1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h1> Chpater No 7: Optoelectonic Devices <h1>"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.1, Page No 283"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"#initialisation of variables\n",
"Vout = 5.0 #in V\n",
"V = 1.5 #ON state voltage drop across LED in V\n",
"I = 5.0 #in mA\n",
"\n",
"#CALCULATIONS\n",
"I = I*10**-3 #in A\n",
"R = (Vout-V)/I #in ohm\n",
"\n",
"#RESULTS\n",
"print('Resistance is =%.f \u03a9' %R)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Resistance is =700 \u03a9\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.2, Page No 306"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#initialisation of variables\n",
"N_A = 7.5*10**24 #in atoms/m^3\n",
"N_D = 1.5*10**22 #in atoms/m^3\n",
"D_e = 25*10**-4 #in m^2/s\n",
"D_n = 1*10**-3 #in m^2/s\n",
"V_T = 26*10**-3 #in V\n",
"\n",
"#CALCULATIONS\n",
"Torque_eo = 500*10**-9 #in sec\n",
"Torque_ho = 100*10**-9 #in sec\n",
"e = 1.6*10**-19 #in C\n",
"n_i = 1.5*10**16 #in /m^3\n",
"I_lambda = 12.5 #in mA/cm^2\n",
"I_lambda= I_lambda*10**-3 #in A/cm^2\n",
"L_e = math.sqrt(D_e*Torque_eo) #in m\n",
"L_n = math.sqrt(D_n*Torque_ho) #in m\n",
"J_s = e*((n_i)**2)*( ((D_e)/(L_e*N_A)) + ((D_n)/(L_n*N_D)) ) #in A/m^2\n",
"J_s= J_s*10**-4 #in A/cm^2\n",
"V_OC = V_T*(math.log(1+(I_lambda/J_s))) #in V\n",
"\n",
"#RESULTS\n",
"print('Open circuit voltage is =%.2f volts ' %V_OC)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Open circuit voltage is =0.52 volts \n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.3, Page No 307"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#initialisation of variables\n",
"Phi_o = 1.0*10**21 #in m^-2s^-1\n",
"alpha =1.0*10**5 #in m^-1\n",
"e= 1.6*10**-19 #in C\n",
"\n",
"#CALCULATIONS\n",
"G_L1 = alpha*Phi_o #in m^-3s^-1\n",
"W = 26.0 #in \u00b5m\n",
"W = W * 10**-6 #in m\n",
"G_L2 = alpha*Phi_o*(math.e)**((-alpha)*W) #in m^-3s^-1\n",
"#temp=(1-math.e)**(-(alpha)*W)\n",
"J_L = e*Phi_o*(1-math.e**(-(alpha)*W)) #in A/m^2\n",
"J_L = J_L * 10**3*10**-4 #in mA/cm^2\n",
"\n",
"#RESULTS\n",
"print('Photo current density is =%.1f mA/cm^2' %J_L)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Photo current density is =14.8 mA/cm^2\n"
]
}
],
"prompt_number": 3
}
],
"metadata": {}
}
]
}
|