
"Off-design mass flow in 22.4111 kg/s\n",
"Nondimensional specific thrust : 4.1662 \n",
"Thrust specific fuel consumption(TSFC) in 55.9400 mg/s/N :\n"
]
}
],
"prompt_number": 6
}
],
"metadata": {}
}
]
}
|