1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
|
{
"metadata": {
"name": "",
"signature": "sha256:e48bc7584793a78fba4a87aa7646e91c7da5350f8eff658edcbe9f4343b9ee57"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter9-Beams On Elastic Foundations"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex1-pg273"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate length and maxi force per unit of length between beam & foundation \n",
"w=0.1 ##m\n",
"d=0.115 ##m\n",
"l=4. ##m\n",
"p=175. ##kN/m\n",
"k=14*10**6. ##Pa\n",
"E=200*10**9. ##Pa\n",
"I=(0.1*(0.15)**3.)\n",
"\n",
"##deltav=(p/2*k)*derivative(x)*beta*exp**(betax)*(cos beta(x)+sin beta(x))\n",
"##vA=(p/2k)*(2-exp**(betaa)*cos betaa - exp**(betab)*cos betab)\n",
"\n",
"beta=(k/(4.*E*I/12.))**(0.25)\n",
"print'%s %.2f %s'%(\"in meter inverse is= \",beta,\"\")\n",
"\n",
"vmax=(p*(2-(-0.0345)-(0.0345)))/(2*14000.)\n",
"print'%s %.2f %s'%(\"in meter is= \",vmax,\"\")\n",
"z=k*vmax\n",
"print'%s %.2f %s'%(\"maxi force per unit of length between beam & foundation in kN/m is= \",z,\"\")\n",
"\n",
"## Ans varies due to round of error\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"in meter inverse is= 0.89 \n",
"in meter is= 0.01 \n",
"maxi force per unit of length between beam & foundation in kN/m is= 175000.00 \n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex4-pg279"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#find foundation modulus of the equivalent continuous elastic support in Pa\n",
"a=1.5 ##m\n",
"E=206.8*10**9 ##Pa\n",
"K=10000. ##N/m\n",
"I=6*10**-6 ##m**4\n",
"P=6700 ##N\n",
"c=0.05\n",
"\n",
"k=K/a\n",
"print'%s %.2f %s'%(\"foundation modulus of the equivalent continuous elastic support in Pa is=\",k,\"\")\n",
"\n",
"beta=(k/(4.*E*I))**(1/4.)\n",
"print(beta)\n",
"\n",
"##sigmamax=(M*c/I)=(P*c/4*beta*I)\n",
"sigmamax=((P*c)/(4.*beta*I))\n",
"print'%s %.2f %s'%(\"in Pa is=\",sigmamax,\"\")\n",
"\n",
"vmax=(P*beta)/(2.*k)\n",
"print'%s %.2f %s'%(\"in meter is=\",vmax,\"\")\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"foundation modulus of the equivalent continuous elastic support in Pa is= 6666.67 \n",
"0.191441787744\n",
"in Pa is= 72911632.81 \n",
"in meter is= 0.10 \n"
]
}
],
"prompt_number": 1
}
],
"metadata": {}
}
]
}
|