1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 3:Measurement of non electrical quantities"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 3.1"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"deflection of screen corresponding to maximum pressure for sensitivity of 1mV/mm =350.0 mm\n",
"sinch the length of the screen is 100mm so waveform is out of range and hence sensitivity setting of 1mV/mm should not be used\n",
"deflection of screen corresponding to maximum pressure for sensitivity of 5mV/mm =70.0 mm\n",
"delection is within the range\n",
"deflection of screen corresponding to maximum pressure for sensitivity of 20mV/mm =17.0 mm\n",
"delection is within the range\n",
"deflection of screen corresponding to maximum pressure for sensitivity of 10mV/mm =3.0 mm\n",
"delection is within the range\n",
"deflection of screen corresponding to maximum pressure for sensitivity of 500mV/mm =0.0 mm\n",
"delection is within the range\n",
"since the sensitivity of 5mV/mm gives higher deflection so it is the optimum sensitivity\n"
]
}
],
"source": [
"# 3.1\n",
"import math\n",
"Aou=700*25*1/100;\n",
"Aol=100*25*1/100;\n",
"AouPtP= 2*Aou;\n",
"AolPtP= 2*Aol;\n",
"Se1=1;\n",
"D1=AouPtP/Se1;\n",
"print (\"deflection of screen corresponding to maximum pressure for sensitivity of 1mV/mm =%.1f mm\" %D1)\n",
"print ('sinch the length of the screen is 100mm so waveform is out of range and hence sensitivity setting of 1mV/mm should not be used')\n",
"Se2=5;\n",
"D2=AouPtP/Se2;\n",
"print (\"deflection of screen corresponding to maximum pressure for sensitivity of 5mV/mm =%.1f mm\" %D2)\n",
"print ('delection is within the range')\n",
"Se3=20;\n",
"D3=AouPtP/Se3;\n",
"print (\"deflection of screen corresponding to maximum pressure for sensitivity of 20mV/mm =%.1f mm\" %D3)\n",
"print ('delection is within the range')\n",
"Se4=100;\n",
"D4=AouPtP/Se4;\n",
"print (\"deflection of screen corresponding to maximum pressure for sensitivity of 10mV/mm =%.1f mm\" %D4)\n",
"print ('delection is within the range')\n",
"Se5=500;\n",
"D5=AouPtP/Se5;\n",
"print (\"deflection of screen corresponding to maximum pressure for sensitivity of 500mV/mm =%.1f mm\" %D5)\n",
"print ('delection is within the range')\n",
"print ('since the sensitivity of 5mV/mm gives higher deflection so it is the optimum sensitivity')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 3.2"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Radius of curvature =356.04 mm\n"
]
}
],
"source": [
"#3.2\n",
"import math\n",
"tA=1;\n",
"tB=1;\n",
"m=tA/tB;\n",
"EB=147.0;\n",
"EA=216;\n",
"T2=200.0;\n",
"T1=25;\n",
"n=EB/EA;\n",
"T=T2-T1;\n",
"A=12.5*10**-6;\n",
"B=1.7*10**-6;\n",
"a=3*(1+m)**2;\n",
"b=(1+m*n)*((m**2)+1/(m*n));\n",
"c= (6*(A-B)*T*(1+m)**2);\n",
"r=(a+b)/c;\n",
"print (\"Radius of curvature =%.2f mm\" %r)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 3.3"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Radius of curvature =500 mm\n",
"vertical displacement =2 mm\n"
]
}
],
"source": [
"#3.3\n",
"t=2;\n",
"T2=180;\n",
"T1=20;\n",
"T=T2-T1;\n",
"A=12.5*10**-6;\n",
"r=t/(2*T*A);\n",
"print (\"Radius of curvature =%.0f mm\" %r)\n",
"Th=40.0/500;\n",
"y=r*(1.0-math.cos(Th));\n",
"print (\"vertical displacement =%.0f mm\" %y)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 3.4"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"True temperature =1853.57 degree K\n",
"True temperature =1580.57 degree C\n"
]
}
],
"source": [
"#3.4\n",
"import math\n",
"Ta=1480+273;\n",
"Tf=0.8;\n",
"T=Tf**-0.25*Ta;\n",
"print (\"True temperature =%.2f degree K\" %T)\n",
"Tc=T-273;\n",
"print (\"True temperature =%.2f degree C\" %Tc)\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 3.5"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Error in temperature measurement=-172.91 degree C\n"
]
}
],
"source": [
"# 3.5\n",
"import math\n",
"ATC1=1065;\n",
"AT=ATC1+273;\n",
"Em1=0.82;\n",
"Ta=(Em1**(-0.25))*AT;\n",
"Em2=0.75;\n",
"Taa=(Em2**-0.25)*Ta;\n",
"ATC2=Taa-273;\n",
"E=ATC1-ATC2;\n",
"print (\"Error in temperature measurement=%.2f degree C\" %E)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 3.6"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Average flow rate=0.02 degree m/s\n",
"Percentage decrease in voltage=1.79 degree m/s\n"
]
}
],
"source": [
"# 3.6\n",
"import math\n",
"EL=0.1;\n",
"Zo=250*10**3;\n",
"ZL=2.5*10**6;\n",
"Eo=EL*(1+(Zo/ZL));\n",
"B=0.1;\n",
"l=50*10**-3;\n",
"G=1000;\n",
"v=Eo/(B*l*G);\n",
"print (\"Average flow rate=%.2f degree m/s\" %v)\n",
"Zon=1.2*250*10**3;\n",
"ELn=2*Eo/(1+(Zon/ZL));\n",
"PDV=((0.2-ELn)/0.2)*100;\n",
"print (\"Percentage decrease in voltage=%.2f degree m/s\" %PDV)\n",
"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python [Root]",
"language": "python",
"name": "Python [Root]"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.12"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|