summaryrefslogtreecommitdiff
path: root/A_Textbook_of_Applied_Electronics_by_R_S_Sedha/chapter33_5.ipynb
blob: 16fb198247251ae8c4adbd572fcd710666235ef2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Chapter 33 , Wave Shaping"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 33.2 , Page Number 853"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Output peak voltage is  0.3  V.\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "\n",
    "#Variables\n",
    "   \n",
    "Vpk = 1.0                     #Peak-to-peak voltage (in volts)\n",
    "Tby2 = 0.1                    #Half-period (in seconds)\n",
    "tau = 0.25                    #Time constant (in seconds)  \n",
    "\n",
    "#Calculation\n",
    "\n",
    "Vc = 0.5 * math.exp(-Tby2/tau)     #Output voltage (in volts)\n",
    "\n",
    "#Result\n",
    "\n",
    "print \"Output peak voltage is \",round(Vc,1),\" V.\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 33.3 , Page Number 854"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The peak value of input voltage is  10.0  kV.\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "\n",
    "#Variables\n",
    "\n",
    "RC = 250.0 * 10**-12                   #Time constance (in seconds)\n",
    "Vomax = 50.0                           #Maximum output voltage (in volts)                         \n",
    "tau = 0.05  * 10**-6                   #time (in seconds)\n",
    "\n",
    "#Calculation\n",
    "\n",
    "alpha = Vomax / RC                     #alpha (in volt per second)\n",
    "Vp = alpha * tau                       #Peak voltage (in volts)\n",
    "\n",
    "#Result\n",
    "\n",
    "print \"The peak value of input voltage is \",Vp * 10**-3,\" kV.\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 33.5 , Page Number 861"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Following graph shows the output.\n",
      "The part above the line is clipped out.\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "<matplotlib.text.Annotation at 0x82616f0>"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEZCAYAAACXRVJOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8leP6+PHPpVkzjiEcoRCSNCK1K6k0CScyz9MxHMXP\ncJyvOr7H8MUhp0NH5AipNGhOoZ00alKpVJSKBopSadz3749r7ex2e7f3Gu/nWet6v177Ze+1nvU8\nV8t61nXPtzjnMMYYYw7zHYAxxphgsIRgjDEGsIRgjDEmwhKCMcYYwBKCMcaYCEsIxhhjAEsIxoSC\niHQWkTUi8quI1PEdj0lPlhBMSonITSKyUES2i8g6EXlVRCpH8fpVItIigfEc8nwi8rWIdMnz94Ui\nklPAY1tFJJn30wvAPc65is65L5N4HZPBLCGYlBGR7sCzQHegEtAYOAmYKCKlinkaB0gCwyrqfJOB\npnn+bgosLeCxac65nATGtZ+ICPBHYHGMr7f73BSLfVBMSohIJaAHcK9zboJzbp9z7jugC1AduC5y\n3H9F5Kk8r8sSkTWR399BvxhHRZpOHhKR6pES++0i8r2I/BBJPMRyvgJC/4wDv/ybAM/le+yiyHGI\nyAeRms8vIjJZRM6MPN4o8vj+5BNpBvoy8vthIvKoiKwQkZ9EZJCIVBWRMsCvQAngSxFZHjm+lohk\ni8jPIrJIRDrk+ze/JiJjRWQb0DxSE3pIRBZE/q1visgxIjJORLaIyEQRqVLU/0eT3iwhmFS5ACgL\nDMv7oHNuOzAWaJX7UOTnIM6564HVQPtI08kLeZ7OAmoAlwCPiEjLOM+XawpwlohUiZS06wODgCp5\nHruASEIAxkTi+AMwF3gvcq2ZwHagZZ5zX5P7PHAf0BFNNMcBPwP/ds7tcs5ViBxzjnOuZqQ2NQoY\nH7nOfcB7InJannN3BZ6KvPbzyHtweeT6pwPtgXHAo8DR6HfB/QW9TyZzWEIwqXIU8FMhzSrrgSPz\n/B1Lk1BP59xvzrlFwFvoF2I85wMgUotZjX5R1wGWO+d2AlPzPFYamBk5/r/Oue3OuT1AT6COiFSM\nnO793Lgij7WNPAZwJ/CEc+6HPK+9spDmnsZAeefcs865vc65ScDofP/mD51z0yMx7Yo89i/n3I/O\nuR/QRDfdOfdl5PnhQN1Y3yeTHiwhmFT5CTiqkC+44yLPx2NNnt9XA9XiPF9euc1G+5uG0FJ37mMz\nnXN7RKSEiDwbafbZAqxES+ZHRV7zPnC5iJRGS+tznHO5cVcHhkeagH5G+wv2AscUEE81Dvz3AnzH\n7/9mV8DzABvy/P5bvr93AhUwGc0SgkmV6cAu4Iq8D4pIBaAN8Enkoe3A4XkOOTbfeQpbnveP+X7/\nPs7z5ZU3IUyJPDaFg5PENWizT0vnXGXgZLR2IgDOucXoF3fbyLED8lxjNdDGOVc1z8/hzrl1BcTz\nA3Bi3v4ItHP++wKOPZREds6bNGAJwaSEc24L2gzyLxFpLSKlRKQ6MBgtzb4TOXQ+cGmkQ/VY4C/5\nTrUBOLWASzwhIuVE5CzgJrSdP57z5fUZcB6aAKZGHlsInAI05/eEUAFNeptFpDzwdAHnGhCJ4SLg\ngzyP9wGeFpE/AojIH0SkYyHxzAB2AP8v8j5moX0CAyPP2xe9iYklBJMyzrnngcfRMfVb0C+279AS\n9Z7IYe8AXwKr0E7TgRxYin8G/fL/WUS65Xl8MrAC+Bh43jn3cZznyxv3cmAjsM45tzXymEP7DSoC\n0yKH9o/8e74HFqG1ovw1kPfRxPKJc25znsd7ASOBCSKyNfLahnnDyBPPHqADWtP4EegNXO+cW5bn\n2OLUfFy+321zlAwnPjfIiQxzewM4C/0w3uKcm+EtIBM6kVrGt0DJZM0DMCZTlPR8/V7AWOfclSJS\nEijvOR5jjMlY3moIkeUK5jnnTvESgEkLkRrCN0ApqyEYEx+ffQgnAz+KyFsiMldE+orI4UW+ypg8\nnHOrnHMlLBkYEz+fCaEkOnLjVefceejwwEc9xmOMMRnNZx/CWmCtc+6LyN9DyJcQRMRGPRhjTAyc\nc1EPP/ZWQ3DOrQfW5Fl/5WLgqwKOs58E/Tz55JPeY0inH3s/7b0M6k+sfI8yyl2UqzTaMXiz53iM\nMSZjeU0ITjf6aOAzBmOMMcpmKmeQrKws3yGkFXs/E8fey2DwOlO5KCLighyfMcYEkYjgwtSpbIwx\nJlgsIRhjjAEsIRhjjImwhGCMMQawhGCMMSbCEoIxxhjAEoIxxpgISwjGGGMASwjGGGMiLCEYY4wB\nLCEYY4yJ8L38daitWgVr18KuXXDyyXDSSVCihO+ojIGtW2H5cti0CY48Es44A8qX9x2VCTpLCFHa\nsgV69YJ334Vff4VTT4VSpeDbb2HPHrj2WnjwQahWzXekJtM4ByNHwmuvwdSpUKOGJoOfftLP50UX\nwUMPQfPmviM1QWVNRlF47z2oWRO++QYGDoQffoDPP4dJk+C77+CTTyAnB845B55/Xn83JhVWrICW\nLeGJJ+CGG2DDBpg3Dz7+GObPhzVr4E9/gttvh7ZtYd063xGbILLlr4th92646y6YNg3efx/q1j30\n8StWwE03wRFHwDvvQOXKKQnTZKgxY+Dmm+Gxx+C++6DkIer9e/bA009Dnz4wYIDVFtJVrMtfW0Io\nwm+/wRVX6E32/vvFb4fdvRseeABmzNCawxFHJDdOk5nefRcefhiGDIELLyz+6z75BLp2hTffhA4d\nkhef8cMSQhLs2QMdO0LVqvD229pXEA3n9Gb99FP9qVIlOXGazDRwIHTrps1CZ54Z/eu/+ALat4f+\n/aF168THZ/yxhJBgzsGdd2rb66hRh66GF3WeP/8ZVq6E0aNtFJJJjGnT4LLLtKRfu3bs55k6FTp3\nhokToU6dxMVn/LId0xLstddg5kwYPDj2ZAAgAq+8orWNRx9NXHwmc61ZA1deCf/9b3zJALSZ6V//\ngk6dYPPmhIRnQsxqCAWYPx9atdJSWM2aiTnn5s1w3nnw6qtw6aWJOafJPPv26WiiSy6Bxx9P3Hn/\n8hdYvRqGDtVCjAk3qyEkyG+/aWfbyy8nLhmAdiq//Tbcdhts3Ji485rM8sIL2gz5yCOJPe9zz+nQ\n6ddfT+x5TbhYDSGfxx/XGZ4ffJCc8z/yiE4SStb5TfpavBiaNYPZs3VWfLLOP28enHBC4s9vUsc6\nlRNg/nytii9YAMcem5xr/Pabtvu+8oo1HZnic06/rLt0gXvvTd51evaEOXNgxAhrOgozazKKk3Nw\nzz06aSdZyQCgXDn497915NGOHcm7jkkvb7+thYm7707udR59VCdWjhqV3OuYYLKEEDF0qN5wN9+c\n/Gu1bg3168OLLyb/Wib8tm3Tpsw+fZI/bLlMGXjpJejeXSdXmsxiTUboB79WLe1Qa9ky6ZcDtB+h\nQQNttz3mmNRc04TTU0/B0qW6llaqtGun90K3bqm7pkmc0PYhiEgJYDaw1jnXId9zKUkIL72kE3xG\nj076pQ7QrZs2G/Xpk9rrmvD48UctrMyaBaeckrrrLl2qq6OuWGFrcYVRmBNCN6AeUNE51zHfc0lP\nCL/8AqedBtnZsU3/j8fmzXrtL77Q/RSMye+BB7R/65VXUn/tG2/U5d3/539Sf20Tn1AmBBE5Afgv\n8A+gm48awlNP6XLW//1vUi9TqL/9TZcqtvHfJr+VK7WvackSOPro1F9/xQo4/3wdhm3rcIVLWBPC\nB8DTQCXgoVQnhG3btBo+ZQqcfnrSLnNImzZpLWHu3OSMLTfhdc89+kX89NP+Yrj5Zv1c9ujhLwYT\nvdANOxWR9sBG59w8wMuI5z59oEULf8kAdEer22/XmaLG5Fq/Xlcz/ctf/MbxxBPQuzf8/LPfOExq\neKshiMjTwPXAXqAsWksY6py7Ic8x7sknn9z/mqysLLKyshJy/d9+09rBRx/pDmc+bdyoe94uXAjH\nH+83FhMMjz2mW7T27u07Eq0lnHqqJgcTTNnZ2WRnZ+//u2fPnuFrMtofhEgzUtxk9O9/w4QJOiMz\nCLp105mhNjfBbNmihZU5c6B6dd/RwKJFOoN/5Uqdp2CCL3RNRgVIWWbatw/++c/ELxAWj/vv147t\nbdt8R2J8e+01XdYkCMkA4OyzdbmVgQN9R2KSLRAJwTk3Of+Q02QaN05XHz3//FRdsWjVq+v+tm+/\n7TsS49OePbo/wcMP+47kQN26aSEqAA0KJokCkRBS7ZVXtEQetMW7HngAevWCnBzfkRhfhg/XZdd9\n92vld8klsHevbgVr0lfGJYTFi3U10y5dfEdysCZNoGJFGD/edyTGl969deHDoBH5vZZg0lfGJYTe\nvXWv5CB2joloLeHll31HYnxYsEAnSV52me9ICnbttbqExsqVviMxyRKIUUaFSfQoo19+0SUiFi+G\n445L2GkTatcu+OMfdfPzGjV8R2NS6c47dWOav/3NdySFe/BBXcLd52Q5U7RQzlQuSqITwquv6ppF\ngwcn7JRJ8dBDULIkPPus70hMquQWVpYsSe5+HPFaskQnc65eDaVK+Y7GFCYdhp0m3Rtv6KzgoLvt\nNh2CauvRZ45339WO2yAnA9CVV087LTjzd0xiZUxCmDtXVxdN1X4H8TjjDL3pbNeqzNGvnxYEwuDO\nO+E///EdhUmGjEkIb7wBt94Kh4XkX3z77dC3r+8oTCrMm6eLHLZo4TuS4rniCvjyS10N1aSXjOhD\n2LEDTjwR5s/X/4bBb79pB2NQli8wyXP//VC1qm5wHxbdusHhh8P//q/vSExBrA/hEIYOhcaNw5MM\nQEdyXHMNvPWW70hMMu3cCQMGpGYv70S68UZ45x2bRJluMiIhvPUW3HKL7yiid+ON2tkY4EqcidPI\nkXDuueGrBdapo7WayZN9R2ISKe0Twtq12t7Zvr3vSKJXrx6ULg3TpvmOxCRLv37hqx3kuuEGW3sr\n3aR9Qnj/fbj88mDOTC6KCFx/vVbNTfrZsAFmzoTOnX1HEptrroEPP4Tt231HYhIl7RPCe+/plPuw\nuvZa+OADncFs0svgwVpzPfxw35HE5thj4cILYdgw35GYREnrhLBokQ7na9rUdySxO+kkXYt+zBjf\nkZhEGzBAS9lhduON1myUTtI6Ibz3nt5wYZl7UBhrNko/336rC9ldfLHvSOLTsaMOjV6/3nckJhFC\n/lVZuJwcLYGFubko15VX6jr0ttF5+hg4EP70p/CvB1S2rDZ7DRniOxKTCGmbEKZOhUqVgrfRSCwq\nV9YlNz780HckJhGc+732mg6uvtq210wXaZsQwt6ZnF+XLsFfpdUUz8KFOjInSFu4xqNVK10Fdc0a\n35GYeKVlQti9W6uwXbv6jiRx2rfX+QibNvmOxMRrwAD9bIa9bytX6dK6qc8HH/iOxMQrTT6SB/r0\nUzj9dB2hky4qVNDlkYcP9x2JiUdOjs6NSZfmolzWbJQe0jIhDBmiHbHpxpqNwm/GDE3utWv7jiSx\nmjeHVat09JQJr7RLCHv2aOfrFVf4jiTxLr1UZ7b++KPvSEyshg5Nz8JKyZJ6z1mBJdzSLiFkZ8Op\np+q+xOmmfHlo08ZmhoaVc5oQ0rGwAtZslA7SLiGka3NRrquuslJYWM2Zo/MO0q25KFeTJrBxI3z9\nte9ITKzSKiHs3audrulaAgNo21a/WDZs8B2JiVZuc5FEvW1JOJQooQtJWg02vNIqIUyZopvgnHKK\n70iSp1w57UtI1Wij9evXc/XVV1OjRg3q169Pu3btWL58OatWraJ2pKg7e/ZsHnjggZiv0a5dO7Zu\n3Rp3rHljSpREndM5rb2mc2EFdOVWSwjhlVYJId2bi3J17pyahOCco3PnzrRo0YIVK1Ywe/Zsnnnm\nGTbkq57Ur1+fXr16xXydMWPGUKlSpXjDDbSFC3XAQ716viNJrqZNYeVKWL3adyQmFmmTEPbt05JJ\nJiSENm1g+nT45ZfkXmfSpEmULl2aO+64Y/9j55xzDk2aNDnguOzsbDp06ABAjx49uP7667ngggs4\n7bTTeOONN/Yf07RpU9q3b88ZZ5zB3XffTe5+2dWrV2fz5s2sWrWKWrVqcccdd3D22WfTunVrdu7c\nCcAXX3zBOeecQ926dXn44YeLLLXv27ePhx9+mIYNG1KnTh1ef/11ALp27crYsWP3H3fTTTcxbNgw\ncnJyCjw+UYYO1eaUdG0uylWqlE6itGVWwslrQhCRE0Vkkoh8JSKLROT+WM81bRoccwzUrJnICIOp\nYkUtieX5XkuKRYsWUS+GIu2iRYuYNGkS06dP5+9//zvr1q0D9Eu9d+/eLF68mG+++YZhkbYFyfMt\nuWLFCu69914WLVpElSpVGDp0KAA333wzffv2Zd68eZQsWfKA1xTkzTffpEqVKsyaNYtZs2bRt29f\nVq1axVVXXcXgSK/87t27+fTTT2nXrh1vvPFGgccnSjqPLsrv8sttAmVY+a4h7AEedM6dBTQG/iwi\ntWI50fDh4d15KhadOye/FFbUl25hr+nUqRNlypThyCOPpHnz5syaNQsRoWHDhlSvXp3DDjuMrl27\n8vnnnx/0+pNPPplzIisS1qtXj1WrVrFlyxa2bdtGo0aNALjmmmv21y4KM2HCBPr370/dunVp3Lgx\nmzdvZsWKFbRt25ZJkyaxe/duxo0bR7NmzShTpkyhxyfC0qWweXP6rF1UlFatYO5cmy8TRiV9Xtw5\ntx5YH/l9m4gsAaoBS6I7D4wYoaWwTNGhA3TvDjt36hLEyXDWWWcxJAHrGh8WWbQnb4Jxzu1/PK8y\nefY6LVGiBL/99ttBxxSVDHL17t2bVq1aHfR4VlYWH330EYMHD6ZrngWvCjo+EbWEYcO01JwuaxcV\npVw5TQqjRsEtt/iOxkQjMB9REakO1AVmRvvaxYu1D6FOnURHFVxHH61Le3/8cfKu0aJFC3bt2kXf\nvn33P7ZgwYICS/a5nHOMGDGCXbt2sWnTJrKzs2nQoAHOOWbNmsWqVavIyclh0KBBB/VFFKZy5cpU\nrFiRWbNmATCwGLOfWrduzauvvsrevXsBWLZsGTt27ADgqquuol+/fkyZMoU2bdoUeXy8Ro7Uxd8y\niTUbhZPXGkIuEakADAEecM5tO+C5rDzNFtWBk+HJZk/SI6vH/odHjNCdm3pO7kHPyT0POn/+43P1\nyA738eXa9qDDnJ4wJ3nxzGwyk5m9ZnLHI3fop6Uq3Pc/99HthG4HlPhF5PfzOyhboyzsAJpAn6V9\nyCKLBg0acO+997JixQpatGjBl1W/5PKel8MvcORzR8IuYKNeNzee3Gu8+eabdOzakQ07NsBJwBaQ\nnnJQ/LnH33bbbfSf3J9Sx0d2oCkPXAWUhb81+RufffYZl112GSVLliz8+KuBHXD0jqMPem+K+36u\nX68TtZo2Dd7nJ5nHt2sHN7/dA+kZjHjS/fgsssjOzj7ouWhJcavfySIipYDRwDjn3Mv5nnPFia9R\nI/jHP8K/HWG0Vq7Uf/u6dTopKAh69uxJhQoV6N69+wGPZ2dn8+KLLzJq1KiYzrt9+3bKly8PwLPP\nPsuGDRt46aWX4o432fr2hU8+ycwlHdq00SajLl18R5J5RATnXNSdgL5HGQnwJrA4fzIornXrYPly\naNYssbGFwcknQ7VqOsIqSArqjBaRmDqpc40ZM4a6detSu3Ztpk6dyhNPPBFPiCkzcqTWXjNRqubL\nmMTxWkMQkSbAZ8ACIDeQx5xz4yPPF1lDeP11XdBuwIBkRhpcPXvCli3wz3/6jsTkt307HHusTtKq\nWtV3NKn3ww9w9tm6zErY944Om1DWEJxznzvnDnPOneucqxv5GR/NOXL7DzJVp05aCvXc8mcK8PHH\n0KBBZiYD0NrrKafo/uYmHAIzyigW27bp+kVt2/qOxJ86dWDXLh3rboJl5EhN2JmsQwcdfmrCIdQJ\nYcIEaNwYKlf2HYk/IrpUwOjRviMxee3bp/9PIit6ZCxLCOES6oQwYoSVwMBuuiCaNUvniqTzyrvF\nUbcu7NhheySERWgTwt69MGaMlcBA97OdP1+XRzDBkMmji/LKrcFagSUcQpsQpk3TbTLTcavMaJUr\np0lh3DjfkZhcmT7YIS+rwYZHaBOClcAOZP0IwbF8udbWGjTwHUkwtGhhNdiwCG1CGDNGvwSNatcO\nPvpIN2Exfo0apaXiTFnMrijlykFWltVgwyCUH9lvv4Wff4bzzvMdSXDYmO/gGDXKaq/5WbNROIQy\nIYwdq3MPrAR2ILvp/NuyBWbP1mYS8zurwYZDKL9Sx47VD5g5kPUj+DdxIlx4IUTW4TMRxx2nuxlO\nmeI7EnMooUsIO3bA55/rBhzmQOedp7O3ly3zHUnmGjsWLr3UdxTBZDXY4AtdQpg0CerVy+zZyYUR\n0ZqT3XR+5ORox6klhIJZDTb4QpcQxoyxG+5QrBTmz/z5UKkS1KjhO5JgOvdcXQF2+XLfkZjChCoh\nOGdV8qK0bAlz5mjnpkktK6wcmoi+Pzb8NLhClRCWLNH/nnmm3ziC7PDDtVMzmXstm4LZYIeiXXqp\nvk8mmEKVEHJLYHFsvJUR7KZLvZ9+gsWL4aKLfEcSbBdfrHNltm/3HYkpSKgSgpXAiic3IdimOakz\nfryuJ1WmjO9Igq1SJahfXweHmOAJTULInfDTvLnvSIKvRg2oWFE7OU1qWGGl+KwGG1yhSQgTJ0KT\nJtpGborWtq113qXKvn06CzeTd+6LhtVggys0CcFKYNGxUljqzJgBJ5ygP6ZoZ56pySB3kIgJjlAk\nhJwcG24arWbNYMECW3I4FaywEp3c4adWYAmeUCSEefOgalXbjjAaZctqUpgwwXck6c8KK9Gz+QjB\nFIqEYBN+YmP9CMn3/fewejU0buw7knBp0UL3nd661XckJq9QJAQrgcUmNyHk5PiOJH2NGweXXAIl\nS/qOJFzKl4cLLoBPPvEdickr8Anhxx9h6VKb8BOLk0+Go47SpSxMclhhJXbWjxA8gU8I48dr9bJ0\nad+RhJPddMmza5eWcNu08R1JONnw0+AJfEKwERzxsX6E5Pn8c6hVC/7wB9+RhFPNmjqvaMEC35GY\nXIFPCDbhJz5Nmuh47x9/9B1J+rHmovhZDTZYvCYEEWkjIktFZLmIPFLQMSedpBvIm9iUKaNNbh99\n5DuS9DNmjNVe42UJIViKlRBEpJOIvBj56ZCIC4tICaA30AY4E+gqIrXyH2c3XPzatrWbLtG++QZ+\n+QXq1vUdSbjlTqD8+WffkRgoRkIQkWeB+4GvgMXA/SLyTAKu3RBY4Zxb5ZzbAwwEOuU/yKrk8Wvb\nVieo7dvnO5L0MW6cdiYfFvhG12ArW1ZHEE6c6DsSA8WrIbQDLnHO9XPOvYmW6Nsn4NrHA2vy/L02\n8tgBGjVKwJUy3IknarPbrFm+I0kfNtghcazZKLGWLYv9tcWZTuOAKsCmyN9VIo/Fq1jneOqpHvt/\nz8rKIisrKwGXzjy5N9355/uOJPx27IApU2DAAN+RpIe2baFnT51AaTWu2GRnZ5OdnQ3A6NGxn0dc\nIYOAReRVYABwAvAcMAkQoBnwqHNuYOyXBRFpDPRwzrWJ/P0YkOOcey7PMa6w+Ex0Jk+G7t11TwkT\nn7Fj4bnn9D01iXHmmdC/v26eY2LnHFSvDqtXC865qPeWPFQ+XgY8jyaDj4FvgaFA43iTQcRsoKaI\nVBeR0sBVwMgEnNcU4IILtCN0/XrfkYSfDTdNvEsv1VFbJj6LF8dXyyr0pc65l51z56M1guXA5WiC\nuFNETov9kvvPvxe4F/gI7awe5JyzFdKTpFQp3c92/HjfkYSbc7bYYjLY6qeJEW9hpdAmowIPFqkL\nvAXUds6ViP2yxb6eNRkl0Ftv6U03eLDvSMJr6VJo1UpXOJWoK+SmMLt3w9FHw/LlNvM7Hs2bw0MP\nQfv2iW8yAkBESopIRxEZAIwHlqK1BRMybdro8L69e31HEl65JTBLBolVujS0bGk12Hhs2aILWcaz\n73yhCUFELhGRfsD3wO3AaOBU59zVzrkRsV/S+HLccboC6vTpviMJr3HjrLkoWawfIT4ffwwXXhjf\nvvOHqiE8CkwHajnnOjjnBjjntsV+KRMENuY7dtu26f7JLVv6jiQ95U6gtBpsbBIx2OFQncotnHN9\nnXO2K28asYQQu08+0Z3RKlTwHUl6qlZNh0zOmOE7kvBxTu/reBcCtWkgGaZRI1i7Vn9MdGy4afJZ\ns1Fs5s+HSpWgRo34zmMJIcOUKKFbPtoQv+gkqgRmDq1dO6vBxiJRhRVLCBmoXTsrhUVr0SKdy3H6\n6b4jSW8NG8L338OaNUUfa35nCcHErE0b+PRT2LnTdyThYcNNU6NECWjd2mqw0di0SQssTZvGfy5L\nCBnoqKOgdm1biyca1n+QOtZsFJ0JEyArSzfDipclhAxlzUbF98svMHeu3nQm+Vq3hkmTYNcu35GE\nQyL7tiwhZKj27XWZXFsZpGgTJ+omLvFM+DHFd+SRcNZZ8NlnviMJvn37dHa3JQQTl9q1Yc8eXZvH\nHJo1F6We1WCLZ/ZsOOYY3Xs+ESwhZCgRu+mKIyfHlqvwwSZQFk+iCyuWEDJY+/aWEIoybx5UqQKn\nnOI7ksxy7rm6VMjy5b4jCTZLCCZhWrTQ1RF/+cV3JMFlzUV+iFgtoSgbNmjCvPDCxJ3TEkIGO/xw\naNJEh62ZgllC8McSwqGNG6cLLZYqlbhzWkLIcNaPULiffoKvvtIRRib1Lr4Ypk3TpiNzsNGjoUOH\nxJ7TEkKGa9dOSxr79vmOJHjGjtUSWCIm/JjoVaqkS1l8+qnvSIJn1y7d/yDRtVdLCBmuenXduvCL\nL3xHEjyjRkHHjr6jyGzWbFSwyZPhzDP13k0kSwjGmo0KsHu3Tkhr1853JJktdzlsm0B5oFGjdJRg\nollCMDb8tACTJ0OtWokvgZnonHGGdpouXOg7kuBwThNCovsPwBKCAc4/H777TpcdNmrkyOTccCY6\nIvr/YeRI35EEx1df6X/PPjvx57aEYChZUjfNsbZalcwSmIlex46WEPLK/WwmYyl2SwgGsH6EvBYt\n0v8mowSsRyCJAAAQ70lEQVRmote0KaxYAT/84DuSYEhmYcUSggF005xJk2zTHEhuCcxEr1Qp/XyO\nGuU7Ev82btQmo2bNknN+SwgG+H3TnEmTfEfinzUXBY81G6mxY3XCXrLmxlhCMPtddhl8+KHvKPza\nuBGWLEleCczEpm1bmDLFZi0nu7BiCcHs16mTlsJycnxH4s+YMdCqlc1ODprKlaFRo8xedytZs5Pz\n8pYQROR5EVkiIl+KyDARqewrFqNq1tTdqmbN8h2JP9ZcFFy5BZZMNXmy7iSXzLkxPmsIE4CznHN1\ngGXAYx5jMRGZ3Gy0cyd88omtbhpUHTpoDS5T191KxdwYbwnBOTfROZfbODETOMFXLOZ3mZwQJk3S\njvWjjvIdiSnISSfB8cfrCqiZJidH78vLLkvudYLSh3ALYNOiAqBePe24y8S9locPh86dfUdhDiVT\nm41mz4YKFXQ5lWQqmcyTi8hE4NgCnnrcOTcqcsxfgd3OuQEFnaNHjx77f8/KyiIrKyvxgZr9RH6v\nJTz6qO9oUmffPhgxAqZP9x2JOZSOHeGaa+D5531HklrDh8Pllxf+fHZ2NtnZ2XFfR5zHZQRF5Cbg\ndqClc+6gKVEi4nzGl6k+/hieeAJmzPAdSep89hncfz/Mn+87EnMozsGJJ+pn9IwzfEeTOmecAe+8\nAw0aFO94EcE5F/XUSp+jjNoADwOdCkoGxp9mzWDZssxaKqCoEpgJBhFtNsqkfq4lS2D7dqhfP/nX\n8tmH8C+gAjBRROaJyKseYzF5lCqlE4Eypa3WORg2zPoPwuLyy2HoUN9RpM6wYdqMm4qlVHyOMqrp\nnDvJOVc38nOPr1jMwTJptNHcuVC6tC1mFxbNmsGqVfqTCVI52CEoo4xMwLRpo8P7tmzxHUny5TYX\n2WJ24VCypDYbDRvmO5LkW71aE1/Tpqm5niUEU6CKFeGiizJjSWxrLgqfK6+EIUN8R5F8H36ok9FK\nJnU86O8sIZhC/elP6X/TLV2qtaCGDX1HYqLRooX+v0v3Xf5SPTfGEoIpVKdOupTDr7/6jiR5cm+4\nw+xOCJXSpbXknM7NRhs2wLx5uthiqthtYApVtao2G6XzxiQffABXXOE7ChOLK65I79FGQ4boTobl\nyqXumpYQzCF16QKDB/uOIjmWLYN161LXYWcS65JLdCLhhg2+I0mOQYPgqqtSe01LCOaQOnbURd+2\nbvUdSeINGqT9JCVK+I7ExKJsWZ0vk47Do7//Xvf2bt06tde1hGAOqUoVHfedbpPUnIP334err/Yd\niYnHlVdqs1+6+eADLYyleqMmSwimSOnYbLRokS4H0Lix70hMPC69FObM0aa/dOKjuQgsIZhi6NhR\nd2tKp0lqgwZporPRReFWrpx+PtOpwPLdd7B8OVx8ceqvbbeDKVKlStC8efo0GzkHAwdac1G6uPZa\neO8931EkzuDBOhS6VKnUX9sSgimWLl30SzQdzJmjy1Scd57vSEwitGjxe6k6HfhqLgJLCKaYOnXS\ntY02bvQdSfwGDdLaga1dlB5KltQv0Pff9x1J/L75BtasAV/7gFlCMMVSvrzODA17LSEnx28JzCRH\nbrNR2PfTeu89HQqdqrWL8rOEYIrtuut016YwmzxZZ2DbUtfppWFD3QZ17lzfkcTOOejfH2680V8M\nlhBMsbVsqRNmli71HUns3n7b7w1nkkNE91oeUODO7OEwfbp2JKdiZ7TCWEIwxVaihN50777rO5LY\nbNsGI0Zo84JJP127aj/Cvn2+I4lN//5www1++7YsIZioXHedJoScHN+RRG/YMLjwQjjmGN+RmGSo\nVQuqVYOPP/YdSfR27tTZyddd5zcOSwgmKnXq6LyEzz7zHUn0rLko/d16K7z5pu8oojdqFNStCyee\n6DcOSwgmKiJwyy3hu+lWr9aVMTt08B2JSaauXWHCBPjpJ9+RROftt+H6631HYQnBxOD667VE8/PP\nviMpvv79dXJd2bK+IzHJVKUKtG8frpnLa9fqHJ8rr/QdiSUEE4Mjj9Rlh8Ny0+3bB337wm23+Y7E\npEJus1FY5iT066c1m/LlfUdiCcHE6Pbb9Us2DDfdRx9pR3K9er4jManQrJmuZDt7tu9IirZvH7zx\nBtxxh+9IlCUEE5OsLB3G+cUXviMpWp8+cOedvqMwqXLYYdrP1bev70iKNn48HHecDtYIAnEBLuKJ\niAtyfJnumWfg22+DfeOtWQPnnqudykGokpvUWL9eh6GuXKn9CkHVqZMu333rrYk9r4jgnIt6RoMl\nBBOzDRvgjDN0Qa4jjvAdTcGefBI2b4Z//ct3JCbVrr1WZ/0++KDvSAr2/fdQu7YWVipUSOy5Y00I\n1mRkYnbMMTqM8403fEdSsD17tHPRmosy0733wr//HdxJlK+9pjP/E50M4mEJwcTlgQf0ptu713ck\nBxsyBGrUsIXsMlXjxtpcNH6870gOtmMHvP663j9B4jUhiEh3EckRkYA2OJii1KunsytHjPAdyYGc\ngxdfhO7dfUdifBHRWkLv3r4jOdg772jCqlnTdyQH8pYQROREoBXwna8YTGI88AD06uU7igN99pmO\ngmrXznckxqerr9Yd8r7+2nckv8vJgZdfhm7dfEdyMJ81hH8C/8/j9U2CdO4Mq1bpjRcUL76onYmH\nWaNoRitbFv78Z3juOd+R/O6jjzSuZs18R3IwL7eLiHQC1jrnFvi4vkmskiW1aeYf//Adifr6a5gx\nQ5cSNubee+HDD3U0TxDkFlaCuIVr0oadishE4NgCnvor8DhwiXNuq4isBOo75zYVcA4bdhoSO3bA\nKafo0sO+O3Fvuw2OPx569vQbhwmOhx+G3bv9N21Om6Yji5Ytg9Klk3ed0MxDEJGzgU+AHZGHTgC+\nBxo65zbmO9Y9+eST+//Oysoiy9fu06ZI//d/MG+e383Ov/kGGjXSGy6ocyNM6v3wgxZUvv4a/vAH\nf3G0bq2L2N1+e2LPm52dTXZ29v6/e/bsGY6EcFAAWkOo55zbXMBzVkMIkV9/1VrC55/D6af7ieGm\nm6B6dejRw8/1TXDdeSccdZS/ps3p03URu2TXDiBENYSDAhD5Fm0ysoSQBv7+d1ixQpebTrVly3RH\ntOXLg71cgfFj1SodJr1oka4flGpt2sDll6dmIbvQJoRDsYQQPlu2wGmnaV9C7dqpvfZ11+n6NX/9\na2qva8Kje3ddCbVPn9Red9o0rR0sX5782gFYQjAB8sorOjt07NjUXfPLL+GSS7R2UrFi6q5rwmXz\nZm3OTGWzpnNwwQVw112p28LV1jIygXHXXdp8k6rNzp2Dv/xFRxVZMjCHcsQROuLoscdSd82BA3WE\nUxC2yCyKJQSTcKVLwwsvwP33642QbMOGwaZNtiOaKZ777tNJlJMmJf9a27fDo4/CSy+FY5JkCEI0\nYdSpk444+uc/k3udrVt1CYBevXSCnDFFKVdOmzXvugt27UrutXr0gCZNoGnT5F4nUawPwSTNypXQ\noAHMnAmnnpqca9xzj9ZCgroEtwmuzp11p7JkDVGeO1f3Hl+4EI4+OjnXKIx1KptA6tULBg3SxeYS\nXYLPztaRRYsW2TBTE721a+G883TwQ/36iT33zp06QfLBB3VuTKpZp7IJpPvug8MPh2efTex5f/pJ\nO+n69rVkYGJzwgm6k94112hbfyI98ogOv07VqKJEsRqCSbo1a6BhQ52s1qpV/OfLyYH27XWeQ5BW\nsTThdPPNurveO+8kZsG54cO1ZjBvHlStGv/5YmFNRibQJk+GLl1g6lTdxSweDz0EX3yhw1pLlUpM\nfCZz7dihS1F37gyPPx7fuebO1RnJyWiGioY1GZlAa9YMnnpKJ4+tWRP7eV56SW+24cMtGZjEOPxw\n3fGvTx94663Yz7N8uY6u+89//CaDeNhAPZMyd9yhu5i1aKGbhJxySvFf6xw884yOJpo0yVYyNYlV\nrRpMnAgXX6z7g0e7GunixVrY6dFDaxphZQnBpFS3blCmjE7lHzBAk0NRtm3TmcgzZ+qSA9WqJT9O\nk3lOPx0+/VSbfBYtguefL966Q0OHwt1365yb665LfpzJZE1GJuX+/Gd47z0dJXTrrbBuXcHH5eRo\n09B552mpbepUSwYmuWrWhNmzdQ5N/fowYYLWTguycqUmgIcegtGjw58MwDqVjUdbt+r6Q/36wUUX\n6YzO6tV1CODChTBmjK5N1LMntGvnO1qTSZzTfoVHH9WRR5ddpsNIy5bV+QsTJ2riuP9+XUE1aGto\n2SgjE1q//qp73s6bp/veVqigI5Fat9ZSWhD3njWZwTmYNUsHMqxcqUtdHHecFmDatIHy5X1HWDBL\nCMYYYwAbdmqMMSZOlhCMMcYAlhCMMcZEWEIwxhgDWEIwxhgTYQnBGGMMYAnBGGNMhCUEY4wxgCUE\nY4wxEZYQjDHGAJYQjDHGRFhCMMYYA3hMCCJyn4gsEZFFImJbpRtjjGdeEoKINAc6Auc4584GXvAR\nR6bJzs72HUJasfczcey9DAZfNYS7gWecc3sAnHM/eoojo9hNl1j2fiaOvZfB4Csh1ASaisgMEckW\nkfqe4jDGGBNRMlknFpGJwLEFPPXXyHWrOucai0gDYDBwSrJiMcYYUzQvO6aJyDjgWefc5MjfK4BG\nzrlN+Y6z7dKMMSYGseyYlrQaQhE+BFoAk0XkNKB0/mQAsf2DjDHGxMZXQugH9BORhcBu4AZPcRhj\njInw0mRkjDEmeAIxU1lE2ojIUhFZLiKPFHLMK5HnvxSRuqmOMUyKej9FJEtEtojIvMjPEz7iDAMR\n6SciGyK12cKOsc9mMRT1XtrnMjoicqKITBKRryITfO8v5Ljifz6dc15/gBLACqA6UAqYD9TKd8yl\nwNjI742AGb7jDupPMd/PLGCk71jD8ANcBNQFFhbyvH02E/de2ucyuvfzWODcyO8VgK/j/e4MQg2h\nIbDCObfK6US1gUCnfMd0BN4GcM7NBKqIyDGpDTM0ivN+AliHfTE456YAPx/iEPtsFlMx3kuwz2Wx\nOefWO+fmR37fBiwBquU7LKrPZxASwvHAmjx/r408VtQxJyQ5rrAqzvvpgAsiVcixInJmyqJLP/bZ\nTBz7XMZIRKqjta+Z+Z6K6vPpa5RRXsXt1c5fcrDe8IIV532ZC5zonNshIm3RYcCnJTestGafzcSw\nz2UMRKQCMAR4IFJTOOiQfH8X+vkMQg3he+DEPH+fiGaxQx1zQuQxc7Ai30/n3K/OuR2R38cBpUTk\niNSFmFbss5kg9rmMnoiUAoYC7zrnPizgkKg+n0FICLOBmiJSXURKA1cBI/MdM5LIXAURaQz84pzb\nkNowQ6PI91NEjhERifzeEB1+vDn1oaYF+2wmiH0uoxN5r94EFjvnXi7ksKg+n96bjJxze0XkXuAj\ndITMm865JSJyZ+T5/zjnxorIpZElLrYDN3sMOdCK834CVwJ3i8heYAdwtbeAA05E3geaAUeJyBrg\nSXT0ln02o1TUe4l9LqN1IXAdsEBE5kUeexz4I8T2+bSJacYYY4BgNBkZY4wJAEsIxhhjAEsIxhhj\nIiwhGGOMASwhGGOMibCEYIwxBrCEYEzURKSyiNztOw5jEs0SgjHRqwrc4zsIYxLNEoIx0XsWODWy\nictzvoMxJlFsprIxURKRk4DRzrnavmMxJpGshmBM9GwTF5OWLCEYY4wBLCEYE4tfgYq+gzAm0Swh\nGBMl59wmYKqILLROZZNOrFPZGGMMYDUEY4wxEZYQjDHGAJYQjDHGRFhCMMYYA1hCMMYYE2EJwRhj\nDGAJwRhjTIQlBGOMMQD8f9FvPgMDCCzeAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x7e69970>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "import math\n",
    "import numpy\n",
    "%matplotlib inline\n",
    "from matplotlib.pyplot import plot,ylim,xlabel,ylabel,title,annotate\n",
    "\n",
    "#Variables\n",
    "\n",
    "Vi = 2.0             #positive clipping (in volts)\n",
    "\n",
    "#Calculation\n",
    "\n",
    "Vomax = 5.0          #Maximum output voltage (in volts)    \n",
    "\n",
    "#Result\n",
    "\n",
    "print \"Following graph shows the output.\\nThe part above the line is clipped out.\"\n",
    "\n",
    "#Graph\n",
    "\n",
    "t = numpy.linspace(0.001,2,400)\n",
    "y = numpy.sin(2*math.pi*t)\n",
    "plot(t, 5*y)\n",
    "plot(t,(2*t)/t,'--')\n",
    "ylim( (-6,6) )\n",
    "ylabel('Vo')\n",
    "xlabel('t')\n",
    "title('Output Waveform')\n",
    "annotate(\"Clipping level\",xy=(0.575,2))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 33.6 , Page Number 861"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<matplotlib.text.Text at 0x61a9b30>"
      ]
     },
     "execution_count": 1,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEZCAYAAACXRVJOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHQFJREFUeJzt3Xu0nFWd5vHvkwsKogSIBHIjEEiQy0gijSxAcxpRufQE\nx2kVZ2wB17TIyGAr3W3r2Iuw7FFcOi2KzWUcUdAOwUYXAwitoJwYRFEhCSFXAgm5QSKQCxKQkPzm\nj71PqFTqnFPnnPetOnXq+axVi7rs2vXL4X3refd+L6WIwMzMbFizCzAzs8HBgWBmZoADwczMMgeC\nmZkBDgQzM8scCGZmBjgQzFqGpH+S9AdJG5pdiw1NDgRrCkkXSlok6UVJT0u6VtIBfXj/aklnFFhP\nof0VTdJE4DPAMRExttn12NDkQLCGk3Q5cBVwOfAm4BTgcOBeSSPr7CYAFVhW0f0VbSLwXEQ819c3\nShpRQj02BDkQrKEkvQmYBVwaET+LiJ0R8RTwQWAS8JHc7nuSvljxvg5Ja/P975O+IO+U9IKkv5U0\nSdIuSX8tab2kDTl46E9/NeqeK+n9+f5p+bPOyY/fJWl+vj9Z0i8kPZund37QNfKR9FlJ/1bV7zck\nfSPfP0DSd3Lt6yR9UdIwSWcCPwPG5vpuzO1nSlosabOk+yUdU9Hvakl/L+lR4IVc1648Mlsj6TlJ\nn5D0Z5IezX1c0/f/ozaUOBCs0U4FXg/8uPLJiHgRuBt4d9dT+baXiPgrYA3wFxHxxoj4WsXLHcBR\nwHuAz0p61wD769KZ+waYATwJvLPicWdF2/8FHAa8BZhACkCAW4BzJO0PIGk48AHgX/Pr3wNeASYD\n0/K/4b9FxH3A2cCGXN/HJE0BZgOXAaNJf7s7q0YD5+f3jQJ25udOzn+f84FvAJ8HzgCOAz4o6Z1Y\n23IgWKONBp6NiF01XnsGOLjicX+mcK6MiJci4jHgu8CHB9hfl7mkL36AdwBfrng8I79ORDwRET+P\niB0R8Szw9a52EbEGeAT4T/l9ZwDbI+K3ksaQvrw/nev/A3A16Yu7Vu0fAu7Kn7UT+BqwLylwIYXf\nNyNifUT8qeJ9X4yIVyLiXuAFYHZEPBsRG4B5pCCyNuVAsEZ7Fhgtqdayd1h+fSDWVtxfAxS1A/Y3\nwBRJhwAnAjcDEyQdDPwZ8EsASWMkzclTPluB77NnyM3mtZD6L7w2OjgcGAk8nadvNgPXA2/upp7D\n8r8PgEhXqVwLjKtos7b6TcDGivsv1Xi8fzefZ23AgWCN9mvgT8B/rnwyT6OcBfw8P/UisF9Fk0Or\n+unuMr0Tq+6vH2B/6cWI7cDDwN8AiyJiB/Agacf4yoh4Pjf9Eml65viIOAD4K/Zcz24DOiSNA95H\nCghIX95/Ag6OiAPz7YCIOKGbkjaQQgQASSJNT62vaNOfSxn78sdtzIFgDRURW4ErgWskvVfSSEmT\ngB+SvhS/n5suIM23HyjpUNIXcaWNpLn2al+QtK+k44ALgVsH2F+lucAn838h7Te4tOIxpC3sF4Ft\n+Uv/7yo7yFNBnaT9BU9GxPL8/NOkHcf/LOmNeWfy5B7m9H8InCvpjHxk1uXAy6SQGojBfKSVlcyB\nYA0XEV8l7cz8GrCVNB3zFPCuvOUNKRgWAquBfwfmsOfW65dJX/6bJX2m4vm5wErgPuCreYfsQPqr\nNJf0hf/L/PiXwBsqHkMKu+n533Un8CP23uqeDbyL10YHXT4K7AMsAZ4H/o09RzK7+4mIFaQjsq4B\n/gCcC/zHiHi1m9r3eP8A29gQpbJ+IEfS60kr0OtIC/n/i4jP1Wj3TdLOtO3AhRExv5SCbEjLo4wn\ngRHd7LA2s16UdsJKRLws6c8jYns+FO4BSadHxANdbfJx3EdFxNGS3g5cRzpJyczMGqzUKaO8Iw7S\nCGE4aRhcaSZwU277EDAqH35n1h+e7jAbgFIDIe8YW0DaYXd/RCypajKOPQ+NWweML7MmG5oiYnVE\nDPd0kVn/lT1C2BURJ5K+5N8pqaNGs+qjGryVZ2bWBA256FVEbJX0E+Ak9jzFfz3p2Oku49nzOGoA\nJDkkzMz6ISLqPpS4tBGCpNGSRuX7+5KuUVN9BNEdpEPtkHQKsCUiNlJDRLTs7Yorrmh6De1Yu+tv\n/s31N/fWV2WOEA4DbsqXKBgGfD8ifi7pYoCIuCEi7pZ0jqSVpJN5LiqxHjMz60GZh50uIp2gU/38\nDVWPLy2rBjMzq5/PVG6Ajo6OZpfQb61cO7j+ZnP9raW0M5WLJClaoU4zs8FEEjEYdiqbmVlrcSCY\nmRngQDAzs8yBYGZmgAPBzMwyB4KZmQEOBDMzyxwIZmYGOBDMzCxzIJiZGeBAMDOzzIFgZmaAA8HM\nzDIHgpmZAQ4EMzPLHAhmZgY4EMzMLHMgmJkZ4EAwM7PMgWBmZoADwczMMgeCmZkBDgQzM8scCGZm\nBjgQzMwscyCYmRlQYiBImiDpfkmLJT0m6bIabTokbZU0P9++UFY9ZmbWsxEl9r0D+HRELJC0P/Cw\npHsjYmlVu7kRMbPEOszMrA6ljRAi4pmIWJDv/xFYCoyt0VRl1WBmZvVryD4ESZOAacBDVS8FcKqk\nhZLulnRsI+oxM7O9lTllBECeLroN+FQeKVR6BJgQEdslnQ3cDkwpuyYzM9tbqYEgaSTwI+AHEXF7\n9esR8ULF/XskXSvpoIh4vrrtrFmzdt/v6Oigo6OjlJrNzFpVZ2cnnZ2d/X6/IqK4aio7lgTcBDwX\nEZ/ups0YYFNEhKSTgR9GxKQa7aKsOs3MhipJRETd+2nLHCGcBnwEeFTS/Pzc54GJABFxA/CXwCWS\nXgW2A+eXWI+ZmfWgtBFCkTxCMDPru76OEHymspmZAQ4EMzPLHAhmZgY4EMzMLHMgmJkZ4EAwM7PM\ngWBmZoADwczMMgeCmZkBDgQzM8scCGZmBjgQzMwscyCYmRngQDAzs8yBYGZmgAPBzMwyB4KZmQEO\nBDMzyxwIZmYGOBDMzCxzIJiZGeBAMDOzzIFgZmaAA8HMzDIHgpmZAQ4EMzPLHAhmZgY4EMzMLHMg\nmJkZUGIgSJog6X5JiyU9Jumybtp9U9LjkhZKmlZWPWZm1rMRJfa9A/h0RCyQtD/wsKR7I2JpVwNJ\n5wBHRcTRkt4OXAecUmJNZmbWjdJGCBHxTEQsyPf/CCwFxlY1mwnclNs8BIySNKasmszMrHsN2Ycg\naRIwDXio6qVxwNqKx+uA8Y2oyczM9lTmlBEAebroNuBTeaSwV5Oqx1Grn1mzZu2+39HRQUdHR0EV\nmpkNDZ2dnXR2dvb7/Yqo+f1bCEkjgbuAeyLi6hqvXw90RsSc/HgZMCMiNla1izLrNDMbiiQREdUb\n3d0q8ygjAd8BltQKg+wO4KO5/SnAluowMDOzxihthCDpdOCXwKO8Ng30eWAiQETckNt9CzgLeBG4\nKCIeqdGXRwhmZn3U1xFCqVNGRXEgmJn13aCZMjIzs9biQDAzM8CBYGZmmQPBzMwAB4KZmWUOBDMz\nAxwIZmaWORDMzAxwIJiZWeZAMDMzwIFgZmaZA8HMzAAHgpmZZQ4EMzMDHAhmZpY5EMzMDHAgmJlZ\n5kAwMzPAgWBmZpkDwczMAAeCmZllDgQzMwMcCGZmljkQzMwMcCCYmVnmQDAzM8CBYGZmmQPBzMyA\nkgNB0o2SNkpa1M3rHZK2Spqfb18osx4zM+veiHoaSToPeGd+2BkRd9bZ/3eBa4Cbe2gzNyJm1tmf\nmZmVpNcRgqSrgMuAxcAS4DJJX66n84iYB2zu7SPq6cvMzMpVzwjhXODEiNgJIOl7wALgcwV8fgCn\nSloIrAf+NiKWFNCvmZn1UT2BEMAo4Ln8eFR+rgiPABMiYruks4HbgSm1Gs6aNWv3/Y6ODjo6Ogoq\nwcxsaOjs7KSzs7Pf71dE7e92SdcCs4HxwFeA+0nTOzOAf4iIOXV9gDQJuDMiTqij7SrgbRHxfNXz\n0V2dZmZWmyQiou5p+Z5GCCuArwJjgfuAp0hTRZ+NiGcGVGUmaQywKSJC0smkgHq+t/eZmVnxuh0h\n7G6QtvDPz7d9SaOGWyJiRa+dS7eQRhSjgY3AFcBIgIi4QdIngUuAV4HtwGci4jc1+vEIwcysj/o6\nQug1EKo6n0Y6lPSEiBjej/r6xYFgZtZ3fQ2Eeg47HSFppqTZwL8Dy4D3D6BGMzMbhHraqfwe0jTR\nucBvgVuAOyLij40rb3ctHiGYmfVRYVNGkn5BCoEfNXtHrwPBzKzvSt2H0CwOBDOzvit8H4KZmbUH\nB4KZmQEOBDMzyxwIZmYGOBDMzCxzIJiZGeBAMDOzzIFgZmaAA8HMzDIHgpmZAQ4EMzPLHAhmZgY4\nEMzMLHMgmJkZ4EAwM7PMgWBmZoADwczMMgeCmZkBDgQzM8scCGZmBjgQzMwscyCYmRngQDAzs8yB\nYGZmQMmBIOlGSRslLeqhzTclPS5poaRpZdZjZmbdK3uE8F3grO5elHQOcFREHA18HLiu5HrMzKwb\npQZCRMwDNvfQZCZwU277EDBK0pgyazIzs9qavQ9hHLC24vE6YHyTaqlbBGzb1uwqbCjati0tX2bN\nMKLZBQCqelxzdVBHRbNJwBFwxYwrmNUxa6+2szpnceXcK/d6voj2v/0tnHXVLDa/tZz+3b592x+x\n5gqenj2LQw+FH/wATjuttepvVnt7TWdnJ52dnf1+v6LkzRFJk4A7I+KEGq9dD3RGxJz8eBkwIyI2\nVrWLsuusx+rV8Pa3w3XXwXnnwZVXwh13wEMPwete1+zqrFXt2AGnnw4zZsCXvgQ//SlcdBHMmwdT\npza7OmtlkoiI6o3ubjV7yugO4KMAkk4BtlSHwWDyiU/A5ZfD+98Pw4enQDjiCLjqqmZXZq3s61+H\ngw6Cr3wFRoyAc8+Ff/xH+PjHPX1kjVXqCEHSLcAMYDSwEbgCGAkQETfkNt8iHYn0InBRRDxSo5+m\njxDmzoWPfQyWLYORI197fvVqeNvbYMUKOPjgppVnLWrbNpg8GR54YM/RwM6dcMIJKSze+97m1Wet\nra8jhNKnjIowGALhAx+AM86ASy7Z+7ULLoC3vhU+85nG12Wt7frr4b774Lbb9n7t5pvh1lvhJz9p\nfF02NDgQSrBpU9p6W70aDjhg79fnzYOLL4bFi0F1/+nNYPr0NOX4nvfs/dr27TB+PCxaBOPGNb42\na32ttg+hJdx8M7zvfbXDANIOwZ074Te/aWxd1toefhg2b4Yzz6z9+n77wQc/CDfd1Ni6rH05EOow\ne3aaFuqOBBdemA4VNKvXnDnwkY/AsB7WwgsvTBskZo3gQOjF+vXw1FNpFNCTmTPTXG8LzMDZIHHX\nXWm56cnJJ8PWrbByZWNqsvbmQOjF3XenozxG9HIK37HHpv8uWVJ+Tdb6Vq6ELVvSEWo9GTYMzj4b\n7rmnMXVZe3Mg9OInP0nHhfdGSu18RIjV46670vLS03RRl3PPTRsmZmVzIPTglVfg/vvhrG6v17on\nB4LV65574Jxz6mt75pnpPIUXXyy3JjMHQg9+/3s46qj6TzibMSMdOfLyy+XWZa3t1Vfh179Oy0s9\nDjggnefy61+XW5eZA6EH8+b1vjO50hvekPYl/O535dVkrW/+fJg4sW9ntp9+eholmJXJgdCDBx6A\nd7yjb+/ximu9mTfPy5UNTg6EbuzaBb/6Vd9GCJBW9HnzyqnJhob+BMKpp6ar6r76ajk1mYEDoVtL\nlqQh/aGH9u19p50GDz6Yzlw2qxbRv5HnQQfB4YfDwoXl1GUGDoRuPfhg2irrq0MOSTefj2C1PPFE\n+u2MCRP6/t7TTvO0kZXLgdCNhx+Gk07q33tPOim936zaQJark09OR76ZlcWB0I2HH+79LNLuvO1t\n8Mhev+pgNrDlavp0L1dWLgdCDa+8kqZ8Tjyxf++fPt0jBKttIIFw3HGwapVPULPyOBBqWLwYjjwy\nXX64P6ZPTzv/vGPZKkWkLfz+BsI++6TzXB59tNi6zLo4EGoYyFYcpDNLDzsMli8vriZrfU8+Cfvv\nD2PG9L8PTxtZmRwINTzySFrxBsLTRlatqOXKgWBlcSDU8Oij6doxAzFtGixYUEw9NjQsWlTMcuVA\nsLI4EKpEwGOPwfHHD6yf449P+yLMuhSxXB13XJqK9P4pK4MDocr69bDvvjB69MD6Oe649AVg1qWI\nQOjaB/HEE8XUZFbJgVCliJUW0mUGtmxJN7OXXoK1a+Hoowfel0efVhYHQpXHHktb9wM1bFjqxyuu\nASxdmsJg5MiB9+XlysriQKiyeHExIwTwimuvKWrkCZ6OtPI4EKoUueIef7xXXEuKXq68oWFlcCBU\n2LUrDe2PPbaY/hwI1mXx4uKWq2OOgZUrYceOYvoz6+JAqLBuXTrL+E1vKqa/Y46BZcuK6cta2/Ll\naXkowr77wrhxKRTMilRqIEg6S9IySY9L+myN1zskbZU0P9++UGY9vVm+HKZOLa6/8ePTUUYvvFBc\nn9Z6/vSntLFx5JHF9Tl1Kjz+eHH9mQGMKKtjScOBbwFnAuuB30m6IyKWVjWdGxEzy6qjL1asKDYQ\nhg1LR5asWDGwayNZa3viCZg4MV2crihTpvhaWVa8MkcIJwMrI2J1ROwA5gDn1WinEmvok+XL04pW\npKlTUyBY+/JyZa2izEAYB6yteLwuP1cpgFMlLZR0t6SCdrv1T9FTRuAtOSt+5AlpuXIgWNHKDISo\no80jwISIeCtwDXB7ifX0asUKb8lZ8crY0PByZWUobR8Cab9B5U+JTyCNEnaLiBcq7t8j6VpJB0XE\n89WdzZo1a/f9jo4OOjo6Ci32pZfgmWdg0qRCu2XKFLj66mL7tNayfDlccEGxfY4dmw5W2LatuKPi\nrPV1dnbS2dnZ7/crop4N+X50LI0AlgPvAjYAvwU+XLlTWdIYYFNEhKSTgR9GxKQafUVZdXZZtAg+\n9KH005lF2rw57VDctg00aPaWWCONHp3ORzn00GL7nTYNvv1tOOmkYvu1oUMSEVH3N09pU0YR8Spw\nKfBTYAlwa0QslXSxpItzs78EFklaAFwNnF9WPb15/PFiLjxW7cAD03HjTz9dfN82+G3ZAi+/PLBf\nSevO1KneP2XFKnPKiIi4B7in6rkbKu7/C/AvZdZQryefhMmTy+l78uTU/9ix5fRvg9eqVen8gzJG\nh0cd5ctgW7F8pnL25JPFnjhU6Ygj0heDtZ8yl6sjj0z9mxXFgZCtWpW+uMvgFbd9eUPDWokDIfOW\nnJXBy5W1EgcC6fdpn3qq+ENOu3hLrn2VGQjjx8OmTelaSWZFcCAAGzbAwQeno4HK4C259lVmIAwf\nDhMmpI0ZsyI4EEgrbVn7DyBtyT37bDr80NrHzp2wZk15I09Iy603NqwoDgReOzSwLMOHp1Dwllx7\nWbcO3vxmeP3ry/uMI4/0dKQVx4FAucP6Lp42aj+NWK48QrAiORBoXCB4S669eLmyVuNAoPx9COAt\nuXbkEYK1GgcCnjKycjRiQ8MjBCtS2wfC9u2wdSscdli5n+MVt/00YkPjoIPS0UybN5f7OdYe2j4Q\nVq1KhwUOK/kv0TW0L/kq3jaINGKEIHn0acVxIKwq9zjxLgcemFbe5/f66R8birZvTz9gU/RvINTi\n0acVpe0DYc0aOPzw8j9HSj+Us2ZN+Z9lzbd2bTqLuOyRJ6QNmtWry/8cG/raPhC6VtxGmDgxfZ4N\nfWvWNG65mjDBy5UVo+0DYc2a9EXdCBMmeITQLrxcWStq+0DwCMHK4OXKWlHbB0Kjt+S84rYHL1fW\nito6EHbuhKefhnHjGvN5Htq3j7VrGxcIY8bAli2+mq4NXFsHwjPPpBN7Xve6xnyeh/bto5E7lYcN\nSxs169Y15vNs6GrrQGjkPC+klfbpp9PIxIauiMYvW542siK0dSA0cp4XYJ99YPToFAo2dD33XPoN\nhDe+sXGf6UCwIrR9IDRyKw68H6EdNGO58kmPVoS2DoRG7vjr4v0IQ18zliuPEKwIbR0IHiFYGRo9\nFQkOBCtGWweCRwhWhkbvUAZPGVkx2joQPEKwMniEYK2q1ECQdJakZZIel/TZbtp8M7++UNK0Muup\n9NJL6Ydxxoxp1CcmXnGHvmYEwqhR6XDmbdsa+7k2tJQWCJKGA98CzgKOBT4s6S1Vbc4BjoqIo4GP\nA9eVVU+1devSeQGNuDxxZ2fn7vutNrSvrL0VNaP+IqeM6q2/6/Lqg21jw8tPaynz6/BkYGVErI6I\nHcAc4LyqNjOBmwAi4iFglKSGbLM3cp63cqE65JD0wykvvdSYzx6oVl8hGl3/zp2wcSOMHVtMf32p\nfzBOR3r5aS1lBsI4oHJ7ZV1+rrc240usabcNGxp3DaNKw4al32/esKHxn23l27QpXQ5l5MjGf7an\nI22gygyEen89WP1834A0KxAgbT2uX9+cz7ZybdhQ3Oigr8aO9YaGDYyipF99l3QKMCsizsqPPwfs\nioivVLS5HuiMiDn58TJgRkRsrOrLP01vZtYPEVG90d2tESXW8XvgaEmTgA3Ah4APV7W5A7gUmJMD\nZEt1GEDf/kFmZtY/pQVCRLwq6VLgp8Bw4DsRsVTSxfn1GyLibknnSFoJvAhcVFY9ZmbWs9KmjMzM\nrLUM6jOV6zmxbbCSNEHS/ZIWS3pM0mXNrqk/JA2XNF/Snc2upa8kjZJ0m6SlkpbkacmWIelzeflZ\nJGm2pAb9lFP/SLpR0kZJiyqeO0jSvZJWSPqZpFHNrLE73dT+1bzsLJT0Y0kHNLPGntSqv+K1yyXt\nknRQb/0M2kCo58S2QW4H8OmIOA44Bfhki9Xf5VPAEhp09FfBvgHcHRFvAf4DsLTJ9dQt73v7a2B6\nRJxAmnY9v5k11eG7pPW10j8A90bEFODn+fFgVKv2nwHHRcRbgRXA5xpeVf1q1Y+kCcC7gafq6WTQ\nBgL1ndg2aEXEMxGxIN//I+nLqEkHJPaPpPHAOcD/Ze/Dgwe1vDX3joi4EdI+rYjY2uSy+mIbaaNi\nP0kjgP2AQX2wckTMAzZXPb375NP83/c1tKg61ao9Iu6NiF354UM06Byp/ujmbw/wz8Df19vPYA6E\nek5sawl5a28aaaFqJV8H/g7Y1VvDQegI4A+SvivpEUnflrRfs4uqV0Q8D/xvYA3pKL0tEXFfc6vq\nlzEVRw5uBBp89bDCfAy4u9lF9IWk84B1EfFove8ZzIHQilMUe5G0P3Ab8Kk8UmgJkv4C2BQR82mx\n0UE2ApgOXBsR00lHsQ3W6Yq9SJoM/A0wiTSy3F/Sf21qUQMU6QiWlluvJf1P4JWImN3sWuqVN34+\nD1xR+XRv7xvMgbAeqLza0ATSKKFlSBoJ/Aj4QUTc3ux6+uhUYKakVcAtwBmSbm5yTX2xjrR19Lv8\n+DZSQLSKk4AHI+K5iHgV+DHp/0mr2SjpUABJhwGbmlxPn0i6kDRt2mphPJm0MbEwr8PjgYclHdLT\nmwZzIOw+sU3SPqQT2+5ock11kyTgO8CSiLi62fX0VUR8PiImRMQRpJ2Zv4iIjza7rnpFxDPAWklT\n8lNnAoubWFJfLQNOkbRvXpbOJO3cbzV3ABfk+xcALbNhJOks0pTpeRHxcrPr6YuIWBQRYyLiiLwO\nryMdoNBjIA/aQMhbRV0nti0Bbo2IljlKBDgN+Ajw5/mwzfl5AWtVLTfUB/4H8K+SFpKOMvpSk+up\nW0QsBG4mbRh1zQH/n+ZV1DtJtwAPAlMlrZV0EXAV8G5JK4Az8uNBp0btHwOuAfYH7s3r77VNLbIH\nFfVPqfjbV6pr/fWJaWZmBgziEYKZmTWWA8HMzAAHgpmZZQ4EMzMDHAhmZpY5EMzMDHAgmPWLpAMk\nXdLsOsyK5EAw658Dgf/e7CLMiuRAMOufq4DJ+QzWrzS7GLMi+Exls36QdDhwV/7xGrMhwSMEs/5p\nxUuCm/XIgWBmZoADway/XgDe2OwizIrkQDDrh4h4DviVpEXeqWxDhXcqm5kZ4BGCmZllDgQzMwMc\nCGZmljkQzMwMcCCYmVnmQDAzM8CBYGZmmQPBzMwA+P+c7puEaHGu0gAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x6196530>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "import math\n",
    "import numpy\n",
    "%matplotlib inline\n",
    "from matplotlib.pyplot import xlim,ylim,plot,title,xlabel,ylabel\n",
    "\n",
    "#Variables \n",
    "\n",
    "Vp = 10.0                      #Peak to peak voltage (in volts)\n",
    "\n",
    "#Calculation\n",
    "\n",
    "Vi = 4.0                       #Input voltage (in volts)\n",
    "Vo = 1.0                       #Maximum output voltage (in volts)\n",
    "\n",
    "#Graph\n",
    "\n",
    "x = numpy.linspace(0,11,400)\n",
    "y = numpy.sin(x)\n",
    "xlim((0,14))\n",
    "ylim((0,3))\n",
    "plot(x,5*y - 4)\n",
    "plot(x,x-x+1,\"--\")\n",
    "title(\"Output waveform\")\n",
    "xlabel(\"t\")\n",
    "ylabel(\"Vo\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 33.7 , Page Number 862"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Following is the graph :\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "<matplotlib.text.Annotation at 0x7ed13b0>"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEZCAYAAACXRVJOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecVOXVwPHfkS4goNGgIqLYAAWRboGlSicoiogl1gRj\nS9BoTHwBzWuJr9EYYxIRNSgoSLFQlCKLBQRUihQpIoKoSEBpS9/n/ePcxWXZZXdmZ+a5d+Z8P5/9\nsDt7596zw9w5T3/EOYcxxhhzhO8AjDHGhIMlBGOMMYAlBGOMMQFLCMYYYwBLCMYYYwKWEIwxxgCW\nEIyJBBHpLSLrRGSbiDTyHY9JT5YQTEqJyC9F5DMR2SEi34rIMyJSLYbnrxGRdgmM57DnE5HlInJ5\nvp8vEJHcQh7bKiLJvJ/+D7jFOVfVObcwidcxGcwSgkkZERkIPAIMBI4CWgInA1NFpFwJT+MASWBY\nxZ1vJtA638+tgc8LeWyWcy43gXEdICIC1AaWxvl8u89NidgbxaSEiBwFDAZudc5Ncc7td859BVwO\n1AGuCo57UUQezPe8LBFZF3z/EvrB+FbQdHKXiNQJSuw3ich6EfkmSDzEc75CQn+Pgz/8LwQeLfDY\nRcFxiMhrQc3nRxGZKSL1g8dbBI8fSD5BM9DC4PsjROReEVklIv8VkVEiUkNEKgDbgDLAQhFZGRxf\nT0SyReQHEVksIj0K/M3/FJFJIrIdaBvUhO4SkUXB3zpMRH4uIpNFZIuITBWR6sX9P5r0ZgnBpMr5\nQEVgXP4HnXM7gElAx7yHgq9DOOeuBtYC3YOmk//L9+ss4DSgE3CPiLQv5fnyvA80EJHqQUm7KTAK\nqJ7vsfMJEgIwMYjjWOBTYERwrTnADqB9vnNfmfd74DagJ5pojgd+AP7hnNvtnKsSHNPQOXd6UJt6\nC3g7uM5twAgROSPfufsBDwbP/SB4DS4Jrn8m0B2YDNwLHId+Ftxe2OtkMoclBJMqPwP+W0SzynfA\nMfl+jqdJaIhzbqdzbjHwAvqBWJrzARDUYtaiH9SNgJXOuV3Ah/keKw/MCY5/0Tm3wzm3FxgCNBKR\nqsHpXsmLK3isS/AYwK+APznnvsn33D5FNPe0BCo75x5xzu1zzs0AJhT4m193zs0OYtodPPZ359xG\n59w3aKKb7ZxbGPx+PNA43tfJpAdLCCZV/gv8rIgPuOOD35fGunzfrwVOKOX58strNjrQNISWuvMe\nm+Oc2ysiZUTkkaDZZwvwJVoy/1nwnFeAS0SkPFpa/8Q5lxd3HWB80AT0A9pfsA/4eSHxnMDBfy/A\nV/z0N7tCfg+wId/3Owv8vAuogslolhBMqswGdgOX5n9QRKoAnYHpwUM7gCPzHVKzwHmKWp63doHv\n15fyfPnlTwjvB4+9z6FJ4kq02ae9c64acApaOxEA59xS9IO7S3DsyHzXWAt0ds7VyPd1pHPu20Li\n+QY4KX9/BNo5v76QYw8nkZ3zJg1YQjAp4ZzbgjaD/F1ELhaRciJSBxiNlmZfCg5dAHQNOlRrAncW\nONUGoG4hl/iTiFQSkQbAL9F2/tKcL7/3gPPQBPBh8NhnwKlAW35KCFXQpLdZRCoDDxVyrpFBDBcB\nr+V7/F/AQyJSG0BEjhWRnkXE8xGQA/w+eB2z0D6BV4Pf2we9iYslBJMyzrnHgPvQMfVb0A+2r9AS\n9d7gsJeAhcAatNP0VQ4uxT+Mfvj/ICK/y/f4TGAVMA14zDk3rZTnyx/3SuB74Fvn3NbgMYf2G1QF\nZgWHDg/+nvXAYrRWVLAG8gqaWKY75zbne/xvwJvAFBHZGjy3ef4w8sWzF+iB1jQ2Ak8DVzvnVuQ7\ntiQ1H1fge9scJcOJzw1ygmFuzwEN0Dfj9c65j7wFZCInqGWsBsomax6AMZmirOfr/w2Y5JzrIyJl\ngcqe4zHGmIzlrYYQLFcw3zl3qpcATFoIaghfAOWshmBM6fjsQzgF2CgiL4jIpyIyVESOLPZZxuTj\nnFvjnCtjycCY0vOZEMqiIzeecc6dhw4PvNdjPMYYk9F89iF8DXztnJsX/DyGAglBRGzUgzHGxME5\nF/PwY281BOfcd8C6fOuvdACWFHKcfSXoa9CgQd5jSKcvez3ttQzrV7x8jzLKW5SrPNoxeJ3neIwx\nJmN5TQhON/po5jMGY4wxymYqZ5CsrCzfIaQVez0Tx17LcPA6U7k4IuLCHJ8xxoSRiOCi1KlsjDEm\nXCwhGGOMASwhGGOMCVhCMMYYA1hCMMYYE7CEYIwxBrCEYIwxJmAJwRhjDGAJwRhjTMASgjHGGMAS\ngjHGmIDv5a8jyzn46itYtw727IGTT4ZTToEyZXxHZgxs3QorVsCmTXDccXDaaVC1qu+oTNhZQojR\nli3w5JMwYgRs2wanngrly8Pq1bBvH/TrBwMHwvHH+47UZBrnYNIkfX/OmaNJ4Jhj4Pvv4csvoW1b\nuPVW6NjRd6QmrKzJKAYvvwynn6431yuvwDffwIcfwowZWluYNk1vynPOgcceg1zb9t2kyJdfQps2\ncM89cP31+t789FOYOhUWLoSvv4beveGWW6BbN1i/3nfEJoxs+esS2LMHfv1rmDVLE0Hjxoc/fvVq\nuOYaqFEDXnoJqldPTZwmM02YoEng3nvhjjsO32y5Zw88+ij8858wciTYNgTpKd7lry0hFGPnTujT\nB8qW1WaiKlVK9rw9e+DOO+Gjj7TmcPTRyY3TZKaXX4a774bXX4cWLUr+vKlToX9/GDYMevRIXnzG\nD0sISbB3L/TsqSX9//wHypWL7fnOwe9/rwkhOxuqVUtKmCZDvfoq3HUXTJkC9evH/vy5c6F7d3jx\nRejaNeHhGY8sISSYc/CrX2nb65tvag0h3vP85jfaxjthgo1CMonxwQdwySVa2GjYMP7zzJ6thZ53\n39W+L5MebMe0BHvmGR2pMWpU/MkAQAT+9jetbdxzT+LiM5lr/Xq47DIYPrx0yQCgVSt9f/bsCf/9\nb2LiM9FlNYRCLFigQ/Nmz9ahe4mwebN2Rv/zn1Y9N/Hbvx86dIB27eD++xN33oED4YsvYPx4LcSY\naLMaQoLs3AlXXAFPPJG4ZADaqTx8ONx4o44LNyYef/mL/nvffYk970MPwZo18NxziT2viRarIRTw\nhz/AqlXw2mvJOf+99+qw1NGjk3N+k74+/xwuvFDnF9SunfjzL10KrVvD/Plw0kmJP79JHetUToAF\nC6BTJ1i0CGrWTM41du7Uzru//x26dEnONUz6yc3ViWeXXw633Za86wwZovfB+PHJu4ZJPmsyKiXn\ndBbnQw8lLxkAVKqkHda33AI5Ocm7jkkvw4fr3JZbbknude69V2sKb7yR3OuYcLKEEBg7Vkvv11+f\n/Gt16gRNm2o/hTHFycmBP/1JRwMle9hyhQrwj39oJ/OePcm9lgkfazJC3/j168Ozz+rojVT44gud\nWbp4cXJrJCb6/vxn+OwzHQKdKt266Ui7O+9M3TVN4kS2D0FEygAfA18753oU+F1KEsKTT+oEnwkT\nkn6pgwwcCNu3w7//ndrrmujYsAEaNNBZxaeemrrrLlmiq6MuX64z9U20RDkh/A5oAlR1zvUs8Luk\nJ4Qff4QzztClJeKZ/l8amzfr6qkff6x7KRhT0IAB2u/017+m/to33AAnnggPPJD6a5vSiWRCEJFa\nwIvA/wK/81FDePBBbb558cWkXqZIf/wjbNyozVXG5LduHTRqBCtX6r4GqbZ6NTRvrsOwbcXeaIlq\nQngNeAg4Crgr1Qlh+3athr//Ppx5ZtIuc1ibNmktYf583XXNmDy3366dvI895i+G666DOnVg0CB/\nMZjYRW7YqYh0B753zs0HvEyW/9e/tJ3UVzIALfndfLOuUW9Mng0bdGnr3/3Obxz33QdPP607BZr0\n562GICIPAVcD+4CKaC1hrHPumnzHuEH5iiZZWVlkJWhHj507oW5dePvt0i8QVlobN2pSWrQIatXy\nG4sJh3vugR079MPYt2uu0X62P/3JdySmKNnZ2WRnZx/4eciQIdFrMjoQhEgbUtxk9I9/wDvv6NLW\nYfC73+mqqnlr1ZjM9cMPuo7W/PnJWaIiVsuW6c5qX30FFSv6jsaUROSajAqRssy0f7+O2rj33lRd\nsXi33QbPP6/9GiazPfusblwThmQAUK8eNGmi28ea9BaKhOCcm1lwyGkyTZ6sbfetWqXqisU75RRd\nq2b4cN+RGJ/27dPa6x13+I7kYHfeqfN1QtCgYJIoFAkh1Z56SkvkYVv3Pe+my831HYnx5Y03tGZw\n3nm+IzlYx466ydOMGb4jMcmUcQlh6VLtvL38ct+RHOrCC6FqVa3BmMz01FM63DRsRH4qsJj0lXEJ\n4emnda/kChV8R3Iou+ky24IFOkmyd2/fkRTuqqt0F8FVq3xHYpIlFKOMipLoUUY//qht9UuXwvHH\nJ+y0CbV7t25OMnu2Dos1meOGG/T/PNG7oSXSXXfpiqs2bybcIjlTuTiJTgj/+Ae8915qV42Mx8CB\nUL48PPyw70hMqmzZojPVV6yA447zHU3Rli/XwQ9r1+p71IRTOgw7TbrnntM9jcPuppvghRdsPfpM\n8sor2nEb5mQAOoHyzDPDM3/HJFbGJIRPP9UJP+3b+46keGedpTND33rLdyQmVaJSWAFdamXoUN9R\nmGTImITw3HPaRntERP5iu+kyx4IF8P330KGD70hK5tJL4ZNP4MsvfUdiEi0j+hBycnSNoIULtcM2\nCnbu1FjnzbO9EtLdbbfpRMnBg31HUnJ33glVquhubiZ8rA/hMMaOhZYto5MMQDdF6dfPZi6nu507\nYeRIXWY6Sm68Ef7zH10GxqSPjEgIzz+vzUVRc8018NJLtlxAOnv9dWjaNHp7YZx9Nhx7rO40aNJH\n2ieEdet0ZnL37r4jiV3TplCunM5JMOnp5Zfh6qt9RxGfq6/WAotJH2mfEF55BS65JJwzk4sjojed\nNRulp40b4cMP4Re/8B1JfPr107WXduzwHYlJlLRPCCNGQP/+vqOI31VXwWuv6Qxmk15Gj4auXbVz\nNopq1tQVg19/3XckJlHSOiEsXgybN0Pr1r4jiV/t2rqj24QJviMxiRb1wgpoP5fVYNNHWieEESO0\nWhuVuQdFsZsu/axerYvEderkO5LS6dUL5s6Fb77xHYlJhIh/VBYtN1eH8111le9ISu/SS3U0xw8/\n+I7EJMrIkboEe7lyviMpnUqVNCmMHu07EpMIaZsQPvwQjjpKm1ui7qijoF077cAz0edcejQX5enb\n1xJCukjbhJBONxxoaTLsq7Sakpk/XxcubNnSdySJ0aGDrtK6dq3vSExppWVC2LMHxozR/oN00aMH\nzJoFmzb5jsSU1ogRcOWV4dvCNV7lyunQ2dde8x2JKa20TAjTp+tqoVGb/Xk4Varo8sjjx/uOxJRG\nbq5+cPbt6zuSxOrb12qw6SAtE8KYMXDZZb6jSDxrq42+efOgcmVo0MB3JInVti2sWWMroEZd2iWE\nvXu18/XSS31HknjdusGcOTrD1UTTmDHQp0/6NBflKVtWVwSwAku0pV1CyM7WfWlr1/YdSeIdeSR0\n6aKrt5roce6nhJCOrNko+tIuIaTzDQfWbBRln36qJel0GApdmNatdYLaypW+IzHxSquEsG+fdrqm\nY3NRns6d9YPlu+98R2Jila7NRXnKlNG/zwos0ZVWCeH993UTnFNP9R1J8lSqpM1GNkktWtK9uShP\nnz4wbpzvKEy80iohZMINB9C7tw0/jZpFi7QGe955viNJrgsv1AlqX33lOxITj7RJCPv3a8kknZuL\n8nTpopPUtmzxHYkpqXRvLspTtqxOorQlsaPJa0IQkZNEZIaILBGRxSJye7znmjULjjtOJ6Slu6pV\ntQNv0iTfkZiSyJTmojxWg40u3zWEvcBvnXMNgJbAb0SkXjwnGj9ex0FnCrvpomP5cti2DZo39x1J\nanTooOs12XyZ6PGaEJxz3znnFgTfbweWASfEfh7tZO3VK9ERhlfPnjBlCuza5TsSU5w33tD/r3Rv\nLspTqZIus/LWW74jMbHyXUM4QETqAI2BObE+d8kS7UNo1CjRUYXXscfq3zttmu9ITHEyrbACVoON\nqrK+AwAQkSrAGOCOoKZwwODBgw98n5WVRVZW1iHPf/PNzCqB5cm76bp39x2JKcqGDbB0KRTytk1r\n3brBgAGwfXt094yOkuzsbLKzs0t9HnHOlT6a0gQgUg6YAEx2zj1Z4HeuJPG1aAH/+7/adplJ1qzR\ndulvv9VJQSZ8hg2Dd97JzMlaF18MN92UOZ3pYSIiOOdiLiL7HmUkwDBgacFkUFJ5U+XbtElsbFFQ\npw6ceKLuDmfCKRObi/JYs1H0+O5DuAC4CmgrIvODr86xnGDCBF3OIep708ard28b8x1WOTm62GKX\nLr4j8aNXLx0avXev70hMSfkeZfSBc+4I59y5zrnGwdfbsZwjk0tgoH0nb72lI61MuEydCk2bwtFH\n+47Ej+OPh9NP1yVlTDT4riGUyvbt+mbrHFOdIr00aqRDT5cv9x2JKSjTCyugs5Zt+Gl0RDohTJmi\nG5VXq+Y7En9EdJTRhAm+IzH57d+v/yc9e/qOxK/u3a0GGyWRTghWAlNWCgufjz6CmjXhlFN8R+LX\nuefC7t1Wg42KyCaEfftg4kT9MMx07drBggWwebPvSEweK6yovBqsFViiIbIJYdYs3SYzHbfKjFXF\nijrx6e2YuuNNMuVNljTWpBklkU0IdsMdzJqNwmPFCl3MrkkT35GEg9VgoyOyCcGaiw7WrZvOiLUx\n3/5NmKD/H0dE9u5KrEqVtAY7ebLvSExxIvmWXb0afvwRGjf2HUl4HH881K1rs5bDYNIk6NrVdxTh\nYs1G0RDJhDBpks7+tBLYwazZyL9t22DOnMxbV6s43btbDTYKIvmROnGilcAKYwnBv6lToVUrW+Gz\noLwa7Acf+I7EHE7kEkJOjr6pOnb0HUn4nHuuvj4rVviOJHNNmqT9B+ZQ1mwUfpFLCDNm6PowmTw7\nuSg25tsv56z/4HCsBht+kUsI1lx0eHbT+TN/vjYVnX6670jCqXFj2LHDZi2HWaQSgpXAite2LXz6\nKWzZ4juSzGPNRYcnoveuDT8Nr0glhKVL9d/69f3GEWZHHgkXXGB7Lftgtdfide2qidOEU6QSQl7t\nINP2To5Vly5206Xaxo1aYGnd2nck4da+PcyerU1HJnwilxCsSl68vGq5LTmcOm+/rUs0VKjgO5Jw\nO+ooaNYM3n3XdySmMJFJCFu2wMcfaxu5ObzTTtPOzYULfUeSOaxvq+Ss2Si8IpMQpk6FCy/UNnJT\nPLvpUmffPp2FawmhZPLem1aDDZ/IJISJE625KBaWEFJn9mw4+WQ48UTfkURDvXraD7hsme9ITEGR\nSAi5udombiWwkmvdGhYtgh9+8B1J+rPmotiI2MCHsIpEQpg/H2rUgFNP9R1JdFSsCG3a6L7TJrms\n9ho7q8GGUyQSgo3vjo/ddMm3di188w20aOE7kmhp1w7mzYOtW31HYvKLREKwKnl8unTRprbcXN+R\npK/Jk6FzZyhTxnck0VK5Mpx/Pkyf7jsSk1/oE8LGjfD553DRRb4jiZ46deBnP4NPPvEdSfqy2mv8\nrB8hfEKfEPIm/JQv7zuSaLK1Y5Jn1y7IzoaLL/YdSTTZ8NPwCX1CsNnJpWP9CMnz3ntwzjlwzDG+\nI4mm00/X/ZYXLfIdickT+oTwzjtatTTxufBCbXLbuNF3JOnH+rZKx1Y/DR+vCUFEOovI5yKyUkTu\nKeyYk0+GE05IdWTpo3x5Xe7jnXd8R5J+LCGUnvUjhEuJEoKI9BKRx4OvHom4sIiUAZ4GOgP1gX4i\nUq/gcdZcVHrWbJR4q1bB9u26bamJX1aWzjOyCZThUGxCEJFHgNuBJcBS4HYReTgB124OrHLOrXHO\n7QVeBXoVPMhKYKXXpYtOUNu/33ck6WPyZH1dbSn20qlUSWfVT53qOxIDJashdAM6Oeeed84NQ0v0\n3RNw7ROBdfl+/jp47CA24af0atXSdXbmzvUdSfqYNMn6thLF+hHCo2wJjnFAdWBT8HP14LHSKtE5\nHnxw8IHvs7KyyMrKSsClM09eW22rVr4jib6cHPjgA3j1Vd+RpIcuXeDBB3UC5RGhH+YSTtnZ2WRn\nZ5f6POKKGAQsIs8AI4FawKPADECANsC9zrlS3Q4i0hIY7JzrHPz8ByDXOfdovmNcUfGZ2Lz3Hvz2\ntzZJLREmToTHHtM5CCYxzjoLRoyAJk18RxJtzmnTcLlygnMu5gbNw+XjFcBjaDKYBqwGxgItS5sM\nAh8Dp4tIHREpD/QF3kzAeU0hWrWC1avhu+98RxJ9tvJu4tnAh8RYuhSaN4//+UUmBOfck865VmiN\nYCVwCZogfiUiZ8R/yQPn3wfcCryDdlaPcs7ZCulJUq4cdOyoM79N/JzTGoL1HySWJYTEmDQJWraM\n//lFNhkVerBIY+AF4BznXNKX87Imo8R68UV9w4we7TuS6Pr8c02sa9faCKNE2r0bjjsOvvhC198y\n8WnbFgYOhB49Et9kBICIlBWRniIyEngb+BytLZiI6dxZh/ft3es7kujKm4xmySCxKlTQOQm2f0f8\ntm7VPsLS7DtfZEIQkU4i8jywHrgJmADUdc5d4Zx7I/5LGl9q1tRNhmbN8h1JdFn/QfJ07arNcSY+\n06bpkuKVK8d/jsPVEO4FZgP1nHM9nHMjnXPb47+UCQNrq43f9u3w0UfQvr3vSNJTly66xIpNoIxP\nIpZSOVyncjvn3FDn3ObSXcKESbdulhDiNX26TpSsUsV3JOmpdm1dt8wmUMbOuSQnBJOemjXToadr\n1/qOJHpsMbvk69bNmo3isXChFlROO61057GEkGHKlNHOZbvpYuOc9R+kgvUjxCdRhRVLCBnImo1i\nt2QJlC0LZ57pO5L01qqV1l7Xr/cdSbRYQjBxu/himDkTdu70HUl02HDT1ChbFjp1ssXuYrF5s+46\n17p16c9lCSED1agBjRrZWjyxsNVNU8eajWIzZQq0aQMVK5b+XJYQMpQ1G5Xcli3w6aelm/BjSq5z\nZ3j3XZ29bIqXyMEOlhAyVN5oDlsZpHjTpsEFF8CRR/qOJDMceyzUrw/vv+87kvDLzdX1yRJVe7WE\nkKHOPluXsPj8c9+RhJ8NN009azYqmY8/1gRap05izmcJIUOJWLNRSeQNN7X+g9Sy+Qglk+jCiiWE\nDGY3XfESNeHHxKZxY10qZOVK35GEmyUEkzDt2sG8edppagpnzUV+iPy07asp3Pffw4oV2r+VKJYQ\nMljlyvpmmjbNdyThNWGC1qRM6lkN9vAmTYIOHaB8+cSd0xJChrObrmjff69bErZp4zuSzNShA8ye\nrU1H5lBvvQU9eiT2nJYQMlzecti5ub4jCZ9klMBMyR11lO4PPH2670jCZ/durdknerCDJYQMV7cu\nVK8O8+f7jiR8JkxIfAnMxMZqsIWbORMaNNBtRxPJEoKxm64QySqBmdjkDY22CZQHS0ZzEVhCMNgk\noMLMnKmzZRNdAjOxOeMM3W950SLfkYSHc5oQundP/LktIRguugiWL9dOVKOsuSgc8iZQTpjgO5Lw\nWLJE/z377MSf2xKCoXx56NjRbro8ySyBmdj16KH/H0blNRclYyl2SwgGgF694M03fUcRDkuWaFJI\nRgnMxK5NG63Bfvut70jCIZmFFUsIBtB+hHffhZwc35H4N2GC3nC2GU44lC+vS2JbLQE2btQCS1ZW\ncs5vCcEAcPTR0KSJzVqG5I3gMPHr2dNqsPDT3JgKFZJzfksI5gBrNtIS2OLFySuBmfh06QLvvWez\nlpPdt2UJwRzQs6e+4fbv9x2JP5MnQ/v2ySuBmfhUrw4tWsDUqb4j8WfPHq3BJ3NtLW8JQUQeE5Fl\nIrJQRMaJSDVfsRh16qk67n7OHN+R+GPNReHVsye88YbvKPyZORPq1Uvu3BifNYQpQAPnXCNgBfAH\nj7GYQCY3G+3apSVQW900nHr21AmU+/b5jsSP11/X1yCZvCUE59xU51zekmpzgFq+YjE/6dUrc0th\n06ZBw4Y2OzmsTj4ZatXSFVAzTW6uJoTevZN7nbD0IVwP2FYYIdCkiW6Ys2KF70hSb/z45N9wpnQy\ntdlo3jxd/fWss5J7nbLJPLmITAVqFvKr+5xzbwXH/BHY45wbWdg5Bg8efOD7rKwssmz4R1IdccRP\nQ/zuust3NKmzb5/+zfff7zsSczi9ekHfvvDYY5k1T6S42kF2djbZ2dmlvo44j8sIisgvgZuA9s65\nXYX83vmML1NNngwPPQTvv+87ktSZORPuvNOWAQ8756B2bZgyRTtYM8VZZ8FLL0GzZiU7XkRwzsWc\nMn2OMuoM3A30KiwZGH/attXVJTdu9B1J6lhzUTSIZF6z0bJlsGMHNG2a/Gv57EP4O1AFmCoi80Xk\nGY+xmHwqVoROnTJntJFzlhCi5Be/0P+vTDF+vP7NqWgi8znK6HTn3MnOucbB1y2+YjGHuvRSGDvW\ndxSpsWABlCtni9lFRVYWfPEFrF3rO5LUSGVhJSyjjEzIdOsGH34IP/zgO5Lky7vhMqmTMsrKldPO\n5XHjfEeSfOvWwerV0Lp1aq5nCcEUqmpVaNcuM1aYzKuSm+jo0wfGjPEdRfK98YauXVQ2qeNBf2IJ\nwRQpE266lSu187xlS9+RmFi0bw9Ll8L69b4jSa5x41Lbt2UJwRSpe3fIzoatW31HkjyjRmniK1PG\ndyQmFuXL65pT6dy5/N13Ogy6c+fUXdMSgilStWq6W1U6b605erROdDLR06cPvPaa7yiSZ+xYLZRV\nrJi6a1pCMIfVocN3/P73V3DaaafRtGlTunXrxsqVK1mzZg3nnHMOAB9//DF33HFH3Nfo1q0bWxNQ\nDckfU0ksWwabNsEFFyTunCZ1OnaEhQu1JJ2ORo2Cyy9P7TVT1FVhosg5x8sv92bTpuvYuPFVqlSB\nRYsWsWHDBmrV+mktwqZNm9K0FLNmJk6cmIhwYzZ6NFx2mS7XYaKnYkUdDTd+PAwY4DuaxFq/Xjdq\n6tQptdck8PZ8AAAQeUlEQVS1W8EUacaMGRx5ZHmysm5mUrD0YMOGDbnwwgsPOi47O5sewSYCgwcP\n5uqrr+b888/njDPO4LnnnjtwTOvWrenevTtnnXUWAwYMIG9Zkjp16rB582bWrFlDvXr1uPnmmzn7\n7LO5+OKL2bVLJ7HPmzePhg0b0rhxY+6+++5iS+379+/n7rvvpnnz5jRq1Ihnn30WgH79+jFp0iSc\n0xLYypW/ZNy4ceTm5hZ6vAm3dB34MGaMDq1N9UZNlhBMkRYvXkyTJk3o00dL07E8b8aMGcyePZsH\nHniAb7/9FtAP9aeffpqlS5fyxRdfMC4YSC75JgCsWrWKW2+9lcWLF1O9enXGBrPjrrvuOoYOHcr8\n+fMpW7bsQc8pzLBhw6hevTpz585l7ty5DB06lDVr1tC3b19Gjx7NkiWwbdsePvvsXbp168Zzzz1X\n6PEm3Dp3hk8+gQ0bfEeSWKNHp765CCwhmMPI+9C95BLdOGbLlpI9p1evXlSoUIFjjjmGtm3bMnfu\nXESE5s2bU6dOHY444gj69evHBx98cMjzTznlFBo2bAhAkyZNWLNmDVu2bGH79u20aNECgCuvvJLi\nFj2cMmUKw4cPp3HjxrRs2ZLNmzezatUqunTpwowZMxg5cg9NmkymTZs2VKhQocjjTbhVqqQdr6NG\n+Y4kcdatg+XLoUOH1F/b+hBMkRo0aMCYMWOoUUMnqY0dC9dfH/t5jgga6fOX6p1zBx7Pr0K+OnKZ\nMmXYuXPnIceUdAXcp59+mo4dOx7yeFZWFi+++A4NG47mxhv7HfZ4qyWEX//+MHgw3H6770gSY/Ro\nnShZrlzqr201BFOkdu3asXv3boYOHUr//jBihHYqF1ayz+Oc44033mD37t1s2rSJ7OxsmjVrhnOO\nuXPnsmbNGnJzcxk1atQhfRFFqVatGlWrVmXu3LkAvPrqq8U+5+KLL+aZZ55hX7Df4ooVK8jJyQGg\nadO+bNnyPEuXvk/nYJD34Y434daxI6xZo5MM04HPodCWEMxhjR8/nmnTpnHPPaeRnX02Awf+keOP\nPx44uMSf972I0LBhQ9q2bUurVq34n//5H2rW1D2SmjVrxq233kr9+vWpW7cuvYMpmIWdp+DPw4YN\n46abbqJx48bk5ORQrVq1QuPNO/7GG2+kfv36nHfeeZxzzjkMGDDgwIf92rWdyM19j44dO1I2WBOg\nsOP3799faEwmXMqW1Q/QkYVusRUtX3wBX36pS9D74HWDnOLYBjnhcv310KABDBxY9DFDhgyhSpUq\nDCxwUHZ2No8//jhvxbk40o4dO6hcuTIAjzzyCBs2bOCJJ56I+Tz79+vevG+/baubppM5c+Dqq7Xt\nPcr5e8gQ2LwZ/va30p0n3g1yQt+HIEMO/ZsGtRnE4KzBhzw+OHswQ2YOseOTdfzJwHbYln2Y47OH\nQHm4a/tP+28OajOIttL2kJJ2LPFMnDiRO/54B99t/Q6qA7+AJ4c8GdffW/OiQZx9dsmPD83rb8cf\n/vj+cMQDIYonzuNvajEIKP3542E1BFNi+/fr9oVTp0L9+r6jic+110LjxrpdpkkvgwbpSLgnn/Qd\nSXxmzYIbb4QlS0pfy4ncFpomesqUgX79tHM5inbs0OWE+/Ur/lgTPf37w6uvQtBVFDnDh2uzl88m\nL0sIJib9+2vnXW6u70hiN368rlv085/7jsQkwxlnaA12+nTfkcRu925dqK9/f79xWEIwMTn3XN08\nZ+ZM35HE7qWXtARm0te118ILL/iOInYTJkCjRprQfLKEYGIiou2cwRJFkbFuHXz8MfTs6TsSk0xX\nXqkjyDZt8h1JbF54Aa65xncUlhBMHK66CiZO1OFxUfH889p3cOSRviMxyVSjhi5l8fLLviMpuXXr\nYPZsP2sXFWQJwcTs6KOha9fodC7v3681mptu8h2JSYW8GmxUBig+/zxccUU4CiuWEExcbrghOjfd\n22/DCSdoG61Jf23awK5dEKx0Emr798OwYXDzzb4jUZYQTFzatoVt23Tp4bB79lmrHWQSEZ1VH4V+\nrnfegZo1w1NYsYlpJm4PPQSrV4f7xlu/XpeoWLcOqlTxHY1JlW+/1WVWvvxS9wYPq969dde3G29M\n7HnjnZhmCcHE7fvv4cwzYdUqOOYY39EU7oEHNCn8+9++IzGpdsUV0KoVlGK776Ravx7OOQfWrk18\nYcUSgvHil7+EevXgnnt8R3Ko3buhTh1dasMWsss8s2bpUM4VK8K5b/Z99+ns+dIuZFcYW7rCeHHb\nbfDMM+FcLmD0aE0ElgwyU6tWUL06TJ7sO5JD5eTA0KF6/4SJ14QgIgNFJFdEjvYZh4lfkyZQqxa8\n+abvSA7mHDzxhC1il8lEdBe1v//ddySHevllOP98OO0035EczFtCEJGTgI7AV75iMIkRxpvugw9g\n+3bo0sV3JManvn1h/nz4/HPfkfzEOV2RNYyFFZ81hL8Cv/d4fZMgl1yiHcvz5vmO5CdPPqmdiWFs\nOzapU6EC/PrX8PjjviP5yZQpul9yVpbvSA7l5XYRkV7A1865RT6ubxKrXDm4+24dhhoGK1bAe+/p\nQmfG3H47jB2rQ4/D4C9/gd/+Npw7uyVtlJGITAVqFvKrPwL3AZ2cc1tF5EugqXPukOWobJRRdOTk\nwKmnwrRp/jtxr71W22bvv99vHCY87roL9u5NzoieWHzwgY58Wr5cC1LJEplhpyJyNjAdyAkeqgWs\nB5o7574vcKwbNGjQgZ+zsrLICmM9ywDw6KOwaJHfNY5WrYKWLXWz8jBPSDKplTdRbdkyv/thXHwx\nXHZZ4ieiZWdnk52dfeDnIUOGRCMhHBKA1hCaOOcOWTvTagjRsnUr1K2rKzf6Gj1x3XVw8skweLCf\n65vwuuUWOOooeOQRP9f/6CPt5F65EsqXT+61IlNDOCQAkdVok5ElhDQweLAuZzF8eOqvvXo1NGum\ntYQaNVJ/fRNua9boMOmlS/3UErp21f04fv3r5F8rsgnhcCwhRM+2bbqV4cSJcN55qb32tddq7eCB\nB1J7XRMdd94Je/boZMpU+vBD3Y9j5Uod+ZRslhBMaPzrXzpLePr01I2k+PRTXSRsxQrd4tOYwmza\nBGedpaPQ6tVLzTWd01nTv/lN6rZwtaUrTGjceKN24k2alJrrOaejSAYNsmRgDu+YY3TdrVSuvTVq\nlI5w6t8/ddeMlyUEk3Bly+pY67vv1hsh2caPhw0bEj9yw6SnW2+Fzz6DGTOSf63t2zX5PP54NCZJ\nRiBEE0Xdu0Pt2smfIbp1q048+uc/NREZU5yKFfV9ecsturNaMg0eDK1bh3NWcmGsD8EkzZdf6qif\n2bPh9NOTc43bb9dJcWHepMeE0yWX6CTKZA1CWLAAOnWCxYvhuOOSc42iWKeyCaUnnoBx4yA7G8qU\nSey5p0/XWZ+LFoV3gx4TXt98A+eeq9tYNm6c2HPv2qWFoYEDdc+QVLNOZRNKt9+uk3D+/OfEnnfT\nJr3RXnjBkoGJzwknwFNP6WSxbdsSe+5779XRTFFbT8tqCCbpvvlGJwSNGAHt2pX+fPv36wSfM8+E\nv/619Oczme2GG3R3vZdeSsww6XHjdL7DggVwtKedXqyGYELrhBN0Q5B+/XRRr9K65x6tkj/6aOnP\nZcxTT+kaR4lYrXf+fPjVr+D11/0lg9KwhGBSon17ePhhnb6/fn385/nrX3V3ttdeS+5qkSZzVK4M\nEybAs8/Cf/4T/3mWL4cePXTEW6pn6SeKDdQzKXP99dr2f9FF2iF8yiklf65z8NhjetPOmBHN0pcJ\nr+OPh7ff1lFBu3ZpKT8Wy5ZBx47w4IPQp09yYkwFSwgmpe6+W0tk55+vpbFOnYp/zs6dMGAAfPKJ\njlaqVSvpYZoMVK+evr86ddIP+EcfLdm6Q+PHawJ5/PHULU2RLNZkZFLulltg5EitMdx8M3z9deHH\nOadtsQ0b6oznjz6yZGCSq25d3Qr2q6902Ojkyfo+LMxXX2m/2G9/q01OUU8GYKOMjEebN+sSF//+\nt9YY2rfXDuicHC2hjR2raxP95S+6sYgxqeKcjha6/34dedSjh45qq1RJE8H06Zo47rjjp1pvmNjE\nNBNZW7ZoSezDD3VNokqVdIOd7t114lAY9541mSE3F+bO1YUa166FHTt0ifUWLXR13SOP9B1h4Swh\nGGOMAWwegjHGmFKyhGCMMQawhGCMMSZgCcEYYwxgCcEYY0zAEoIxxhjAEoIxxpiAJQRjjDGAJQRj\njDEBSwjGGGMASwjGGGMClhCMMcYAHhOCiNwmIstEZLGI2O64xhjjmZeEICJtgZ5AQ+fc2cD/+Ygj\n02RnZ/sOIa3Y65k49lqGg68awgDgYefcXgDn3EZPcWQUu+kSy17PxLHXMhx8JYTTgdYi8pGIZItI\nU09xGGOMCZRN1olFZCpQs5Bf/TG4bg3nXEsRaQaMBk5NVizGGGOK52XHNBGZDDzinJsZ/LwKaOGc\n21TgONsuzRhj4hDPjmlJqyEU43WgHTBTRM4AyhdMBhDfH2SMMSY+vhLC88DzIvIZsAe4xlMcxhhj\nAl6ajIwxxoRPKGYqi0hnEflcRFaKyD1FHPNU8PuFItI41TFGSXGvp4hkicgWEZkffP3JR5xRICLP\ni8iGoDZb1DH23iyB4l5Le1/GRkROEpEZIrIkmOB7exHHlfz96Zzz+gWUAVYBdYBywAKgXoFjugKT\ngu9bAB/5jjusXyV8PbOAN33HGoUv4CKgMfBZEb+392biXkt7X8b2etYEzg2+rwIsL+1nZxhqCM2B\nVc65NU4nqr0K9CpwTE/gPwDOuTlAdRH5eWrDjIySvJ4A1mFfAs6594EfDnOIvTdLqASvJdj7ssSc\nc9855xYE328HlgEnFDgspvdnGBLCicC6fD9/HTxW3DG1khxXVJXk9XTA+UEVcpKI1E9ZdOnH3puJ\nY+/LOIlIHbT2NafAr2J6f/oaZZRfSXu1C5YcrDe8cCV5XT4FTnLO5YhIF3QY8BnJDSut2XszMex9\nGQcRqQKMAe4IagqHHFLg5yLfn2GoIawHTsr380loFjvcMbWCx8yhin09nXPbnHM5wfeTgXIicnTq\nQkwr9t5MEHtfxk5EygFjgZedc68XckhM788wJISPgdNFpI6IlAf6Am8WOOZNgrkKItIS+NE5tyG1\nYUZGsa+niPxcRCT4vjk6/Hhz6kNNC/beTBB7X8YmeK2GAUudc08WcVhM70/vTUbOuX0icivwDjpC\nZphzbpmI/Cr4/b+dc5NEpGuwxMUO4DqPIYdaSV5PoA8wQET2ATnAFd4CDjkReQVoA/xMRNYBg9DR\nW/bejFFxryX2vozVBcBVwCIRmR88dh9QG+J7f9rENGOMMUA4moyMMcaEgCUEY4wxgCUEY4wxAUsI\nxhhjAEsIxhhjApYQjDHGAJYQjImZiFQTkQG+4zAm0SwhGBO7GsAtvoMwJtEsIRgTu0eAusEmLo/6\nDsaYRLGZysbESEROBiY4587xHYsxiWQ1BGNiZ5u4mLRkCcEYYwxgCcGYeGwDqvoOwphEs4RgTIyc\nc5uAD0XkM+tUNunEOpWNMcYAVkMwxhgTsIRgjDEGsIRgjDEmYAnBGGMMYAnBGGNMwBKCMcYYwBKC\nMcaYgCUEY4wxAPw/JbNFykf5N3IAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x7e73810>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "import math\n",
    "import numpy\n",
    "%matplotlib inline\n",
    "from matplotlib.pyplot import plot,ylim,ylabel,xlabel,title,annotate\n",
    "\n",
    "#Variables\n",
    "\n",
    "Vp = 10.0               #Peak-to-peak voltage (in volts)\n",
    "\n",
    "#Result\n",
    "\n",
    "print \"Following is the graph :\"\n",
    "\n",
    "#Graph\n",
    "\n",
    "t = numpy.arange(0.001, 2.0, 0.005)\n",
    "y = numpy.sin(2*math.pi*t)\n",
    "plot(t, 5*y)\n",
    "plot(t,(-3*t)/t,'--')\n",
    "ylim( (-6,6) )\n",
    "ylabel('Vo')\n",
    "xlabel('t')\n",
    "title('Output Waveform')\n",
    "annotate(\"Clipping level\",xy=(0.575,-2.9))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 33.8 , Page Number 866"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Following is the output :\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "<matplotlib.text.Text at 0x7cc8310>"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEZCAYAAACXRVJOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYVOXZx/HvHYqgWNBoLIjYxY6ogAUWEKQbFVtQk1iS\naGLXV2OSC4x5jcY3iTGJSYwtdrFgQVABWWzYKQpIERXERkTpSnveP+5ZXJeF3Zmdmeecmd/nuvZi\nd/bsOfcO5+z99MdCCIiIiHwndgAiIpIMSggiIgIoIYiISIYSgoiIAEoIIiKSoYQgIiKAEoJIKpjZ\nsWY218wWm9kBseOR0qSEIEVlZj8ys7fMbKmZfWxmN5nZ5ln8/Ptm1i2P8WzwfGY23cxOrPb14Wa2\nppbXFplZIZ+n/wPODSFsGkKYVMDrSBlTQpCiMbNLgGuBS4DNgI7ATsAoM2tSz9MEwPIYVl3nGwd0\nrvZ1Z+CdWl57KYSwJo9xrWVmBrQGpub483rOpV50o0hRmNlmwBDgFyGEZ0IIq0MIHwAnAm2AUzPH\n3WFmV1f7uQozm5v5/C78D+MTmaaTS82sTabEfraZzTOzjzKJh1zOV0voz/HtP/5HANfVeO3IzHGY\n2YOZms+XZjbOzPbOvN4h8/ra5JNpBpqU+fw7ZnaFmc0ys/+a2QNm1tLMNgIWA42ASWY2M3N8WzOr\nNLMvzOxtM+tf43f+h5mNMLMlQNdMTehSM5uc+V1vNbPvmdlIM1toZqPMbIu6/h+ltCkhSLEcBjQD\nHqn+YghhKTAC6FH1UuZjHSGE04A5QL9M08n/Vft2BbAb0BO43My6N/B8VZ4H9jGzLTIl7YOBB4At\nqr12GJmEADyZiWNr4E3gnsy1XgGWAt2rnfsHVd8HzgMG4IlmO+AL4O8hhK9DCC0yx+wfQtg9U5t6\nAngqc53zgHvMbI9q5z4FuDrzsy9k3oPjMtffE+gHjASuALbB/xacX9v7JOVDCUGK5bvAf9fTrPIJ\nsFW1r3NpEroqhLA8hPA2cDv+B7Eh5wMgU4uZg/+hPgCYGUL4Cnix2mtNgVcyx98RQlgaQlgJXAUc\nYGabZk53X1Vcmdd6Z14D+Cnw6xDCR9V+duB6mns6ApuEEK4NIawKIYwFhtf4nR8NIYzPxPR15rW/\nhhDmhxA+whPd+BDCpMz3hwHtcn2fpDQoIUix/Bf47nr+wG2X+X5DzK32+Rxg+waer7qqZqO1TUN4\nqbvqtVdCCCvNrJGZXZtp9lkIvIeXzL+b+Zn7gOPMrCleWn8jhFAVdxtgWKYJ6Au8v2AV8L1a4tme\nb/++AB/wze8cavk+wKfVPl9e4+uvgBZIWVNCkGIZD3wNHF/9RTNrAfQCxmReWgpsXO2QbWucZ33L\n87au8fm8Bp6vuuoJ4fnMa8+zbpL4Ad7s0z2EsDmwM147MYAQwlT8D3fvzLH3VrvGHKBXCKFltY+N\nQwgf1xLPR8CO1fsj8M75ebUcuyH57JyXEqCEIEURQliIN4P81cyONrMmZtYGGIqXZu/KHDoR6JPp\nUN0WuLDGqT4Fdq3lEr82s+Zmtg/wI7ydvyHnq+454CA8AbyYee0tYBegK98khBZ40ltgZpsA19Ry\nrnszMRwJPFjt9X8C15hZawAz29rMBqwnnpeBZcD/ZN7HCrxP4P7M9/WHXnKihCBFE0K4HrgSH1O/\nEP/D9gFeol6ZOewuYBLwPt5pej/fLsX/Hv/j/4WZXVzt9XHALGA0cH0IYXQDz1c97pnAZ8DHIYRF\nmdcC3m+wKfBS5tA7M7/PPOBtvFZUswZyH55YxoQQFlR7/S/A48AzZrYo87OHVg+jWjwrgf54TWM+\n8DfgtBDCjGrH1qfmE2p8rs1RypzF3CAnM8ztFmAf/GY8I4TwcrSAJHUytYzZQONCzQMQKReNI1//\nL8CIEMJAM2sMbBI5HhGRshWthpBZrmBCCGGXKAFIScjUEN4FmqiGINIwMfsQdgbmm9ntZvammf3b\nzDau86dEqgkhvB9CaKRkINJwMRNCY3zkxk0hhIPw4YFXRIxHRKSsxexD+BD4MITwWubrh6iREMxM\nox5ERHIQQsh6+HG0GkII4RNgbrX1V44CptRynD7y9DF48ODoMZTSh95PvZdJ/chV7FFGVYtyNcU7\nBn8cOR4RkbIVNSEE3+jjkJgxiIiI00zlMlJRURE7hJKi9zN/9F4mQ9SZynUxs5Dk+EREksjMCGnq\nVBYRkWRRQhAREUAJQUREMpQQREQEUEIQEZEMJQQREQGUEEREJEMJQUREACUEERHJUEIQERFACUFE\nRDJiL3+dWiHABx/A3LmwYgXstBPsvDM0ahQ7MhFYtAhmzIDPP4dttoHddoNNN40dlSSdEkKWFi6E\nG26Ae+6BxYthl12gaVOYPRtWrYJTToFLLoHttosdqZSbEGDECL8/X3nFk8BWW8Fnn8F770HXrvCL\nX0CPHrEjlaRSk1EW7r4bdt/dH6777oOPPoIXX4SxY722MHq0P5T77QfXXw9rtO27FMl770GXLnD5\n5XDGGX5vvvkmjBoFkybBhx/CscfCuedC374wb17siCWJtPx1PaxYAT/7Gbz0kieCdu02fPzs2XD6\n6dCyJdx1F2yxRXHilPI0fLgngSuugAsu2HCz5YoVcN118I9/wL33grYhKE25Ln+thFCH5cth4EBo\n3NibiVq0qN/PrVgBF14IL7/sNYcttyxsnFKe7r4bLrsMHn0UOnSo/8+NGgWDBsGtt0L//oWLT+JQ\nQiiAlSthwAAv6f/nP9CkSXY/HwL8z/94QqishM03L0iYUqbuvx8uvRSeeQb23jv7n3/1VejXD+64\nA/r0yXt4EpESQp6FAD/9qbe9Pv641xByPc/Pf+5tvMOHaxSS5McLL8Bxx3lhY//9cz/P+PFe6Hn2\nWe/7ktKgHdPy7KabfKTGAw/kngwAzOAvf/HaxuWX5y8+KV/z5sEJJ8CddzYsGQB06uT354AB8N//\n5ic+SS/VEGoxcaIPzRs/3ofu5cOCBd4Z/Y9/qHouuVu9Go46Crp1g9/8Jn/nveQSePddGDbMCzGS\nbqoh5Mny5XDyyfDnP+cvGYB3Kt95J5x1lo8LF8nFH/7g/155ZX7Pe8018P77cMst+T2vpItqCDX8\n8pcwaxY8+GBhzn/FFT4sdejQwpxfStc778ARR/j8gtat83/+qVOhc2eYMAF23DH/55fiUadyHkyc\nCD17wuTJsO22hbnG8uXeeffXv0Lv3oW5hpSeNWt84tmJJ8J55xXuOldd5c/BsGGFu4YUnpqMGigE\nn8V5zTWFSwYAzZt7h/W558KyZYW7jpSWO+/0uS3nnlvY61xxhdcUHnussNeRZFJCyHj4YS+9n3FG\n4a/VsyccfLD3U4jUZdky+PWvfTRQoYctb7QR/P3v3sm8YkVhryXJoyYj/Mbfe2+4+WYfvVEM777r\nM0vffruwNRJJv9/9Dt56y4dAF0vfvj7S7sILi3dNyZ/U9iGYWSPgdeDDEEL/Gt8rSkK44Qaf4DN8\neMEv9S2XXAJLlsC//lXc60p6fPop7LOPzyreZZfiXXfKFF8ddfp0n6kv6ZLmhHAx0B7YNIQwoMb3\nCp4QvvwS9tjDl5bIZfp/QyxY4Kunvv6676UgUtM553i/05/+VPxrn3km7LAD/Pa3xb+2NEwqE4KZ\ntQLuAP4XuDhGDeHqq7355o47CnqZ9frVr2D+fG+uEqlu7lw44ACYOdP3NSi22bPh0EN9GLZW7E2X\ntCaEB4FrgM2AS4udEJYs8Wr488/DnnsW7DIb9PnnXkuYMMF3XROpcv753sl7/fXxYvjxj6FNGxg8\nOF4Mkr3UDTs1s37AZyGECUCUyfL//Ke3k8ZKBuAlv5/8xNeoF6ny6ae+tPXFF8eN48or4W9/850C\npfRFqyGY2TXAacAqoBleS3g4hHB6tWPC4GpFk4qKCirytKPH8uWw667w1FMNXyCsoebP96Q0eTK0\nahU3FkmGyy+HpUv9j3Fsp5/u/Wy//nXsSGR9KisrqaysXPv1VVddlb4mo7VBmHWhyE1Gf/87PP20\nL22dBBdf7KuqVq1VI+Xriy98Ha0JEwqzREW2pk3zndU++ACaNYsdjdRH6pqMalG0zLR6tY/auOKK\nYl2xbuedB7fd5v0aUt5uvtk3rklCMgBo2xbat/ftY6W0JSIhhBDG1RxyWkgjR3rbfadOxbpi3Xbe\n2dequfPO2JFITKtWee31ggtiR/JtF17o83US0KAgBZSIhFBsN97oJfKkrfte9dCtWRM7Eonlsce8\nZnDQQbEj+bYePXyTp7FjY0cihVR2CWHqVO+8PfHE2JGs64gjYNNNvQYj5enGG324adKYfVNgkdJV\ndgnhb3/zvZI32ih2JOvSQ1feJk70SZLHHhs7ktqdeqrvIjhrVuxIpFASMcpoffI9yujLL72tfupU\n2G67vJ02r77+2jcnGT/eh8VK+TjzTP8/z/duaPl06aW+4qrmzSRbKmcq1yXfCeHvf4fnnivuqpG5\nuOQSaNoUfv/72JFIsSxc6DPVZ8yAbbaJHc36TZ/ugx/mzPF7VJKpFIadFtwtt/iexkl39tlw++1a\nj76c3Hefd9wmORmAT6Dcc8/kzN+R/CqbhPDmmz7hp3v32JHUba+9fGboE0/EjkSKJS2FFfClVv79\n79hRSCGUTUK45RZvo/1OSn5jPXTlY+JE+OwzOOqo2JHUz/HHwxtvwHvvxY5E8q0s+hCWLfM1giZN\n8g7bNFi+3GN97TXtlVDqzjvPJ0oOGRI7kvq78EJo0cJ3c5PkUR/CBjz8MHTsmJ5kAL4pyimnaOZy\nqVu+HO6915eZTpOzzoL//MeXgZHSURYJ4bbbvLkobU4/He66S8sFlLJHH4WDD07fXhj77gtbb+07\nDUrpKPmEMHeuz0zu1y92JNk7+GBo0sTnJEhpuvtuOO202FHk5rTTvMAipaPkE8J998FxxyVzZnJd\nzPyhU7NRaZo/H158Eb7//diR5OaUU3ztpaVLY0ci+VLyCeGee2DQoNhR5O7UU+HBB30Gs5SWoUOh\nTx/vnE2jbbf1FYMffTR2JJIvjWMHUBe7at2O8sFdBjOkYsg6rw+pHMJV46769ovHwdgwmArqeXy2\n5y/C8TsNGMzw4UM4/vhkxKPj83j8nrBHZYLiyfb4DjB97GAGDUpIPDq+QUp62Okvf+mjINK+C9nt\nt3sp7LHHYkci+TJ7to98mzfP+4nSavly2H57mDLF/5Vk0LDTGtas8eF8p54aO5KGO/54H83xxRex\nI5F8ufdeX4I9zckAfHj0Mcd485ekX8kmhBdfhM02g/33jx1Jw222GXTrphpCqQgh/X1b1Z10khJC\nqSjZhFBKDxx4aTLpq7RK/UyY4AsXduwYO5L8OOooX6V1zpzYkUhDlWRCWLECHnrIh8WViv794aWX\n4PPPY0ciDXXPPfCDHyRvC9dcNWniQ2cffDB2JNJQJZkQxozx1ULTNvtzQ1q08OWRhw2LHYk0xJo1\n/ofzpJNiR5JfJ52kGmwpKMmE8NBDcMIJsaPIP7XVpt9rr8Emm8A++8SOJL+6doX339cKqGlXcglh\n5UrvfK05Zr8U9O0Lr7ziM1wlnR56CAYOLJ3moiqNG/uKACqwpFvJJYTKSt+XtnXr2JHk38YbQ+/e\nvnqrpE8I3ySEUqRmo/QruYRQyg8cqNkozd5800vSpTAUujadO8NHH8HMmbEjkVyVVEJYtco7XUux\nuahKr17+h+WTT2JHItkq1eaiKo0a+e+nAkt6lVRCeP553wRnl11iR1I4zZt7s5EmqaVLqTcXVRk4\nEB55JHYUkquSSgjl8MABHHushp+mzeTJXoM96KDYkRTWEUf4BLUPPogdieSiZBLC6tVeMinl5qIq\nvXv7JLWFC2NHIvVV6s1FVRo39kmUWhI7naImBDPb0czGmtkUM3vbzM7P9VwvvQTbbOMT0krdppt6\nB96IEbEjkfool+aiKqrBplfsGsJK4KIQwj5AR+DnZtY2lxMNG+bjoMuFHrr0mD4dFi+GQw+NHUlx\nHHWUr9ek+TLpEzUhhBA+CSFMzHy+BJgGZL2qegjeyXrMMfmOMLkGDIBnnoGvvoodidTlscf8/6vU\nm4uqNG/uy6w88UTsSCRbsWsIa5lZG6Ad8Eq2PztlivchHHBAvqNKrq239t939OjYkUhdyq2wAqrB\nplUittA0sxbAQ8AFmZrCWkOGDFn7eUVFBRUVFev8/OOPl1cJrErVQ9evX+xIZH0+/RSmToVabtuS\n1rcvnHMOLFmS3j2j06SyspLKysoGnyf6Fppm1gQYDowMIdxQ43v12kKzQwf43//1tsty8v773i79\n8cc+KUiS59Zb4emny3Oy1tFHw9lnl09nepKkcgtNMzPgVmBqzWRQX1VT5bt0yW9sadCmDeywg+8O\nJ8lUjs1FVdRslD6x+xAOB04FuprZhMxHr2xOMHy4L+eQ9r1pc3XssRrznVTLlvlii717x44kjmOO\n8aHRK1fGjkTqK/YooxdCCN8JIRwYQmiX+Xgqm3OUcwkMvO/kiSd8pJUky6hRcPDBsOWWsSOJY7vt\nYPfdfUkZSYfYNYQGWbLEb7ZeWdUpSssBB/jQ0+nTY0ciNZV7YQV81rKGn6ZHqhPCM8/4RuWbbx47\nknjMfJTR8OGxI5HqVq/2/5MBA2JHEle/fqrBpkmqE4JKYE6lsOR5+WXYdlvYeefYkcR14IHw9deq\nwaZFahPCqlXw5JP+x7DcdesGEyfCggWxI5EqKqy4qhqsCizpkNqE8NJLvk1mKW6Vma1mzXzi01NZ\ndcdLIVVNlhQ1aaZJahOCHrhvU7NRcsyY4YvZtW8fO5JkUA02PVKbENRc9G19+/qMWI35jm/4cP//\n+E5qn678at7ca7AjR8aOROqSylt29mz48kto1y52JMmx3Xaw666atZwEI0ZAnz6xo0gWNRulQyoT\nwogRPvtTJbBvU7NRfIsXwyuvlN+6WnXp10812DRI5Z/UJ59UCaw2SgjxjRoFnTpphc+aqmqwL7wQ\nOxLZkNQlhGXL/Kbq0SN2JMlz4IH+/syYETuS8jVihPcfyLrUbJR8qUsIY8f6+jDlPDt5fTTmO64Q\n1H+wIarBJl/qEoKaizZMD108EyZ4U9Huu8eOJJnatYOlSzVrOclSlRBUAqtb167w5puwcGHsSMqP\nmos2zMyfXQ0/Ta5UJYSpU/3fvfeOG0eSbbwxHH649lqOQbXXuvXp44lTkilVCaGqdlBueydnq3dv\nPXTFNn++F1g6d44dSbJ17w7jx3vTkSRP6hKCquR1q6qWa8nh4nnqKV+iYaONYkeSbJttBoccAs8+\nGzsSqU1qEsLChfD6695GLhu2227euTlpUuxIyof6tupPzUbJlZqEMGoUHHGEt5FL3fTQFc+qVT4L\nVwmhfqruTdVgkyc1CeHJJ9VclA0lhOIZPx522gl22CF2JOnQtq33A06bFjsSqSkVCWHNGm8TVwms\n/jp3hsmT4YsvYkdS+tRclB0zDXxIqlQkhAkToGVL2GWX2JGkR7Nm0KWL7zsthaXaa/ZUg02mVCQE\nje/OjR66wpszBz76CDp0iB1JunTrBq+9BosWxY5EqktFQlCVPDe9e3tT25o1sSMpXSNHQq9e0KhR\n7EjSZZNN4LDDYMyY2JFIdYlPCPPnwzvvwJFHxo4kfdq0ge9+F954I3YkpUu119ypHyF5Ep8Qqib8\nNG0aO5J00toxhfPVV1BZCUcfHTuSdNLw0+RJfELQ7OSGUT9C4Tz3HOy3H2y1VexI0mn33X2/5cmT\nY0ciVRKfEJ5+2quWkpsjjvAmt/nzY0dSetS31TBa/TR5oiYEM+tlZu+Y2Uwzu7y2Y3baCbbfvtiR\nlY6mTX25j6efjh1J6VFCaDj1IyRLvRKCmR1jZn/MfPTPx4XNrBHwN6AXsDdwipm1rXmcmosaTs1G\n+TdrFixZ4tuWSu4qKnyekSZQJkOdCcHMrgXOB6YAU4Hzzez3ebj2ocCsEML7IYSVwP3AMTUPUgms\n4Xr39glqq1fHjqR0jBzp76uWYm+Y5s19Vv2oUbEjEahfDaEv0DOEcFsI4Va8RN8vD9feAZhb7esP\nM699iyb8NFyrVr7Ozquvxo6kdIwYob6tfFE/QnI0rscxAdgC+Dzz9RaZ1xqqXue4+uohaz+vqKig\noqIiD5cuP1VttZ06xY4k/ZYtgxdegPvvjx1JaejdG66+2idQfifxw1ySqbKyksrKygafx8J6BgGb\n2U3AvUAr4DpgLGBAF+CKEEKDHgcz6wgMCSH0ynz9S2BNCOG6aseE9cUn2XnuObjoIk1Sy4cnn4Tr\nr/c5CJIfe+0F99wD7dvHjiTdQvCm4SZNjBBC1g2aG8rHM4Dr8WQwGpgNPAx0bGgyyHgd2N3M2phZ\nU+Ak4PE8nFdq0akTzJ4Nn3wSO5L008q7+aeBD/kxdSocemjuP7/ehBBCuCGE0AmvEcwEjsMTxE/N\nbI/cL7n2/KuAXwBP453VD4QQtEJ6gTRpAj16+MxvyV0IXkNQ/0F+KSHkx4gR0LFj7j+/3iajWg82\nawfcDuwXQij4cl5qMsqvO+7wG2bo0NiRpNc773hinTNHI4zy6euvYZtt4N13ff0tyU3XrnDJJdC/\nf/6bjAAws8ZmNsDM7gWeAt7BawuSMr16+fC+lStjR5JeVZPRlAzya6ONfE6C9u/I3aJF3kfYkH3n\n15sQzKynmd0GzAPOBoYDu4YQTg4hPJb7JSWWbbf1TYZeeil2JOml/oPC6dPHm+MkN6NH+5Lim2yS\n+zk2VEO4AhgPtA0h9A8h3BtCWJL7pSQJ1FabuyVL4OWXoXv32JGUpt69fYkVTaDMTT6WUtlQp3K3\nEMK/QwgLGnYJSZK+fZUQcjVmjE+UbNEidiSlqXVrX7dMEyizF0KBE4KUpkMO8aGnc+bEjiR9tJhd\n4fXtq2ajXEya5AWV3XZr2HmUEMpMo0beuayHLjshqP+gGNSPkJt8FVaUEMqQmo2yN2UKNG4Me+4Z\nO5LS1qmT117nzYsdSbooIUjOjj4axo2D5ctjR5IeGm5aHI0bQ8+eWuwuGwsW+K5znTs3/FxKCGWo\nZUs44ACtxZMNrW5aPGo2ys4zz0CXLtCsWcPPpYRQptRsVH8LF8KbbzZswo/UX69e8OyzPntZ6pbP\nwQ5KCGWqajSHVgap2+jRcPjhsPHGsSMpD1tvDXvvDc8/HzuS5Fuzxtcny1ftVQmhTO27ry9h8c47\nsSNJPg03LT41G9XP6697Am3TJj/nU0IoU2ZqNqqPquGm6j8oLs1HqJ98F1aUEMqYHrq65WvCj2Sn\nXTtfKmTmzNiRJJsSguRNt27w2mveaSq1U3NRHGbfbPsqtfvsM5gxw/u38kUJoYxtsonfTKNHx44k\nuYYP95qUFJ9qsBs2YgQcdRQ0bZq/cyohlDk9dOv32We+JWGXLrEjKU9HHQXjx3vTkazriSegf//8\nnlMJocxVLYe9Zk3sSJKnECUwqb/NNvP9gceMiR1J8nz9tdfs8z3YQQmhzO26K2yxBUyYEDuS5Bk+\nPP8lMMmOarC1GzcO9tnHtx3NJyUE0UNXi0KVwCQ7VUOjNYHy2wrRXARKCIImAdVm3DifLZvvEphk\nZ489fL/lyZNjR5IcIXhC6Ncv/+dWQhCOPBKmT/dOVHFqLkqGqgmUw4fHjiQ5pkzxf/fdN//nVkIQ\nmjaFHj300FUpZAlMste/v/9/iKtqLirEUuxKCALAMcfA44/HjiIZpkzxpFCIEphkr0sXr8F+/HHs\nSJKhkIUVJQQBvB/h2Wdh2bLYkcQ3fLg/cNoMJxmaNvUlsVVLgPnzvcBSUVGY8yshCABbbgnt22vW\nMhRuBIfkbsAA1WDhm7kxG21UmPMrIchaajbyEtjbbxeuBCa56d0bnntOs5YL3belhCBrDRjgN9zq\n1bEjiWfkSOjevXAlMMnNFltAhw4walTsSOJZscJr8IVcWytaQjCz681smplNMrNHzGzzWLGI22UX\nH3f/yiuxI4lHzUXJNWAAPPZY7CjiGTcO2rYt7NyYmDWEZ4B9QggHADOAX0aMRTLKudnoq6+8BKrV\nTZNpwACfQLlqVexI4nj0UX8PCilaQgghjAohVC2p9grQKlYs8o1jjinfUtjo0bD//pqdnFQ77QSt\nWvkKqOVmzRpPCMceW9jrJKUP4QxAW2EkQPv2vmHOjBmxIym+YcMK/8BJw5Rrs9Frr/nqr3vtVdjr\nFDQhmNkoM3urlo/+1Y75FbAihHBvbecYYrb2o9LMB4cPGVL7BYcM8e/X/NDx9T7+O9+pNsQvAfEU\n6/hVq2DP+4Zw0cXJiEfH1358VQ02hGTEU6zjH30U/vbd9R9fWVnJkCFD1n7kykLEZQTN7EfA2UD3\nEMJXtXw/xIyvXI0cCddcA88/HzuS4hk3Di68UMuAJ10I0Lo1PPOMd7CWi732grvugkMOqd/xZkYI\nwbK9TsxRRr2Ay4BjaksGEk/Xrr665Pz5sSMpHjUXpYNZ+TUbTZsGS5fCwQcX/lox+xD+CrQARpnZ\nBDO7KWIsUk2zZtCzZ/mMNgpBCSFNvv99//8qF8OG+e9sWZf3sxdzlNHuIYSdQgjtMh/nxopF1nX8\n8fDww7GjKI6JE6FJEy1mlxYVFfDuuzBnTuxIiqOYhZWkjDKShOnbF158Eb74InYkhVf1wBWjBCYN\n16SJdy4/8kjsSApv7lyYPRs6dy7O9ZQQpFabbgrdupXHCpNVVXJJj4ED4aGHYkdReI895msXNW5c\nnOspIch6lcNDN3Omd5537Bg7EslG9+4wdSrMmxc7ksJ65JHi9m0pIch69esHlZWwaFHsSArngQc8\n8TVqFDsSyUbTpr7mVCl3Ln/yiQ+D7tWreNdUQpD12nxz362qlLfWHDoUTjopdhSSi4ED4cEHY0dR\nOA8/7IWyZs2Kd00lBNmgUm42mjYNPv8cDj88diSSix49YNIkL0mXogcegBNPLO41lRBkgwYMgDFj\nSnNjkqFD4YQTfLkOSZ9mzXw0XCk2G82b5xs19exZ3OvqUZANatkSDjvMt+4rJSF4CUzNRelWqjXY\nhx7yobWwuiGLAAANCklEQVTF3qhJCUHqNHCgl6ZLyZQpXuvp0CF2JNIQvXrBG2/Ap5/GjiS/hg4t\nfnMRKCFIPRx3nG8cs3Bh7Ejyp6p9Vs1F6da8uXe8PvBA7EjyZ+5cmD4djjqq+NfW4yB1atnSJ6mV\nylIWVc1FMUpgkn+DBsE998SOIn+GDvWJkk2aFP/aSghSL6X00E2aBCtX1n8pYUm2Hj3g/fd9kmEp\niDkUWglB6qVfP58kUwozQ++7zx84rV1UGho39v/Pe2vdYitd3n0X3nvPl6CPQQlB6qVZM6/G3n9/\n7EgaZvVqr+mcemrsSCSfqmqwad9P6+674ZRTird2UU1KCFJvp56a/majykrYZhstdV1qDj3UN6J/\n/fXYkeQuBN8V7bTT4sWghCD11qWLD++bOjV2JLm78044/fTYUUi+maW/n2v8eF+jqX37eDEoIUi9\nNWrk1dm0PnRLl/pywqecEjsSKYRBg7xJc9Wq2JHk5s47vXYQs29LCUGyMmiQd96tWRM7kuwNG+br\nFn3ve7EjkULYYw9o3dqXWkmbr7/2hfoGDYobhxKCZOXAA33znHHjYkeSvdjts1J4P/wh3H577Ciy\nN3w4HHCAJ7SYlBAkK2Zw1llwyy2xI8nO3Lne4ThgQOxIpJB+8AN46ilfxTZNbr89GX1bSgiStVNP\nhSefhAULYkdSf7fd5n0HG28cOxIppJYtfc7M3XfHjqT+5s71DuUkzJxXQpCsbbkl9OmTns7l1au9\nRnP22bEjkWKoqsGmZU7CbbfByScno7CihCA5OfPM9Dx0Tz0F22/vbbRS+rp0ga++gldfjR1J3Vav\nhltvhZ/8JHYkTglBctK1Kyxe7EsPJ93NN6t2UE7M4Iwz0tHP9fTTsO22ySmsWEhwEc/MQpLjK3fX\nXAOzZyf7wZs3z2clz50LLVrEjkaK5eOPYZ99fF2gzTePHc36HXus7/p21ln5Pa+ZEULIekaDEoLk\n7LPPYM89YdYs2Gqr2NHU7re/9aTwr3/FjkSK7eSToVMnuOCC2JHUbt482G8/mDMn/4UVJQSJ4kc/\ngrZt4fLLY0eyrq+/hjZtfHMfrV1Ufl56yYdyzpiRzI2QrrzSZ8//5S/5P3euCSGBb5OkyXnnwU03\nJXO5gKFDPREoGZSnTp1giy1g5MjYkaxr2TL497/9+UmSqAnBzC4xszVmtmXMOCR37dtDq1bw+OOx\nI/m2EODPf4YLL4wdicRiBuefD3/9a+xI1nX33XDYYbDbbrEj+bZoCcHMdgR6AB/EikHyI4kP3Qsv\nwJIl0Lt37EgkppNO8o2d3nkndiTfCAFuuCGZhZWYNYQ/Af8T8fqSJ8cd5x3Lr70WO5Jv3HCDdyYm\nse1YimejjeBnP4M//jF2JN945hnfL7miInYk64ryuJjZMcCHIYTJMa4v+dWkCVx2mQ9DTYIZM+C5\n53yhM5Hzz4eHH/ahx0nwhz/ARRclcwvXgo0yMrNRwLa1fOtXwJVAzxDCIjN7Dzg4hLDOclQaZZQe\ny5bBLrvA6NHxO3F/+ENvm/3Nb+LGIclx6aWwcmVhRvRk44UXfOTT9OlekCqU1Aw7NbN9gTHAssxL\nrYB5wKEhhM9qHBsGDx689uuKigoqkljPEgCuuw4mT467xtGsWdCxo29WnuQJSVJcVRPVpk2Lux/G\n0UfDCSfkfyJaZWUllZWVa7++6qqr0pEQ1gnAawjtQwjrrJ2pGkK6LFoEu+7qKzfGGj3x4x/DTjvB\nkCFxri/Jde65sNlmcO21ca7/8sveyT1zpm+VWUipqSGsE4DZbLzJSAmhBAwZ4stZ3Hln8a89ezYc\ncojXElq2LP71Jdnef9+HSU+dGqeW0KeP78fxs58V/lqpTQgbooSQPosX+1aGTz4JBx1U3Gv/8Ide\nO/jtb4t7XUmPCy+EFSt8MmUxvfii78cxc6aPfCo0JQRJjH/+02cJjxlTvJEUb77pi4TNmOFbfIrU\n5vPPYa+9fBRa27bFuWYIPmv65z8v3hauWrpCEuOss7wTb8SI4lwvBB9FMniwkoFs2FZb+bpbxVx7\n64EHfITToEHFu2aulBAk7xo39rHWl13mD0KhDRsGn36a/5EbUpp+8Qt46y0YO7bw11qyxJPPH/+Y\njkmSKQhR0qhfP2jduvAzRBct8olH//iHJyKRujRr5vfluef6zmqFNGQIdO6czFnJtVEfghTMe+/5\nqJ/x42H33QtzjfPP90lxSd6kR5LpuON8EmWhBiFMnAg9e8Lbb8M22xTmGuujTmVJpD//GR55BCor\noVGj/J57zBif9Tl5cnI36JHk+ugjOPBA38ayXbv8nvurr7wwdMklvmdIsalTWRLp/PN9Es7vfpff\n837+uT9ot9+uZCC52X57uPFGnyy2eHF+z33FFT6aKW3raamGIAX30Uc+Ieiee6Bbt4afb/Vqn+Cz\n557wpz81/HxS3s4803fXu+uu/AyTfuQRn+8wcSJsGWmnF9UQJLG23943BDnlFF/Uq6Euv9yr5Ndd\n1/Bzidx4o69xlI/VeidMgJ/+FB59NF4yaAglBCmK7t3h97/36fvz5uV+nj/9yXdne/DBwq4WKeVj\nk01g+HC4+Wb4z39yP8/06dC/v494K/Ys/XzRQD0pmjPO8Lb/I4/0DuGdd67/z4YA11/vD+3Yseks\nfUlybbcdPPWUjwr66isv5Wdj2jTo0QOuvhoGDixMjMWghCBFddllXiI77DAvjfXsWffPLF8O55wD\nb7zho5VatSp4mFKG2rb1+6tnT/8Df9119Vt3aNgwTyB//GPxlqYoFDUZSdGdey7ce6/XGH7yE/jw\nw9qPC8HbYvff32c8v/yykoEU1q67+lawH3zgw0ZHjvT7sDYffOD9Yhdd5E1OaU8GoFFGEtGCBb7E\nxb/+5TWG7t29A3rZMi+hPfywr030hz/4xiIixRKCjxb6zW985FH//j6qrXlzTwRjxnjiuOCCb2q9\nSaKJaZJaCxd6SezFF31NoubNfYOdfv184lAS956V8rBmDbz6qi/UOGcOLF3qS6x36OCr6268cewI\na6eEICIigOYhiIhIAykhiIgIoIQgIiIZSggiIgIoIYiISIYSgoiIAEoIIiKSoYQgIiKAEoKIiGQo\nIYiICKCEICIiGUoIIiICREwIZnaemU0zs7fNTLvjiohEFiUhmFlXYACwfwhhX+D/YsRRbiorK2OH\nUFL0fuaP3stkiFVDOAf4fQhhJUAIYX6kOMqKHrr80vuZP3ovkyFWQtgd6GxmL5tZpZkdHCkOERHJ\naFyoE5vZKGDbWr71q8x1W4YQOprZIcBQYJdCxSIiInWLsmOamY0Erg0hjMt8PQvoEEL4vMZx2i5N\nRCQHueyYVrAaQh0eBboB48xsD6BpzWQAuf1CIiKSm1gJ4TbgNjN7C1gBnB4pDhERyYjSZCQiIsmT\niJnKZtbLzN4xs5lmdvl6jrkx8/1JZtau2DGmSV3vp5lVmNlCM5uQ+fh1jDjTwMxuM7NPM7XZ9R2j\ne7Me6novdV9mx8x2NLOxZjYlM8H3/PUcV//7M4QQ9QNoBMwC2gBNgIlA2xrH9AFGZD7vALwcO+6k\nftTz/awAHo8daxo+gCOBdsBb6/m+7s38vZe6L7N7P7cFDsx83gKY3tC/nUmoIRwKzAohvB98otr9\nwDE1jhkA/AcghPAKsIWZfa+4YaZGfd5PAHXY10MI4Xngiw0conuznurxXoLuy3oLIXwSQpiY+XwJ\nMA3YvsZhWd2fSUgIOwBzq339Yea1uo5pVeC40qo+72cADstUIUeY2d5Fi6706N7MH92XOTKzNnjt\n65Ua38rq/ow1yqi6+vZq1yw5qDe8dvV5X94EdgwhLDOz3vgw4D0KG1ZJ072ZH7ovc2BmLYCHgAsy\nNYV1Dqnx9XrvzyTUEOYBO1b7ekc8i23omFaZ12Rddb6fIYTFIYRlmc9HAk3MbMvihVhSdG/mie7L\n7JlZE+Bh4O4QwqO1HJLV/ZmEhPA6sLuZtTGzpsBJwOM1jnmczFwFM+sIfBlC+LS4YaZGne+nmX3P\nzCzz+aH48OMFxQ+1JOjezBPdl9nJvFe3AlNDCDes57Cs7s/oTUYhhFVm9gvgaXyEzK0hhGlm9tPM\n9/8VQhhhZn0yS1wsBX4cMeREq8/7CQwEzjGzVcAy4ORoASecmd0HdAG+a2ZzgcH46C3dm1mq671E\n92W2DgdOBSab2YTMa1cCrSG3+1MT00REBEhGk5GIiCSAEoKIiABKCCIikqGEICIigBKCiIhkKCGI\niAighCCSNTPb3MzOiR2HSL4pIYhkryVwbuwgRPJNCUEke9cCu2Y2cbkudjAi+aKZyiJZMrOdgOEh\nhP1ixyKST6ohiGRPm7hISVJCEBERQAlBJBeLgU1jByGSb0oIIlkKIXwOvGhmb6lTWUqJOpVFRARQ\nDUFERDKUEEREBFBCEBGRDCUEEREBlBBERCRDCUFERAAlBBERyVBCEBERAP4f9QwKmZTYY7AAAAAA\nSUVORK5CYII=\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x7caa690>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "import math\n",
    "import numpy\n",
    "%matplotlib inline\n",
    "from matplotlib.pyplot import plot,ylim,ylabel,xlabel,title\n",
    "\n",
    "#Variables\n",
    "\n",
    "Vp = 5.0                        #Peak voltage (in volts)\n",
    "\n",
    "#Calculation\n",
    "\n",
    "Vpos = 3.0                      #Positive clipping voltage (in volts)\n",
    "Vneg = -2.0                     #Negative clipping voltage (in volts)\n",
    "\n",
    "#Result\n",
    "\n",
    "print \"Following is the output :\"\n",
    "#Graph\n",
    "\n",
    "t = numpy.arange(0.001, 2.0, 0.005)\n",
    "y = numpy.sin(2*math.pi*t)\n",
    "plot(t, 5*y)\n",
    "plot(t,(3*t)/t,'--')\n",
    "plot(t,(-2*t)/t,'--')\n",
    "ylim( (-6,6) )\n",
    "ylabel('Vo')\n",
    "xlabel('t')\n",
    "title('Output Waveform')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 33.9 , Page Number 866"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Output waveform is as follows :\n",
      "The parts below and above the clipping levels are clipped off.\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "<matplotlib.text.Text at 0x7d25710>"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEZCAYAAACJjGL9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYVdW9//H3l6agAiqIiiCxYEXFGxFFYagCAiqYWIkl\n+uRaoj/TrNHR3FiiJsbEmBtL4rWgolFBBaWNIgJRmiA2jICAjYggVWDW7491RodhZjhln7P2Pufz\nep55nDmzZ+8vx73Pd/VlzjlERETq0iB0ACIiEm9KFCIiUi8lChERqZcShYiI1EuJQkRE6qVEISIi\n9VKiEEkwMzvFzD42s6/N7PDQ8UhxUqKQWDCzc81srpmtMbNPzOwvZtYig79faGa9Ioyn3vOZ2Xtm\n9sNqP3czs8paXltlZvl8zu4ALnbO7eScm5PH60gJU6KQ4Mzs58CtwM+B5kBXYG9gnJk1TvM0DrAI\nw9rW+V4Bulf7uTvwbi2vve6cq4wwrm+ZmQHtgflZ/r2ef0mLbhQJysyaA+XApc65l51zm51zi4Af\nAh2As1PH/cPMflPt78rM7OPU9w/jPzBHp5pgfmFmHVIl/AvNbKmZLUslJLI5Xy2hv8qWSeE44LYa\nrx2fOg4zG5mqKX1lZq+Y2cGp149Ovf5tUko1J81Jfd/AzK4yswVmttzMnjCznc1sO+BroCEwx8w+\nSB1/kJlVmNkKM5tnZoNr/JvvNbMXzWw10DNVc/qFmb2V+rc+YGZtzGyMma00s3Fm1nJb/x+luClR\nSGjHAtsD/6z+onNuDfAi0LfqpdTXVpxzw4HFwKBUE8wd1X5dBuwH9AOuNLPeOZ6vymTgEDNrmSqZ\nfx94AmhZ7bVjSSUK4IVUHK2BmcCjqWtNB9YAvaud+8yq3wM/BYbgE9AewArgHufcBufcjqljDnPO\n7Z+qfY0Gxqau81PgUTPrWO3cZwC/Sf3ta6n3YGjq+gcAg4AxwFXAbvjPiMtqe5+kdChRSGitgOV1\nNM98Cuxa7edsmpZudM6tc87NA/6O/6DM5XwApGo9i/Ef4IcDHzjn1gNTqr3WBJieOv4fzrk1zrmN\nwI3A4Wa2U+p0I6riSr02IPUawE+A65xzy6r97al1NBt1BXZwzt3qnNvknJsEPF/j3/ysc25qKqYN\nqdf+5Jz7wjm3DJ8Apzrn5qR+/wzQOdv3SYqDEoWEthxoVccH3x6p3+fi42rfLwb2zPF81VU1P33b\nxIQvpVe9Nt05t9HMGprZranmo5XAR/iSfKvU34wAhppZE3zpfoZzriruDsAzqaakFfj+iE1Am1ri\n2ZMt/70Ai/ju3+xq+T3AZ9W+X1fj5/XAjkhJU6KQ0KYCG4Bh1V80sx2B/sCE1EtrgGbVDtm9xnnq\nWga5fY3vl+Z4vuqqJ4rJqdcms3XyOBPffNTbOdcC+B6+NmMAzrn5+A/0AaljH6t2jcVAf+fcztW+\nmjnnPqklnmVAu+r9HfhBAUtrObY+UQ4KkCKgRCFBOedW4ptT/mRmJ5hZYzPrADyJL/0+nDp0NjAw\n1ZG7O/D/apzqM2DfWi5xnZk1NbNDgHPx/Qi5nK+6V4Ej8YlhSuq1ucA+QE++SxQ74pPhl2a2A3Bz\nLed6LBXD8cDIaq//FbjZzNoDmFlrMxtSRzzTgLXAr1LvYxm+z+Hx1O+VACQrShQSnHPuduAa/JyA\nlfgPvEX4EvjG1GEPA3OAhfjO2sfZstR/Cz4prDCzn1V7/RVgATAeuN05Nz7H81WP+wPgc+AT59yq\n1GsO3y+xE/B66tD/S/17lgLz8LWomjWWEfiEM8E592W11/8IjAJeNrNVqb/tUj2MavFsBAbjayZf\nAH8Ghjvn3q92bDo1JVfje21aU+JMGxdJMUrVSv4NNMrXPAaRUqEahYiI1EuJQoqZqssiEVDTk4iI\n1Es1ChERqVej0AFkw8xUDRIRyYJzLuNh0omtUTjn9BXR1w033BA8hmL60vup9zOuX9lKbKIQEZHC\nUKIQEZF6KVEIZWVloUMoKno/o6X3M7ygw2PN7EHgROBz51yn1Gu74Nfj2Ru/vMIPnXNf1fg7FzJu\nEZEkMjNcAjuz/45fIbS6q4BxzrmO+JVDryp4VCIi8q2gicI5Nxm/Y1d1Q4CHUt8/BJxc0KBERGQL\noWsUtWnjnKvaOOUzat+gRURECiTWE+6ccy5pk+tmzoTnn/f/3bQJdt4ZuneHk06C3XYLHZ2UshUr\nYORImDoVPv0UttsOjjgCBg6ELl22/fdSuuKYKD4zs92dc5+a2R749f63Ul5e/u33ZWVlwUdGzJ4N\nV1wBH34Ip58OZ50FTZv6B3LiRLjqKjjvPLj+emjePGioUmLWrIHycnjgAejXD8rKoH17WLsW/vUv\nOOMMaNcOfvc7JYxiU1FRQUVFRe4nisFMwQ7A3Go//w64MvX9VcCttfyNi4vKSuduu8251q2du+8+\n5775pvbjlixx7vzzndt3X+feeKOwMUrpmjnTuf33d+6ss/w9WJuNG5178EHndtvNuZtvdm7z5sLG\nKIWT+uzM+HM69PDYEUAP/CbznwHXA8/ht8FsT8yHx27eDJdcAm++Cc8840tl2zJypP+bhx+GE07I\nf4xSuiZO9LXbu+/2/92Wjz+G006Djh197aNhw/zHKIWV7fDYRC4zHodE4Rycfz4sWgTPPQc77ZT+\n306ZAqecAg89BAMG5C9GKV2TJvkP/Sef9E1N6Vq71ventW4NjzwCDeI43EWypkRRYDfeCC+8ABUV\n0KxZ5n8/dap/ICdMgE6dIg9PStj8+dCzJzz+uP9vptav930Zxx0HN98cfXwSTlIn3CXS00/DP/4B\no0dnlyQAjjkG7roLhgyB5csjDU9K2MqVMHgw3H57dkkCYPvt/T3++OPw2GPRxifJpBpFhhYvhqOO\n8kkiihEiP/85LFwITz0FlnGeF/mOc3DmmdCyJdx7b+7ne+st6N0bpk+HffbJ/XwSnmoUBVBZCWef\n7T/coxpGePPNsGCBr6GI5OKRR2DuXPj976M532GHwdVXw/Dhfk6QlC7VKDLwv/8L//d/MHlytJ18\n8+b5ZoI5c2DPPaM7r5SOL76AQw+FMWPgyCOjO29lJfTpA4MGwc9+Ft15JQx1ZufZJ5/4EtakSf6B\njNq118JHH6lNWLJzzjnQqhXceWf0537/fTj2WF+Qads2+vNL4ShR5Nnw4f4hufXW/Jx/7Vo45BC4\n/37fLiySrsmT/UoA8+fDjjvm5xq//rVPGE88kZ/zS2EoUeTRzJm+6v3ee5nNl8jUM8/4pRZmzdL4\ndUmPc9C1K1x2mU8W+bJuHRxwgB8Jdeyx+buO5Jc6s/PEOfjlL+GGG/KbJABOPhl22EHNT5K+J5/0\nHc1nnJHf6zRtCjfdBFde6Z8JKS1KFNvw8suwbBn8+Mf5v5YZ3HYbXHcdbNiQ/+tJsm3cCNdcA3fc\nUZga6PDhfgXa0aPzfy2JFyWKejjnm4LKy6FRgdbZPf5431fx4IOFuZ4k1yOPwN57Zz+xLlMNG/rh\n3Ndfr1pFqVGiqMf48X6m66mnFva6v/61r1ls3FjY60pybNoEv/2tbxItpMGD/X9feKGw15WwlCjq\ncdNN/kO70Ktodu0K++/vV5gVqc2IEbDXXtCjR2Gva+abRn/zG9UqSokSRR2mTYOlS+GHPwxz/euu\ng1tu8UuZi1TnnF/L6eqrw1x/6FD4+mu/jLmUBiWKOvzhD3D55eHW5O/eHVq0gBdfDHN9ia+JE30B\nol+/MNdv0MDv5njXXWGuL4WneRS1WLwYOnf2i/Xle0hsfR5+2O9ZMX58uBgkfgYN8kvUX3hhuBjW\nrvUd6VOnwn77hYtDMqMJdxH65S/9Gjf5WA4hExs2QIcOMG5cfpYNkeR57z0/Mm7RIj+3IaRrrvH7\ncf/xj2HjkPQpUURk9WpfUpoxw39Ih3bTTbBkCfztb6EjkTi4+GLYdVffmRzakiVw+OF+jbLmzUNH\nI+lQoojIPff4hf+eeiovp8/YZ5/BgQf6pch33TV0NBLSV1/B977n13TaY4/Q0Xinn+434br88tCR\nSDq0hEcEnPMl94suCh3Jd9q08e3RmoAnjz7qO7DjkiTAJ4h77tFQ2WKnRFHNm2/6pqdCzXRN14UX\nwgMP6GEsZc7BffeF7cCuTdeu0KSJX8FWipcSRTX33efXdIrbyq1Vq3VOmRI2DglnxgxYtQp69Qod\nyZbM/DNz//2hI5F8Uh9FyurV0K4dvP12PHeZu/123zb997+HjkRC+MlPoH17v8FV3Cxf7ofILlrk\n5/5IfKmPIkdPPOEnucUxSQD86Ed+v4pVq0JHIoW2erVfTvzcc0NHUrtWrXzfyYgRoSORfFGiSIlj\n+291bdr4ZofHHw8diRTak0/6uRNx3oZUzU/FTYkCP4lp0SLo3z90JPX78Y99p7aUlocegvPOCx1F\n/fr0gc8/9/tqS/FRosAPOzz99MLtOZGtE07wCe3990NHIoWyeDHMmwcDB4aOpH4NG/rmUa14XJxK\nPlE45xPF2WeHjmTbGjWC007TVqmlZMQIGDYMttsudCTbduaZPl6teFx8Sj5RTJsGjRvDkUeGjiQ9\nZ53lE0UCB6tJFh55JBmFGICDD4bWrTWnohiVfKKoqk1YxgPGwjjqKL9g4YwZoSORfHvrLb/D4nHH\nhY4kfWed5Z8pKS4lnSg2bvQjSs48M3Qk6TP7rlYhxe2RR/z/67hNAK3P6afDP//pVz6W4pGgWzB6\nL7/stxzdZ5/QkWTmjDP8MFm1BRevykrf3n/WWaEjyUy7dn5J/LFjQ0ciUSrpRPHEE74ElDQHHugX\nhps0KXQkki+vvw4tWyZzHxI1PxWfkk0U33wDzz/vR5Qk0RlnwMiRoaOQfBk5En7wg9BRZGfYMHjp\nJb+pkRSHkk0UEybAQQfFd8mObRk2DJ59Vs1PxaiyEp5+Gk49NXQk2dl1Vzj6aBgzJnQkEpWSTRRJ\nfhDBb2Cz114ailiMpk/3i+sdfHDoSLI3bJh/xqQ4lGSi2LQJnnsOhg4NHUluTj01PjvxSXRGjkx2\nIQbg5JN9jWLdutCRSBRKMlG88oovke+9d+hIcjNsmB+KWFkZOhKJinM++Se1f6JKmzbQubMfWSjJ\nV5KJ4qmnktuJXV3Hjn6J59dfDx2JROVf/4JmzeCQQ0JHkrthw1TjLRYllyg2b/b7OhRDogA1PxWb\nqr6zpKwUUJ+hQ/3IQk2+S76SSxRTpsDuu/sduYrBqaf6Dxet/VQcnnsOTjkldBTR2HNPXzOaMCF0\nJJKrkksUSR/tVNNBB0HTpjB7duhIJFfvvuvnHiRlgcp0nHwyjBoVOgrJVWwThZktNLO3zGyWmf0r\ninM655udkj7aqTozGDJED2MxGDXK/78shmanKkOGwOjRGnCRdLFNFIADypxznZ1zXaI44Zw50KSJ\nL4UXEyWK4vDcc3DSSaGjiFbHjrDTTjBzZuhIJBdxThQAkZatRo+GwYOLq8QGcOyxsHAhLFkSOhLJ\n1uefw9tvQ1lZ6Eiip4JM8sU5UThgvJm9aWYXRnHCqkRRbBo18ltljh4dOhLJ1vPPQ79+ydjJLlNK\nFMkX512iuznnPjGz1sA4M3vXOfftghXl5eXfHlhWVkbZNopin3wCH3wAxx+fp2gDGzIEHnwQLroo\ndCSSjVGjimuQRXXHHANLl/r9v9u3Dx1NaamoqKCioiLn85hLwLhKM7sBWO2cuzP1s8s07vvvh/Hj\n/T4OxWjVKmjbFpYt823Ckhxr1/oh2wsXwi67hI4mP845B7p0gUsuCR1JaTMznHMZN77HsunJzJqZ\n2U6p73cA+gFzczlnsTY7VWne3PdVaMmE5JkwAf7rv4o3SYCan5IulokCaANMNrPZwHTgeedc1h+B\n69b5TX4GDIgsvlgaPFj9FEk0alTxjXaqqV8/mDrV13wleWKZKJxzHznnjkh9HeqcuyWX802c6Bco\nK+YSG/hE8cIL2qMiSSori7+2C745tFs31XiTKpaJImql8CCCXw23bVtfcpNkmDXLb3m6776hI8k/\nNT8lV9EnCudKJ1GAHyarncWSY8yY4m8SrTJwIIwdq1naSVT0iWL2bL9s8wEHhI6kMAYMUKJIklJK\nFHvv7ZfF1yzt5Cn6RDF2rC/JlIpjjoGPPoJPPw0diWzLl1/C3LnQvXvoSApHBZlkKolE0b9/6CgK\np1Ej6N0bXnopdCSyLePG+SSx/fahIymc/v39MynJUtSJYuVKX83t0SN0JIWlUlsylFKzU5Xu3WHe\nPF+bkuQo6kQxcaKfhNasWehICqt/f19a3bQpdCRSl8pKX7IutUSx3XY+WYwbFzoSyURRJ4oxY0qr\n2alK27b+6403QkcidZk9G1q0gH32CR1J4an5KXmKNlE4V3r9E9Wp+SneSrHZqcqAARommzRFmyje\neQcaNIADDwwdSRhKFPFWyolin3382mRz5oSORNJVtImiqjZRbJsUpevYY+H99/2GOBIvK1bAW2+V\n3iCL6tT8lCxFnyhKVZMm0KuX1taJo3Hj/L4opTQstibVeJOlKBPFmjV+vaNevUJHEpYexngq5Wan\nKj16+A79r74KHYmkoygTxSuv+PX9mzcPHUlY/fv7GoVWk42PUh0WW1PTpn412QkTQkci6SjKRFHq\nzU5V2reH3XaDGTNCRyJV5s6FHXcsjdVit0U13uRQoihyVUMRJR7Gj4e+fUNHEQ9V92YCdmMueclN\nFOXlfkhTja8vLyvn66/h8MPTO57y8ozOn7Tj77jTuP6G+MRT6se3ubecPn3iE0/I4/fvaCxZaliD\neMRTUsdnyFwC07mZubrivvdemDYNHnqowEHF1Nq10KYNLFvmdxmTcDZs8MtsL14MO+8cOpp4uPBC\n6NQJLrssdCSlwcxwzlmmf5fcGkUdxo1T1b66Zs2gSxeoqAgdiUydCgcdpCRRXd++WvcpCYoqUWze\nDJMmUXvVvoTpYYwH9U9srVcvePVV2LgxdCRSn6JKFDNmwF57we67h44kXvr0UaKIg/HjVYipqVUr\n2G8/31ws8VVUiUIPYu06d/ZLeSxZEjqS0vXVV/D2234HQtlS377+2ZX4UqIoAQ0b+l3v9DCGU1Hh\n198q5WU76qKm0fgrmkSxdq3ff6GU9h/OhB7GsFSIqVu3bn7Xu5UrQ0cidSmaRDF5sm9i0RDQ2lVV\n77UHQBhKFHXbfnvfJDdpUuhIpC5Fkyj0INavQwe/9tXcuaEjKT0ffwzLl9cyCVS+pRpvvClRlBA9\njGGMH+/7iBoUzdMWPd2b8VYUt+4XX8C//w1HHRU6knjTwxiG5k9sW6dOfmTYokWhI5HaFEWimDDB\nr2/fuHHoSOKtZ094/XVYvz50JKXDOdV209Gggeb7xFlRJAo9iOlp2RIOPRSmTAkdSemYN88PsOjQ\nIXQk8acab3wlPlE4p/WdMqGHsbBUiElf376+dUAj8+In8Yniww9h0yY48MDQkSSDEkVhKVGkb6+9\noHVrmDUrdCRSU+ITRdWDaBkvnFuaunaFBQv8cE3Jr2++8fN7evYMHUlyaDmPeEp8ohg3TiW2TDRu\n7GevT5wYOpLiN306dOwIu+4aOpLkUI03nhKdKKqWFe/dO3QkyaJSW2Go2SlzZWU+wa5bFzoSqS7R\niWLmTNhzT/8l6asahpjAzQ0TRYMsMrfTTn4G+2uvhY5Eqkt0olCJLTsHHeS35fz3v0NHUrxWrvTL\npXTrFjqS5OnTRzXeuFGiKEFmehjz7ZVX/MABLSueOd2b8ZPYRLF2rW/L7NEjdCTJpIcxv1SIyd7R\nR2tkXtwkNlG89hoccYSWFc9W795+5NPmzaEjKU5KFNlr3BiOP17LjsdJYhOFHsTctG0LbdrA7Nmh\nIyk+S5fCZ5/5goxkRzXeeEl0otCIktxomGx+TJgAvXr5LWglO7o34yWWicLM+pvZu2b2gZldWdsx\nH34IXboUOrLiolJbfqi2m7uDD/b9kBqZFw9pJQozO8nM7kx9Dc5nQGbWEPgz0B84GDjDzA6qeVz3\n7lpWPFc9esC0aZrcFCUtKx4NjcyLl20mCjO7FbgMeBuYD1xmZrfkMaYuwALn3ELn3EbgceCkmgfp\nQcxd8+Zw2GF+jwqJxvz5fkjsvvuGjiT5lCjiI50axYlAP+fcg865B/Al/UF5jKkt8HG1n5ekXtuC\nEkU0tFlMtFSbiE7VyDwtOx5eozSOcUBL4D+pn1umXsuXtM795JPl364YW1ZWRllZWR5DKl59+sAV\nV4SOoniMHw/Dh4eOojhULTs+ezYceWToaJKpoqKCioqKnM9jro4Ff8zsL8BjwF7AbcAkwIAewFXO\nucdzvnrt1+0KlDvn+qd+vhqodM7dVu0YV1fckplvvoFWreCjj7TKaa42bvTv5Ycf+v9K7n76U2jX\nDn71q9CRFAczwzmX8aYM9TU9vQ/cjk8S44F/A08DXfOVJFLeBPY3sw5m1gQ4DRiVx+uVtCZNNLkp\nKv/6l++bUJKIjvopojN0aPZ/W2eicM7d5Zw7Bl+D+AAYik8cPzGzjtlfsn7OuU3ApcBL+M7zJ5xz\n7+TreqKHMSrqn4heWRlMnQrr14eOJNkWLoQpU7L/+212ZqdGH93qnDsCOB04BcjrB7dzboxz7gDn\n3H7OuXyOsBI0uSkqShTRa9ECOnXSyLxcVU0CzVY6w2MbmdkQM3sMGAu8i69dSJE45BBYvdr3U0h2\nvv7ad7oed1zoSIqPRublbsKE3AoxdSYKM+tnZg8CS4ELgeeBfZ1zpzvnnsv+khI3VZObJkwIHUly\nvfKKXymgWbPQkRQfNY3mxjn/bOeyE2h9NYqrgKnAQc65wc65x5xzq7O/lMSZHsbcqNkpf7p2hffe\ngy+/DB1JMs2b51fZ7tAh+3PU15ndyzl3n3NO/3tKQO/evtShyU3ZUaLInyZNfJOeRuZlJ9faBMR0\nUUApvHbt/DyKOXNCR5I8n3wCy5ZpUlg+qcabvSgKMUoU8i09jNmZMAF69tSy4vmkezM7GzfC5Mn+\n/syFEoV8Sw9jdtTslH+HHgqrVvn5AJK+qCaBKlHIt3r29OPVNbkpfVpWvDAaNNDIvGyMH597/wQo\nUUg1LVr4ktvUqaEjSY533oFGjWC//UJHUvw0nyJzUe0EqkQhW1DzU2bGjfMPomW8zJpkSiPzMlM1\nCfT443M/lxKFbEGJIjNViULyr3172GUXeOut0JEkQ0UFHH00NG2a+7mUKGQLXbv65pQVK0JHEn/f\nfAOvvprbGjqSGRVk0hdlIUaJQraw3XbQrZsvjUj9pk2D/ffXsuKFpESRvnHjohtkoUQhW1GnYXqi\n6iiU9JWV+eWyN2wIHUm8LVkCX3wBnTtHcz4lCtmKSm3pUf9E4e28Mxx8sEbmbcu4cb7zv0FEn/B1\nboUaZ2bmbph0Aze+cuNWv7uhxw2Ul5Vv9Xp5RbmO1/GRH39ttxv4nz7xiUfH6/j6js92K9TEJook\nxp0kZ57paxbnnx86knh65hn461/hpZdCR1J6Kirgyith+vTQkcRTZSXsvju88QbsvfeWv8vHntlS\nwtT8VD81O4VzzDEwf75G5tVl7lxo2XLrJJELJQqpVdVyCZrcVDslinA0Mq9+UY52qqJEIbVq394v\n6TFvXuhI4mfhQr9AXadOoSMpXarx1i0fhRglCqmTHsbaVZXYohpRIpnTvVm79ev9wp65Litek251\nqZMextqp2Sm8ww7zW6MuXhw6kniZMsUv7NmyZbTnVaKQOvXsCa+95peqEG/zZt93o2XFw2rQ4LtF\nAuU7+SrEKFFInXbeGQ48UJObqps1C3bbDfbaK3QkohUEtqZEIUGo+WlLanaKD43M29Ly5fDBB37F\n2KgpUUi9+vZVoqhO6zvFR4cO0Ly5RuZVmTgRuneHJk2iP7cShdTrmGP8g7hyZehIwlu92u9BXFYW\nOhKpohrvd8aOhX798nNuJQqp1/bb+8lN6jSESZPgqKNgp51CRyJV+vbVMirg924fOxYGDMjP+ZUo\nZJv694cxY0JHEd6YMfl7ECU7vXv7eQNr14aOJKy33oJmzfz+KPmgRCHbNGCA/5As5XUYnVOiiKMW\nLeDII31tr5Tl+95UopBt6tjRd5CVcqfh++/Dxo1wyCGhI5GaqgoypWzsWF/zzxclCtkmMxg4sLQf\nxqoSm2W8QLPkW9W9Wao13lWrYMaM6JftqE6JQtJS6qW2fHYUSm46dfJbo37wQehIwhg/Ho491vdR\n5IsShaSlZ09falm1KnQkhbd2rV9Dp3fv0JFIbcxKe8BFvpudQIlC0tSsmZ9TUYrDZCsqfIdpixah\nI5G6lGqNt1CDLJQoJG2l+jCq2Sn++vTxtb5SGyb79tvQqBEccEB+r6NEIWkr1WGyY8bkv2ovuaka\nJltqu95VNTvle5CFEoWkrWNHaNzYl2JKxYIFsGYNHH546EhkW0qxxluouT1KFJI2s9J7GAtVYpPc\nldq9+fXXfu2xXr3yfy0lCslIqT2ManZKjsMOg3XrSmeY7KRJ0KUL7Lhj/q+lRCEZ6dkT3nijNIbJ\nrlsHkydrWfGkKLVhsoVcUkaJQjKyww6lM0x24kTo3Nnv9CfJUCo1Xudg9GgYNKgw14tdojCzcjNb\nYmazUl+q+MfMoEH+Ji12o0fDkCGho5BM9O3rh8muXh06kvyaNcvPbcr3sNgqsUsUgAN+75zrnPoa\nGzog2dKQIfD887B5c+hI8qeyUokiiVq0gK5d4eWXQ0eSX6NG+XuzUIMs4pgoADTGJMY6dIA99oBp\n00JHkj8zZ/ptNvO1vr/kz0knwXPPhY4iv6oSRaHENVH81MzmmNkDZtYydDCytSFD/M1arAr9IEp0\nBg+GF16ATZtCR5IfH38Mixf7hQALpVHhLvUdMxsH7F7Lr64F7gVuSv38G+BO4Mc1DywvL//2+7Ky\nMsq0kXFBDRkCP/oR3HZb6EjyY9QouOee0FFINtq391+vvw7du4eOJnqjR/ul1Rul8eldUVFBRQTT\n1c3FeD0GM+sAjHbOdarxuotz3KWgshLatfNjuTt2DB1NtBYt8ntjf/IJNGwYOhrJRnm579C+447Q\nkUSvf3/y/7RJAAANhUlEQVS44AI49dTM/9bMcM5l3LQfu6YnM9uj2o+nAHNDxSJ1a9DAV/GLsflp\n9Gg48UQliSSr6qcotvLk11/7mtIJJxT2urFLFMBtZvaWmc0BegBXhA5IalesnYbqn0i+I47wmxm9\n+27oSKL18su+b2KnnQp73Vg3PdVFTU/xsH49tGnjF85r3Tp0NNFYudI3qS1bVpilESR/Lr0U9toL\nrroqdCTROeccv2zHJZdk9/dF0/QkybH99n4fgBdfDB1JdMaOheOOU5IoBsU2Mm/TJj+aa/Dgwl9b\niUJyctJJ8OyzoaOIzj//CUOHho5ColBWBu+8A59+GjqSaLz6Knzve35EV6EpUUhOBg3yayIVw5IJ\na9f6GsVJJ4WORKLQpIkfRvrMM6EjicZTT2U30ikKShSSk1128YsEFkPz00svwfe/Xzz9LeI/WJ96\nKnQUudu82dd2hw0Lc30lCsnZD34AI0eGjiJ3IUtskh/9+8OMGfD556Ejyc2UKbD77rDffmGur0Qh\nOTvpJD9sb82a0JFkb8MGXys65ZTQkUiUmjb1ySLp/WhPPx22EKNEITlr1QqOPjrZ+wCMGwedOvlS\nmxSXpNd4KyuVKKRIJL0t+KmnwrX/Sn4NGOD3ll6+PHQk2Zk+3S+ffuCB4WJQopBInHKKHzG0bl3o\nSDK3YYNftkPDYotTs2Z+yYukNj89+WT4vjMlColE69Z+xNALL4SOJHNjxsChh/oZ2VKcfvADeOKJ\n0FFkbvNmePxxOPPMsHEoUUhkzjoLHn00dBSZe+wxH7sUr0GD4M03/YrASVJRAW3bFm7L07ooUUhk\nhg71k+++/DJ0JOlbtcrPn1D/RHFr2hROPtmXzpPk0UfD1yZAiUIi1KKFbwtOUqf2M89Ajx6w666h\nI5F8O/tseOSR0FGkb/16369y2mmhI1GikIglrflJzU6lo6zMr/uUlKXHX3gBOnf2TU+hKVFIpAYM\ngLff9rvExd1nn/mhhyFW45TCa9gQzjgjOQWZxx6LR7MTKFFIxJo08UP5RowIHcm2jRjhl6Ju1ix0\nJFIoVTXeuG9n8+WXMGFCfPrOlCgkcsOHw0MPxfthdA4eeADOPz90JFJIRxzhO7Zfey10JPV79FFf\nO2/ZMnQknhKFRO7YY/0H8euvh46kbm+84ScH9ugROhIpJDP48Y/h/vtDR1K3qkLMBReEjuQ7ShQS\nOTN/k993X+hI6nb//b42YRlvCilJ96Mf+Z3vvvoqdCS1mznTD9vu2TN0JN/RntmSF198Afvv7zu1\nW7QIHc2W1qzxs7DnzYM99wwdjYRw+unQvTtcfHHoSLZ28cWwxx7w619Hf27tmS2x0ro19OvnR27E\nzciR0K2bkkQpq6rxxq28uXatnxR47rmhI9mSEoXkTVybn+6/37dTS+nq1QtWrvSbGsXJ00/7Jfvj\ntu6YEoXkTZ8+sGKFX2MnLmbPhoUL4cQTQ0ciITVo4AsLf/tb6Ei29Oc/w3//d+gotqZEIXnToAFc\ndBHcfXfoSL5z991wySXQuHHoSCS0Cy7wy8385z+hI/GmTfN9e4MGhY5ka+rMlrxasQL23TceHcdf\nfAEdO8KCBVrbSbzzzvP3xNVXh47Ezxrv0gWuuCJ/18i2M1uJQvLu0kv9yKff/jZsHP/zP34UVhz7\nTSSMOXNg4ED46CO/qkAoS5f6rXg/+ii/owSVKCS2PvjAT8JbtCjcchnffAPf+57fha9TpzAxSDz1\n7u1rFmefHS6Ga6/1cyf+9Kf8XkfDYyW29t8fjjkGHn44XAwjR/o9h5UkpKYrroA//CHcUNm1a30t\n96c/DXP9dChRSEH87Gfw+9/7rR0LrbISbrkFfvWrwl9b4m/gQFi9GiZNCnP9++6D447zfSVxpUQh\nBdGjB7RqFWbf4mef9U1e/foV/toSfw0awDXXwE03Ff7a69fD7bfDddcV/tqZUKKQgjCDG27wHcqF\nrFU456953XVa10nqdtZZsGQJvPJKYa/7j3/A4YfDkUcW9rqZUqKQgunbF5o39/0FhfLssz5ZxHFs\nusRHo0a+VnHjjYXrq1i3zo8EzMeaTlFTopCCMfMPxrXXwoYN+b/epk1+fPytt/rmBZH6DB8Oy5b5\nkXGF8Oc/w1FHQdeuhbleLvT4SEH17g0HHAD33pv/a/39736/YfVNSDoaN4bbboNf/tIXMvJpxQr4\n3e/8IIsk0DwKKbh58/yibO++C7vskp9rfPUVHHyw33fg+9/PzzWk+DjnB14MHw4XXpi/61x+ua9V\n//Wv+btGbTThThLl0kv9JLh8Lcp26aW+VFjoB1GSb9Ys6N/fF2hat87P+QcMgLffLvxSMkoUkigr\nV8Ihh/i19487Ltpzv/mm77yePz9/NRYpbj//OSxf7vd+j9Lmzf5+v+CCMEvda2a2JEqLFnDXXf6B\nWbMmuvOuWwfnnAN33KEkIdm78UaoqIAxY6I97513+jWlzjsv2vPmm2oUEtTZZ/vJcFE1QV1+OXz6\nqa+paN6E5KKiAs480+9hvfvuuZ9v1iw44QR44w3Ye+/cz5cN1Sgkkf7yF5gwIZoZ208/Dc8840dU\nKUlIrsrKfPPQ8OG5j4JasQJOO82vKRUqSeRCNQoJbtYsP4R19Ojsx5TPnOlLay+9FP9ZrpIcmzb5\ntaD22w/uuSe7AsjGjb7z+rDD/HpnISWqRmFmPzCzt81ss5kdWeN3V5vZB2b2rplpBHwJ6NzZdxqe\ncoofCZKp+fNh8GBfk1CSkCg1auRXEnjttez2U9m0yfeZbbedX9MpqUI1Pc0FTgFerf6imR0MnAYc\nDPQH/mJmah4rAQMH+tJW795+S8h0zZzp/+a22+DUU/MXn5SuFi38bO3HH/eT8dJtzFi3Dk4/3Tc7\nPfUUNGyY3zjzKciHsHPuXefc+7X86iRghHNuo3NuIbAA6FLQ4CSYM86ABx/0tYM776x/8cDKSt8U\ncMIJ/r8hN52R4rfnnvDqqzB1qp9jsXRp/cfPm+eX59huO7/eWNOmhYkzX+JWWt8TWFLt5yVA20Cx\nSAADB8L06fDcc981SS1f/t3v//MfePRROOIIvxHS66/D0KHh4pXSscsufiRUt26+v+EXv/DNnpWV\n/vebNvlEcu65viP8iivgkUd8ski6Rvk6sZmNA2obVHaNc250BqdSr3WJ2Wcfv9zzyy/D3XfDZZf5\nIbTO+d3Ajj8ebr4ZTjxRo5uksBo1guuv98ngj3/0td/ly2GHHfxWpvvtB8OGwYIF0LJl6Gijk7dE\n4Zzrm8WfLQXaVft5r9RrWykvL//2+7KyMsrKyrK4nMSVmW9WOuEEX2Jbtsw/pLvs4icsiYTUvr1v\nHr3zTvjyS78B0Y47+mX046SiooKKioqczxN0eKyZTQJ+4Zybkfr5YOAxfL9EW2A8sF/NsbAaHisi\nkrmkDY89xcw+BroCL5jZGADn3HzgSWA+MAa4WBlBRCQsTbgTESkRiapRiIhIcihRiIhIvZQoJJJR\nEfIdvZ/R0vsZnhKF6EGMmN7PaOn9DE+JQkRE6qVEISIi9Urs8NjQMYiIJFE2w2MTmShERKRw1PQk\nIiL1UqIQEZF6xTpRmFn/1JaoH5jZlXUcc3fq93PMrHOhY0ySbb2fZlZmZivNbFbq67oQcSaBmT1o\nZp+Z2dx6jtG9maZtvZ+6N9NnZu3MbFJqu+l5ZnZZHcelf38652L5BTTE73DXAWgMzAYOqnHMQODF\n1PdHA9NCxx3XrzTfzzJgVOhYk/AFHA90BubW8Xvdm9G+n7o3038vdweOSH2/I/Berp+dca5RdAEW\nOOcWOuc2Ao/jt0qtbgjwEIBzbjrQ0szaFDbMxEjn/QTQVkBpcM5NBlbUc4juzQyk8X6C7s20OOc+\ndc7NTn2/GngHv3todRndn3FOFG2Bj6v9XNu2qLUds1ee40qqdN5PBxybqoq+mNofRLKjezNaujez\nYGYd8DW16TV+ldH9mbcd7iKQ7rjdmqUMjfetXTrvy0ygnXNurZkNAJ4FOuY3rKKmezM6ujczZGY7\nAk8Bl6dqFlsdUuPnOu/PONcoam6L2g6f9eo7ps6tU2Xb76dz7mvn3NrU92OAxma2S+FCLCq6NyOk\nezMzZtYYeBp4xDn3bC2HZHR/xjlRvAnsb2YdzKwJcBowqsYxo4AfAZhZV+Ar59xnhQ0zMbb5fppZ\nGzOz1Pdd8BMyvyx8qEVB92aEdG+mL/U+PQDMd87dVcdhGd2fsW16cs5tMrNLgZfwI3YecM69Y2Y/\nSf3+f51zL5rZQDNbAKwBzgsYcqyl834CpwIXmdkmYC1werCAY87MRgA9gFapbX1vwI8m072ZhW29\nn+jezEQ34GzgLTOblXrtGqA9ZHd/agkPERGpV5ybnkREJAaUKEREpF5KFCIiUi8lChERqZcShYiI\n1EuJQkRE6qVEIRIRM2thZheFjkMkakoUItHZGbg4dBAiUVOiEInOrcC+qY11bgsdjEhUNDNbJCJm\ntjfwvHOuU+hYRKKkGoVIdLSxjhQlJQoREamXEoVIdL4GdgodhEjUlChEIuKc+w8wxczmqjNbiok6\ns0VEpF6qUYiISL2UKEREpF5KFCIiUi8lChERqZcShYiI1EuJQkRE6qVEISIi9VKiEBGRev1/E2Kk\nyJEW5s0AAAAASUVORK5CYII=\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x798b430>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "import math\n",
    "import numpy\n",
    "%matplotlib inline\n",
    "from matplotlib.pyplot import plot,ylim,xlabel,ylabel,title\n",
    "\n",
    "#Variables\n",
    "\n",
    "Vp = 10.0               #Peak-to-peak voltage (in volts)\n",
    "\n",
    "#Calculation\n",
    "\n",
    "Vpos = 3.0              #Positive clipping voltage (in volts)\n",
    "Vneg = -2.0             #Negative clipping voltage (in volts)\n",
    "\n",
    "#Result\n",
    "\n",
    "print \"Output waveform is as follows :\\nThe parts below and above the clipping levels are clipped off.\"\n",
    "\n",
    "#Graph\n",
    "\n",
    "t = numpy.arange(0.001, 2.0, 0.005)\n",
    "y = numpy.sin(2*math.pi*t)\n",
    "plot(t, 10*y)\n",
    "plot(t,(-2*t)/t,'--')\n",
    "plot(t,(3*t)/t,'--')\n",
    "ylim( (-11,11) )\n",
    "ylabel('Vo')\n",
    "xlabel('t')\n",
    "title('Output Waveform')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 33.10 , Page Number 866"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The value of R1 is  5.3  kilo-ohm.\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "<matplotlib.text.Text at 0x76bb7f0>"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEZCAYAAACaWyIJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADlhJREFUeJzt3X2sZAdZx/Hvz24FoRRoSGhLF5bwYrQaKZKKgnYEwQWU\nCiYgCQjRAKlioUKFgrF3YwI1VWwCgX/AQlDeAojUILIFxrdIsbWFFkpoY1vb0hcL2ABS3XYf/5ih\nvWz3bu/cO3vPzH2+n+Rmz7ydeTI5O997ZubOSVUhSerrh4YeQJI0LEMgSc0ZAklqzhBIUnOGQJKa\nMwSS1JwhkKTmDIFaSfKyJJcn+W6Sm5K8I8mD13nba5M8bY6zzHV90kYZArWR5LXAOcBrgaOBJwOP\nAvYmOXIdqyggcxxp3uuTNsQQqIUkRwMrwKuq6tNVdVdVXQe8ANgFvDjJe5L88arbjJJcP11+H/BI\n4IIk307yuiS7kuxP8vIkNyb5+jQ237/9TOs77A+CtIYdQw8gbZGfA+4PfGz1mVX13SSfBJ4B/O9a\nN66qlyR5KvDbVfVZgCS7phePgMcCjwE+m+SyqvoMk9/4D/odLgdbnzQU9wjUxcOA26pq/0Euu2l6\n+UbtqarvVdUVwPnAi1Zd5ks/WniGQF3cBjwsycG2+eOnl2/U9auW/3O6PmlpGAJ18a9MXvr59dVn\nJjkK2A1cCHwXeMCqi489YB1rfVXvIw9YvnG6vNH1SVvKEKiFqrod2AO8LckvJzly+hr/h5n8Rv8+\n4DLg2UkemuRY4DUHrOYWJu8DHOgPk/xIkhOBlwEfmp6/0fVJW8oQqI2qOhd4I/CnwO3A54HrgKdX\n1T4mMfgicC3wKeCD/OBv7W9h8qT/rSS/v+r8fwCuZrJXcW5VXTg9f6Prk7ZUPDCNtDHTPYr/AHas\n8Sa0tBTcI5Ck5gyBtDnuUmvp+dKQJDXnHoEkNbfQXzGRxN0VSdqAqlr3X7Uv/B5BVfkzp5+zzz57\n8Bm204+Pp4/lov7MauFDIEk6vAyBJDVnCBoZjUZDj7Ct+HjOj4/lsBb646NJapHnk6RFlITaTm8W\nS5IOL0MgSc0ZAklqzhBIUnOGQJKaMwSS1JwhkKTmDIEkNWcIJKk5QyBJzRkCSWrOEEhSc4OHIMkR\nSS5NcsHQs0hSR4OHAHg18BXArxmVpAEMGoIkJwDPBt4FrPsrUyVJ8zP0HsGfA2cC+weeQ5La2jHU\nHSf5FeDWqro0yWit662srNy9PBqNPJKRJB1gPB4zHo83fPvBjlCW5M3AS4A7gfsDRwMfrarfXHUd\nj1AmSTOa9QhlC3GoyiSnAK+rql894HxDIEkzWuZDVfqML0kDWIg9grW4RyBJs1vmPQJJ0gAMgSQ1\nZwgkqTlDIEnNGQJJas4QSFJzhkCSmjMEktScIZCk5gyBJDVnCCSpOUMgSc0ZAklqzhBIUnOGQJKa\nMwSS1JwhkKTmDIEkNWcIJKk5QyBJzRkCSWrOEEhSc4ZAkprbMfQA2hqveQ3cdBMcd9zQk2wPn/88\nfOQjcMIJQ0+y/C66CM48E574xKEn6csQNHHVVfDAB8KuXUNPsj2cfz7cccfQU2wPt98O11wDz3/+\n0JP0laoaeoY1JalFnm+ZvOIV8KQnTf7V5h1/PFx88eRfbc4ll0y2y0suGXqS7SMJVZX1Xt/3CCSp\nOUMgSc0ZAklqzhBIUnOGQJKaMwSS1JwhkKTmDIEkNWcIJKm5QUOQZGeSzyX5cpIrkpw+5DyS1NHQ\n3zW0Dzijqi5LchRwSZK9VXXlwHNJUhuD7hFU1c1Vddl0+TvAlYDf3iJJW2hh3iNIsgs4Cbho2Ekk\nqZeFCMH0ZaGPAK+e7hlIkrbI0O8RkORI4KPAX1bVxw+8fGVl5e7l0WjEaDTastkkaRmMx2PG4/GG\nbz/o8QiSBHgv8I2qOuMgl3s8gjnxeATz5fEI5sfjEczfsh2P4CnAi4FfTHLp9Gf3wDNJUiuDvjRU\nVf/M8DGSpNZ8Epak5gyBJDVnCCSpOUMgSc0ZAklqzhBIUnOGQJKaMwSS1JwhkKTmDIEkNWcIJKk5\nQyBJzRkCSWrOEEhSc4ZAkpozBJLUnCGQpOYMgSQ1ZwgkqTlDIEnNGQJJas4QSFJzhkCSmjMEktSc\nIZCk5gyBJDVnCCSpOUMgSc0ZAklqzhBIUnOGQJKaMwSS1JwhkKTmDIEkNWcIJKk5QyBJzQ0agiS7\nk3w1yVVJXj/kLJLU1Y71XCnJqcAvTE+Oq+qCzd5xkiOAtwO/BNwI/FuST1TVlZtdtyRp/e5zjyDJ\nOcDpwJeBrwCnJ3nLHO77ZODqqrq2qvYBHwROncN6JUkzWM8ewXOAJ1TVXQBJ3gNcBpy1yft+BHD9\nqtM3AD+zyXVKkma0nhAU8BDgG9PTD5met1nrWsfKysrdy6PRiNFoNIe7lqTtYzweMx6PN3z7NUOQ\n5B3A+4E3A/+e5HNAgFOAN2z4Hu9xI7Bz1emdTPYKfsDqEEiS7u3AX5L37Nkz0+0PtUfwNeBc4Hjg\nQuA6Ji8Jvb6qbp510IO4GHhckl3A14EXAi+aw3olSTNY883iqjqvqn6WyR7AVcDzmYThlUkev9k7\nrqo7gVcBf8/kTegP+YkhSdp69/mpoemnes6pqicAvwE8D5jLE3ZV/V1V/WhVPbaq5vFJJEnSjNbz\n8dEdSZ6b5P3Ap4CvMtk7kCRtA4d6s/iZTPYAngN8AfgA8Iqq+s4WzSZJ2gKHerP4DUye/F9XVd/c\nonkkSVtszRBU1dO2chBJ0jD89lFJas4QSFJzhkCSmjMEktScIZCk5gyBJDVnCCSpOUMgSc0ZAklq\nzhBIUnOGQJKaMwSS1JwhkKTmDIEkNWcIJKk5QyBJzRkCSWrOEEhSc4ZAkpozBJLUnCGQpOYMgSQ1\nZwgkqTlDIEnNGQJJas4QSFJzhkCSmjMEktScIZCk5gyBJDVnCCSpucFCkOTcJFcm+WKSjyV58FCz\nSFJnQ+4RfBo4sap+CvgacNaAs0hSW4OFoKr2VtX+6cmLgBOGmkWSOluU9wh+C/jk0ENIUkc7DufK\nk+wFjj3IRW+sqgum13kT8H9V9f7DOYsk6eAOawiq6hmHujzJy4BnA09f6zorKyt3L49GI0aj0XyG\nk6RtYjweMx6PN3z7wxqCQ0myGzgTOKWq7ljreqtDIEm6twN/Sd6zZ89Mtx/yPYK3AUcBe5NcmuQd\nA84iSW0NtkdQVY8b6r4lSfdYlE8NSZIGYggkqTlDIEnNGQJJas4QSFJzhkCSmjMEktScIZCk5gyB\nJDVnCCSpucG+YmK9vve9oSfYHu68E+66a+gpto+qybbp9rl5d9wxeTw1nIUPwTHHDD3B9rBv3+Q/\n22mnDT3J9nDbbXDiiZAMPcny278f7ne/oafoLbXAKU5SizyfJC2iJFTVun9N8T0CSWrOEEhSc4ZA\nkpozBJLUnCGQpOYMgSQ1ZwgkqTlDIEnNGQJJas4QSFJzhkCSmjMEktScIZCk5gyBJDVnCCSpOUMg\nSc0ZAklqzhBIUnOGQJKaMwSS1JwhkKTmDIEkNWcIJKm5QUOQ5LVJ9ic5Zsg5JKmzwUKQZCfwDOC6\noWaQJA27R/BW4A8GvH9JEgOFIMmpwA1V9aUh7l+SdI8dh2vFSfYCxx7kojcBZwHPXH31tdazsrJy\n9/JoNGI0Gs1nQEnaJsbjMePxeMO3T1XNb5r13GHyE8BngP+ZnnUCcCNwclXdesB1a6vnk6Rll4Sq\nWvMX7Htdf+gn2iTXAD9dVd88yGWGQJJmNGsIFuHvCHyml6QBDb5HcCjuEUjS7JZxj0CSNCBDIEnN\nGQJJas4QSFJzhkCSmjMEktScIZCk5gyBJDVnCCSpOUMgSc0ZAklqzhBIUnOGQJKaMwSS1JwhaGQz\nh7LTvfl4zo+P5bAMQSP+Z5svH8/58bEcliGQpOYMgSQ1t/CHqhx6BklaRrMcqnKhQyBJOvx8aUiS\nmjMEktTcwoYgye4kX01yVZLXDz3PsktybZIvJbk0yReGnmeZJPmLJLckuXzVecck2Zvka0k+neQh\nQ864TNZ4PFeS3DDdPi9NsnvIGZdFkp1JPpfky0muSHL69PyZts+FDEGSI4C3A7uBHwdelOTHhp1q\n6RUwqqqTqurkoYdZMucz2RZXewOwt6oeD3xmelrrc7DHs4C3TrfPk6rqUwPMtYz2AWdU1YnAk4Hf\nnT5XzrR9LmQIgJOBq6vq2qraB3wQOHXgmbaDdX+KQPeoqn8CvnXA2c8F3jtdfi/wa1s61BJb4/EE\nt8+ZVdXNVXXZdPk7wJXAI5hx+1zUEDwCuH7V6Rum52njCrgwycVJXj70MNvAw6vqlunyLcDDhxxm\nm/i9JF9M8m5faptdkl3AScBFzLh9LmoI/Ezr/D2lqk4CnsVk9/Hnhx5ou6jJZ7DdZjfnncCjgScA\nNwF/Nuw4yyXJUcBHgVdX1bdXX7ae7XNRQ3AjsHPV6Z1M9gq0QVV10/Tf/wL+msnLb9q4W5IcC5Dk\nOODWgedZalV1a00B78Ltc92SHMkkAu+rqo9Pz55p+1zUEFwMPC7JriQ/DLwQ+MTAMy2tJA9I8qDp\n8gOBZwKXH/pWug+fAF46XX4p8PFDXFf3Yfpk9X3Pw+1zXZIEeDfwlao6b9VFM22fC/uXxUmeBZwH\nHAG8u6reMvBISyvJo5nsBQDsAP7Kx3P9knwAOAV4GJPXW/8I+Bvgw8AjgWuBF1TVfw814zI5yON5\nNjBi8rJQAdcAr1z1GrfWkOSpwD8CX+Kel3/OAr7ADNvnwoZAkrQ1FvWlIUnSFjEEktScIZCk5gyB\nJDVnCCSpOUMgSc0ZAmlGSR6c5LSh55DmxRBIs3so8DtDDyHNiyGQZncO8JjpAVT+ZOhhpM3yL4ul\nGSV5FPC3VfWTQ88izYN7BNLsPICKthVDIEnNGQJpdt8GHjT0ENK8GAJpRlX1DeBfklzum8XaDnyz\nWJKac49AkpozBJLUnCGQpOYMgSQ1ZwgkqTlDIEnNGQJJas4QSFJz/w+YE2ojS8AWzAAAAABJRU5E\nrkJggg==\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x6827490>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "import math\n",
    "import numpy\n",
    "%matplotlib inline\n",
    "from matplotlib.pyplot import plot,ylim,xlabel,ylabel,title\n",
    "\n",
    "#Variables\n",
    "\n",
    "Vp = 8.0                   #Peak voltage (in volts) \n",
    "Vo = 2.7                   #Maximum acceptance voltage (in volts)\n",
    "Io = 1.0 * 10**-3          #maximum output current (in Ampere)\n",
    "\n",
    "#Calculation\n",
    "\n",
    "VR1 = Vp - Vo              #Maximum voltage drop across R1 (in volts) \n",
    "R1min = VR1 / Io           #Resistance (in ohm)\n",
    "\n",
    "#Result\n",
    "\n",
    "print \"The value of R1 is \",R1min * 10**-3,\" kilo-ohm.\"\n",
    "\n",
    "#Graph\n",
    "\n",
    "k = numpy.arange(0.0001, 5.0, 0.0005)\n",
    "k1= numpy.arange(5.0, 10.0, 0.0005)\n",
    "k2= numpy.arange(10.0, 15.0, 0.0005)\n",
    "k3= numpy.arange(15.0, 20.0, 0.0005)\n",
    "\n",
    "m=numpy.arange(-2.7,2.7, 0.0005)\n",
    "x1=(0.001*m)/m\n",
    "x5=(5*m)/m\n",
    "x10=(10*m)/m\n",
    "x15=(15*m)/m\n",
    "\n",
    "plot(k,-2.7*k/k,'b')\n",
    "plot(k1,2.7*k1/k1,'b')\n",
    "plot(k2,-2.7*k2/k2,'b')\n",
    "plot(k3,2.7*k3/k3,'b')\n",
    "plot(x1,m,'b')\n",
    "plot(x5,m,'b')\n",
    "plot(x10,m,'b')\n",
    "plot(x15,m,'b')\n",
    "ylim( (-5,5) )\n",
    "ylabel('Vo')\n",
    "xlabel('t')\n",
    "title('Output')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 33.11 , Page Number 868"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<matplotlib.text.Text at 0x769e750>"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEZCAYAAAB2AoVaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHcZJREFUeJzt3Xm4HGWZ9/HvjyyGfRGGNRBEURA0YRMB4QgoiKwvsokg\nwqgoEF9ZhgEX4uvMAMKoEB1ANlkEBSObCAMCBxAQWUIIuyyBADESRAhbNOR+/6hq0hxOn9PV3dXV\n3fX7XFeudFd313Onktz9nLvuekoRgZmZ9bZFig7AzMzy52RvZlYCTvZmZiXgZG9mVgJO9mZmJeBk\nb2ZWAk72Zh1A0n9IekHS80XHYr3Jyd5aTtIBkqZLek3SLEn/I2npDJ+fIWnrFsbT0v21mqTVgcOB\nD0XEKkXHY73Jyd5aStIRwAnAEcBSwKbAGsD1kkbVuZsA1MKwWr2/VlsdeDEiXsz6QUkjc4jHepCT\nvbWMpKWAScChEXFdRLwVEU8DewLjgC+k7/u5pO9Xfa5P0sz08QUkye8qSXMlHSlpnKQFkr4s6TlJ\nz6dfKjSyv0HivlnS/0kfb56OtUP6fBtJU9PHa0m6UdKctORyYeUnFklHS7p0wH5PkXRK+nhpSWen\nsT8r6fuSFpG0LXAdsEoa3znp+3eW9KCklyTdJOlDVfudIenfJN0PzE3jWpD+RPWMpBclHSxpY0n3\np/uYnP1v1HqJk7210mbAGOA31Rsj4jXgd8CnKpvSX+8SEfsBzwA7RsSSEXFy1ct9wPuBTwNHS9qm\nyf1V9Kf7BtgKeBLYsup5f9V7/xNYGVgHGEvy5QZwMbCDpCUAJI0A9gB+kb7+c+AfwFrAhPTP8K8R\n8XvgM8DzaXwHSlobuAiYCCxPcuyuGjCL3zv93DLAW+m2TdLjszdwCnAssDXwYWBPSVtipeVkb620\nPDAnIhYM8tpfgPdWPW+krPK9iHgjIh4AzgX2aXJ/FTeTJHWATwDHVz3fKn2diHgiIm6IiH9GxBzg\nR5X3RcQzwL3AbunntgZej4g/SVqRJDF/M43/BeDHJEl5sNj3An6bjvUWcDKwKMmXKSRfbKdGxHMR\nMa/qc9+PiH9ExPXAXOCiiJgTEc8Dt5J8yVhJOdlbK80Blpc02L+rldPXmzGz6vEzQKtOZv4RWFvS\nvwDjgfOBsZLeC2wM3AIgaUVJv0zLMC8DF/DOL7CLWPgF9HkWzurXAEYBs9KSykvA6cAKNeJZOf3z\nARDJaoUzgVWr3jNz4IeA2VWP3xjk+RI1xrMScLK3VroDmAfsXr0xLW1sD9yQbnoNWKzqLSsN2E+t\npVhXH/D4uSb3l7wY8TpwD/B/gekR8U/gdpKTzI9HxN/St/4XSclkvYhYGtiPd/4f+jXQJ2lVYFeS\n5A9JYp4HvDcilk1/LR0R69cI6XmSLwgAJImkZPRc1XsaWa7WS9yWmJO9tUxEvAx8D5gsaTtJoySN\nAy4hSXgXpG+9j6S+vayklUiSbLXZJLXtgb4taVFJHwYOAH7V5P6q3Qwckv4OSZ3+0KrnkMyMXwNe\nSRP6UdU7SMsz/ST1+Scj4tF0+yySk7A/lLRkemJ2rSFq6JcAn5W0ddrBdATwJskXUDM6uSPJcuZk\nby0VESeRnBg8GXiZpETyNLBNOmOGJOlPA2YA1wK/5J2zzuNJEvtLkg6v2n4z8Djwe+Ck9ORmM/ur\ndjNJMr8lfX4LsHjVc0i+yDZI/1xXAVN492z5ImAbFs7qK/YHRgMPAX8DLuWdP4G8vZ+IeIykc2ky\n8ALwWWCniJhfI/Z3fL7J91iPUt43L5E0A3iF5Mfff0bEJrkOaD0n/engSWBkjZO/ZjaMdlyQEUBf\nVd3TzMzarF1lHNcKrVkuQZg1oR1lnCdJapxvAWdExJm5DmhmZu/SjjLO5hExS9IKJOujPBIRt7Zh\nXDMzS+We7NO2MyLiBUmXkVzSfSuAJP9obmbWgIjIVB7PtWYvaTFJS6aPFydZD2R69Xsiomt/HXfc\ncYXH4PiLj8Pxd9+vbo49orE5ct4z+xWBy5ILABkJ/CIirst5TDMzGyDXZB8RT5GsNWJmZgXyFbRN\n6OvrKzqEpjj+Yjn+4nRz7I3KvfVyyMGlKHJ8M7NuJInopBO0ZmbWGZzszcxKwMnezKwEnOzNzErA\nyd7MrASc7M3MSsDJ3sysBJzszcxKwMnezKwEnOzNzErAyd7MrASc7M3MSsDJ3sysBJzszcxKwMne\nzKwEnOzNzErAyd7MrASc7M3MSsDJ3sysBJzszcxKwMnezKwEnOzNzErAyd7MrASc7M3MSsDJ3sys\nBJzszcxKwMnezKwEnOzNzErAyd7MrASc7M3MSsDJ3sysBJzszcxKwMnezKwEnOzNzEog92QvaYSk\nqZKuynssMzMbXDtm9t8AHgKiDWOZmdkgck32klYDdgDOApTnWGZmVlveM/sfAUcBC3Iex8zMhjAy\nrx1L2hH4a0RMldRX632TJk16+3FfXx99fTXfamZWSv39/fT39ze1D0XkU0qX9F/AfsB8YAywFDAl\nIvavek/kNb6ZWa+SRERkKo3nluzfMYi0FXBkROw0YLuTvZlZRo0k+3b22Turm5kVpC0z+5qDe2Zv\nZpZZp8/szcysIE72ZmYl4GRvZlYCTvZmZiXgZG9mVgJO9mZmJeBkb2ZWAk72ZmYlUFeylzRK0jRJ\nG+cdkJmZtV69M/tdgNHAl3OMxczMclJvsj8IOBDok7RYjvGYmVkOhk32ksYCK0XEHcAVwF65R2Vm\nZi1Vz8z+QOC89PG5wL/mF46ZmeVhyGQvaRFgX+ACgIh4CFhE0gfbEJuZmbXIcDP7JYBvRsSLVdsO\nwTcPNzPrKpnWs5e0ckTMatngXs/ezCyzdqxnf3XG95uZWQfImuxdvjEz60JZk/2ZuURhZma58j1o\nzcy6jO9Ba2Zmg3KyNzMrgbqTvaQxkt6TZzBmZpaPkbVeSK+e3RXYB9iM5ItBkt4C7gB+AVzuoruZ\nWeereYJW0i3ArcCVwH0RMS/d/h5gArAzsEVEbNnw4D5Ba2aWWSMnaIdK9u+pJPghBhz2PcN83sne\nzCyjlib7ATseD3wCCODWiJjWWIjv2q+TvZlZRrm0Xkr6BnAhsAKwInChpImNhWhmZkUYdmYvaTqw\naUS8lj5fHPhjRKzf9OCe2ZuZZZbnRVULajw2M7MuULP1ssq5wJ2SfkOyENquwDm5RmVmZi01VDfO\nvwEXR8RMSRsCW7DwBO3UlgzuMo6ZWWaNlHGGmtmvAtwuaQZwMXBRRLzQRHxmZlaQIU/QplfRbgns\nDewCTCNJ/L+JiLlND+6ZvZlZZrn12ac7HwFsC5wAfDAiFsse4rv26WRvZpZRq8s41Tv+CMnsfk9g\nDnBMnZ8bA9wMvAcYDVwREXV91szMWmeohdDWJknwe5G0W14MfDoinqx35xHxpqRPRsTrkkYCf5C0\nRUT8odnAzcysfkPN7K8lSfB7RcQDjQ4QEa+nD0cDI4C/NbovMzNrzFDJ/v0RMeQFVKqj6J6e5L0X\nWAs4LSIeyh6mmZk1Y6graG+SdFRaznkHSR+UdDRJPX5IEbEgIsYDqwFbSuprOFozM2vIUDP7TwP7\nAj+VtB4wl+QK2iWAB0huXrJtvQNFxMuSrgY2Avor2ydNmvT2e/r6+ujr66s7eDOzMujv76e/v7+p\nfdS7xPEIYPn06ZyIeKuunUvLA/Mj4u+SFgX+F/heRNyQvu7WSzOzjHJrvUyT++wGYloZOC+t2y8C\nXFBJ9GZm1j51X1SVy+Ce2ZuZZZbnEsdmZtbF6kr2ksZJ2jZ9vJikpfINy8zMWqme2xJ+BbgUOCPd\ntBpwWZ5BmZlZa9Uzsz+EZC37VwAi4jHgX/IMyszMWqueZD8vIuZVnqRr3PisqplZF6kn2d8s6VvA\nYpI+RVLSuSrfsMzMrJWGbb1ML6g6iOSKWkgujDqrFT2Tbr00M8su15uX5MHJ3swsu1yuoJU0naRG\nX73jl4G7gP+IiBczRWlmZm1Xz3IJ1wLzgYtIEv7ewGIkyyf8HNgpr+DMzKw16kn220bEhKrn90ua\nGhET0lm/mZl1uHq6cUZI+ljliaRNqj43P5eozMyspeqZ2R8EnCtpifT5XOAgSYsDx+cWmZmZtUzd\n3TiSlgEiIl5u2eDuxjEzyyy39ewl7QisC4yRkv1HxP/LHKGZmRWinoXQzgD2BCaSdOPsCayRc1xm\nZtZC9VxBOz0i1pd0f0R8JK3dXxsRWzQ9uMs4ZmaZ5XXzkjfS31+XtCpJB85KWYMzM7Pi1FOz/62k\nZYGTgHvSbWfmF5KZmbVaPWWcMRHxZuUxMAZ4s7KtqcFdxjEzyyyvMs7tlQcR8WZE/L16m5mZdb6a\nZRxJKwOrkKxjvwFJJ04AS5GsjWNmZl1iqJr9dsABwKrAf1dtnwscm2NMZmbWYvXU7HePiCm5DO6a\nvZlZZi29eYmkI1i4jn31m0SybMIPGw20agwnezOzjFq9XMKSDH5j8YHJ38zMOpxvS2hm1mVyab2U\nNFbSZZJeSH9NkbRa42GamVm71dNnfy5wJUkb5irAVek2MzPrEvV040yLiI8Ot62hwV3GMTPLLK8r\naF+UtJ+kEZJGSvoCMKexEM3MrAj1JPsDSdaw/wswC9gD+FKeQZmZWWvVU8ZZISJeyGVwl3HMzDLL\nbSE0SddJOihd6tjMzLrMsMk+Ij4AfAdYD7hH0m8l7Zd7ZGZm1jKZLqqStDzwI2DfiKjnp4Lh9ucy\njplZRnldVLW0pAMkXQPcQXKSduM6Axor6SZJD0p6QNLELMGZmVlr1HOC9ingCuBXwB+zTMUlrQSs\nFBH3pTcqvwfYNSIeTl/3zN7MLKNWL4RWsVZELGgkoIj4C0nLJhHxqqSHSa7CfbiR/ZmZWWPqOUHb\nUKIfSNI4YAJwZyv2Z2Zm9Wv6JGs90hLOr4FvRMSr7RjTzMwWGraMI2mLiPjDgG2bR8Rt9QwgaRQw\nBbgwIi4f+PqkSZPeftzX10dfX189uzUzK43+/n76+/ub2kc9J2inRsSE4bbV+KyA84AXI+Kbg7zu\nE7RmZhm19AStpI8DmwErSDqc5A5VkNzBqt7yz+bAF4D7JU1Ntx0TEddmCdLMzJozVBlnNEliH5H+\nXvEK8Ll6dp6Wf9pyXsDMzGqrp4yzRkQ8ncvgLuOYmWXWSBmnnmR/0yCbIyK2zjJQjX072ZuZZZTX\nRVVHVT0eA+wOzM8yiJmZFSvTQmhvf0i6KyLqWh9nmP14Zm9mllEuM3tJy1U9XQTYCFgqY2xmZlag\neso49wKV6fd8YAZwUF4BmZlZ6zVUxmnZ4C7jmJllllcZZ1Hg68AWJDP8W4HTIuLNhqI0M7O2q6f1\n8lKSC6kuJLmK9vPA0hGxR9ODe2ZvZpZZXn32D0XEusNta4STvZlZdrnclhC4N10npzLIpiR3nDIz\nsy5Rz8z+EWBtYCZJzX514FGSzpyIiI80PLhn9mZmmeV1Be12LFzxsiIG2WZmZh2qnpn9BRGx33Db\nGhrcM3szs8zyqtmvN2CQkcCGWQYxM7Ni1Uz2ko6VNBdYX9Lcyi/gr8CVbYvQzMyaVk8Z54SI+Pdc\nBncZx8wss7z67Ldi4do4b4uIW7KFN+i+nezNzDLKK9n/loXJfgywCXCPb15iZlaMXFovI2LHAYOM\nBU7JGJuZmRWokZuBPwus0+pAzMwsP/Wsejm56ukiwHi8XIKZWVep5wrae1hYs38LuCgibssvJDMz\na7V6TtAuCryfJOE/3sp17H2C1swsu5ZeQStplKQfkCyAdh5wPvCspJMkjWouVDMza6ehTtCeBCwH\nrBkRG0TEBsD7gGWAk9sRnJmZtUbNMo6kx4G1I2LBgO0jgEcj4v1ND+4yjplZZq1eCG3BwEQPEBFv\nAe/abmZmnWuoZP+wpC8O3ChpP+CR/EIyM7NWG6qMsxrwG+ANFvbVbwgsBuwWEc82PbjLOGZmmbV8\nbRxJArYGPkzSevlQRNzQVJTv3L+TvZlZRrkshJYnJ3szs+zyulOVmZl1OSd7M7MScLI3MysBJ3sz\nsxLINdlLOkfSbEnT8xzHzMyGlvfM/lxg+5zHMDOzYeSa7CPiVuClPMcwM7PhuWY/iP5+mDOn6Cga\ns2ABXHZZ8rtZtSuugH/8o+goGvPKK3DddUVH0d3quVNVriZNmvT2476+Pvr6+gqLBWDePNh7b5g9\nu9AwWsLXq1nFtGlwyCHw3HNFR9KcF1+E5ZYrOor26+/vp7+/v6l95H4FraRxwFURsf4gr3XcFbQX\nXADnnw/XX190JI075xyYMgWuvrroSKxTHHQQvO998K1vFR1J4/bfH9ZfH446quhIiteRyyV0U7KP\ngI99DL7zHdhpp6Kjadwbb8Aaa8Btt8EHPlB0NFa0OXOSfwePPQYrrFB0NI276y7YYw944gkYMaLo\naIrVccslSLoYuB1YW9JMSV/Kc7xm3Xln8mPiDjsUHUlzFl00mcn99KdFR2Kd4KyzYNdduzvRA2y8\nMay8Mlx1VdGRdCcvhFbl85+HjTaCww8vOpLmzZwJ48fDjBmw5JJFR2NFmT8/Kd9cfjlssEHR0TTv\noouSL68bbyw6kmJ13My+m8yaBddcAwceWHQkrTF2LGy9NZx3XtGRWJEuvxxWX703Ej3A5z4HjzwC\nDzxQdCTdx8k+dfrpsM8+sMwyRUfSOhMnwuTJbsMss8mTk38HvWL0aDj44OTPZdm4jEPSbjluHNxw\nA6y7btHRtE4ETJgAJ54I221XdDTWbvfdBzvuCE89BaNGFR1N68yeDR/6UHKitoxtmOAyTsMuvRTW\nW6+3Ej2AlMzqTjml6EisCJMnw9e+1luJHmDFFZNuubPPLjqS7lL6mX2vtFvW4jbMcuqVdstayt6G\n6Zl9A3ql3bKWShvmT35SdCTWTr3SblmL2zCzK/3MvpfaLWuZORM++lF4+mm3YZZBr7Vb1lLmNkzP\n7DOaNQuuvbZ32i1rGTsWttnGbZhl0WvtlrW4DTObUif7009PFj3rpXbLWg47LCnluA2z9/Vau2Ut\nbsPMprRlnHnzkhOXN97Ye104g3EbZjn0artlLWVtw3QZJ4NLLklW0CtDooekDfOww+DUU4uOxPLU\nq+2Wtay4YvLl5jbM4ZVyZl9pt/z2t2Hnnds+fGHchtnber3dspYytmF6Zl+nO+9M/mN89rNFR9Je\nbsPsbb3eblmL2zDrU8qZ/b77woYb9na7ZS1uw+xNZWm3rOXii+HMM8vThumZfR1mzYLf/a732y1r\ncRtmbypLu2Utu++etGFOn150JJ2rdMm+F1e3zGriRLdh9ppTTy1Hu2UtlTZMlyhrK1UZp9JuedNN\nsM46bRu247gNs7eUrd2yljK1YbqMM4xKu2WZEz0sXA3TbZi9YfJk+PrXy53owW2YwynNzL7XV7fM\nym2YvaGs7Za13H13soxCr7dhemY/hF5f3TIrt2H2hrK2W9ay0UZuw6ylNDP7MqxumZXbMLtb2dst\naynDapie2dfQazcTbxW3YXa3K64od7tlLV4Nc3ClSPZlWt0yq8MO803Ju1XZ2y1r8WqYg+v5Mk6v\n3ky8VSptmCecANtvX3Q0Vq9p05LlPsrebllLr7dhuowziF69mXirVNowPQvqLqeeWq7VLbOq3JT8\nnHOKjqRz9PTMvqyrW2blNszu4nbL+vTyapie2Q9Q1tUts3IbZndxu2V9vBrmO/X0zN7tlvV75hkY\nP95tmJ3O7ZbZ9Gobpmf2VcpyM/FWWX11t2F2g7KvbpmV2zAX6tlk73bL7NyG2fnKcjPxVqm0YXod\nqB4t45TtZuKt4tUwO5vbLRvTi22YLuOkynYz8Vbxapidze2Wjam0YZZ9Ncyem9lHwCabwHe/69Ut\nG+E2zM7kdsvm9Fobpmf2eHXLZrkNszOddRbssosTfaPchtmDM3u3WzbPq2F2FrdbtkYv3ZS842b2\nkraX9IikP0s6Os+xAJ5/3qtbtoJXw+wsbrdsjcpNycvahplbspc0AvgJsD2wLrCPpFxvCHjGGe1t\nt+zv72/PQDkZKv5uaMPs5eNfrVPbLbvt+Fe3YXZb7K2Q58x+E+DxiJgREf8Efgnsktdg8+bBz36W\nJKl26fZ/MEPF/4lPJPX7665rXzxZ9fLxr5g2LTmpuNtu+ceTVTce/69+NVkc8Zpr+osOpe3yTPar\nAjOrnj+bbsuFV7dsLa+G2RkmT3a7ZStVbkp+771FR9J+eSb7tp759Y0cWm+ffZKWtT//uehIymnO\nHJgyBb7ylaIj6S0TJyb/rt96q+hI2iu3bhxJmwKTImL79PkxwIKIOLHqPcW1ApmZdbGs3Th5JvuR\nwKPANsDzwJ+AfSLi4VwGNDOzmkbmteOImC/pUOB/gRHA2U70ZmbFKPSiKjMza4/Clkto9wVXrSZp\nhqT7JU2V9Kei4xmOpHMkzZY0vWrbcpKul/SYpOskdeyC0DXinyTp2fTvYKqkjrxluqSxkm6S9KCk\nByRNTLd3xfEfIv5uOf5jJN0p6T5JD0k6Pt3eLce/VvyZjn8hM/v0gqtHgW2B54C76LJ6vqSngA0j\n4m9Fx1IPSZ8AXgXOj4j1020/AOZExA/SL9xlI+Lfi4yzlhrxHwfMjYgfFhrcMCStBKwUEfdJWgK4\nB9gV+BJdcPyHiH9PuuD4A0haLCJeT88l/gE4EtiZLjj+UDP+bchw/Iua2bf1gqscZTobXqSIuBV4\nacDmnYHKogjnkfwH7kg14ocu+DuIiL9ExH3p41eBh0muOemK4z9E/NAFxx8gIl5PH44mOYf4El1y\n/KFm/JDh+BeV7Nt6wVVOAvi9pLslfbnoYBq0YkTMTh/PBlYsMpgGHSZpmqSzO/XH8GqSxgETgDvp\nwuNfFf8f001dcfwlLSLpPpLjfFNEPEgXHf8a8UOG419Usu+Fs8KbR8QE4DPAIWmZoWuly49229/L\nacCawHhgFvDfxYYztLQEMgX4RkTMrX6tG45/Gv+vSeJ/lS46/hGxICLGA6sBW0r65IDXO/r4DxJ/\nHxmPf1HJ/jlgbNXzsSSz+64REbPS318ALiMpTXWb2Wk9FkkrA38tOJ5MIuKvkQLOooP/DiSNIkn0\nF0TE5enmrjn+VfFfWIm/m45/RUS8DFwNbEgXHf+Kqvg3ynr8i0r2dwMfkDRO0mhgL+DKgmLJTNJi\nkpZMHy8OfBqYPvSnOtKVwBfTx18ELh/ivR0n/Q9asRsd+ncgScDZwEMR8eOql7ri+NeKv4uO//KV\nEoekRYFPAVPpnuM/aPyVL6rUsMe/sD57SZ8BfszCC66OLySQBkhak2Q2D8mFab/o9PglXQxsBSxP\nUvf7LnAFcAmwOjAD2DMi/l5UjEMZJP7jgD6SH2EDeAr4alUNtmNI2gK4BbifhaWCY0iuKu/4418j\n/mOBfeiO478+yQnYRdJfF0TESZKWozuOf634zyfD8fdFVWZmJdBz96A1M7N3c7I3MysBJ3szsxJw\nsjczKwEnezOzEnCyNzMrASd76zqSlpb0tarnq0i6NKexdpQ0KX28q6R1ql77Ybcvk2Hl4WRv3WhZ\n4OuVJxHxfETskdNYR5CsQQLJqojrVr12GnBUPTuRtGyL4zLLxMneutEJwFrpDRtOlLSG0puaSDpA\n0uXpzSieknSopCMl3SvpjkrSlbSWpGvSVUtvkfTBgYNIGguMjojZkjYDdgJOSsddMyL+DIyrc7XH\nuyRdKOmT6fIDZm3lZG/d6GjgiYiYEBFH8+41vT9MslbIxsB/Aq9ExAbAHcD+6Xt+BhwWERuRzM7/\nZ5BxNgfuBYiI20nWUjkyHfep9D1TgY/XEfPawMXAocCDko4ZsLaMWa5yu+G4WY6GmxnfFBGvAa9J\n+jtwVbp9OvCRdPG6zYBLqybZowfZz+okS8cONfbzwLjhAo6IBSSrFV4taXmSn06ekfTxiLh7uM+b\nNcvJ3nrRvKrHC6qeLyD5N78I8FJ6P4LhDEzuAxeT0sBtafmnsorraRHxs3T70sDeJCssziO5LWFH\nrhRpvcfJ3rrRXGDJBj4ngIiYm9bzPxcRv05r6OtHxP0D3v80sMWAcZca8J6Vgf7qDRExk+RuTgsH\nli4ENiVZZXG/iHiigfjNGuaavXWdiHgRuE3SdEknksysK7PrgXccGvi48nxf4KD0Vm8PkNyPdKDb\ngA2qnv8SOCo92btmum0CybmA4fwKWDsijnWityJ4iWOzIUi6Edi3cmeyAa+tDZwcEYN9UZh1FM/s\nzYZ2MnBwjdcOBn7QxljMGuaZvZlZCXhmb2ZWAk72ZmYl4GRvZlYCTvZmZiXgZG9mVgJO9mZmJfD/\nAaTWw6sIdNJsAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x63429b0>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "import math\n",
    "import numpy\n",
    "%matplotlib inline\n",
    "from matplotlib.pyplot import plot,ylim,title,xlabel,ylabel\n",
    "\n",
    "#Variables\n",
    "\n",
    "Vp = 10.0            #Peak voltage (in volts)\n",
    "\n",
    "#Calculation\n",
    "\n",
    "Vi = 3.0             #Input voltage (in volts)     \n",
    "Vo = Vi - 2.0        #Output voltage (in volts) \n",
    "\n",
    "#Graph\n",
    "\n",
    "t = numpy.linspace(0,2,100)\n",
    "t1 = numpy.linspace(2,4,100)\n",
    "t2 = numpy.linspace(4,9,100)\n",
    "t3 = numpy.linspace(9,11,100)\n",
    "t4 = numpy.linspace(11,21,100)\n",
    "t5 = numpy.linspace(21,23,100)\n",
    "t6 = numpy.linspace(23,28,100)\n",
    "t7 = numpy.linspace(28,30,100)\n",
    "t8 = numpy.linspace(30,32,100)\n",
    "\n",
    "ylim((0,5))\n",
    "plot(t1,0.5*t1 -1,'b')\n",
    "plot(t2,(1*t2)/t2,'b')\n",
    "plot(t3,1 -0.5*(t3-9))\n",
    "plot(t5,0.5*(t5-21),'b')\n",
    "plot(t6,(1*t6)/t6,'b')\n",
    "plot(t7,1-0.5*(t7-28),'b')\n",
    "plot(t8,(0*t8/t8),'b')\n",
    "title(\"Output waveform\")\n",
    "xlabel(\"time (t) ->\")\n",
    "ylabel(\"Output voltage (Vo) ->\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 33.12 , Page Number 869"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<matplotlib.text.Text at 0x63b38b0>"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEZCAYAAACervI0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8VWW9x/HPL9BEVMQhh9TwUioZKQ6lprlzuuTY1Rum\n5YA3vZkZDjmgIoecSrwOYVYGpCiiQIZDzugGUwsNEBAEhzAVRBEHEEXg/O4fzzqw9/HM5+z9rL3X\n9/16nRd7r732Xl8Wh/Xbz3rWeh5zd0REJHs+FzuAiIjEoQIgIpJRKgAiIhmlAiAiklEqACIiGaUC\nICKSUSoAIillZpeb2TtmtiB2FqlOKgBSFmZ2spnNNLOPzGyhmd1kZt1a8f75ZnZAB+bp0M/raGa2\nHXAOsJO7bx07j1QnFQApOTM7F/gVcC6wEbAX8CXgUTNbp4Uf44B1YKyO/ryOth3wrru/29o3mlnn\nEuSRKqQCICVlZhsBNcDP3P0Rd1/t7q8B/YAewI+S9W4xs8sK3pczs9eTx7cRDoj3mdlSM/uFmfUw\ns1ozO9XM3jSzBUmhoS2f10DuSWZ2dPL4W8m2Dk2eH2hm05LHPc3scTNbnJyuub2uZWNmF5jZuHqf\ne4OZ3ZA87mZmI5Lsb5jZZWb2OTM7CHgE2DrJNzJZ/0gze8HM3jOzJ8xsp4LPnW9m55vZDGBpkqs2\naXn928zeNbOfmNmeZjYj+Yxhrf8XlWqiAiCltg+wHnB34UJ3/wh4ADi4blHy8xnufgLwb+Bwd9/Q\n3a8peDkHfBk4BLjAzA5s5+fVySefDbA/8Crw7YLn+YJ1rwC2AnoB2xIKHsAY4FAz2wDAzDoB3wdG\nJ6/fAnwK9AT6JH+HH7v7Y8B3gQVJvlPMbAfgDuDnwGaEfXdfvW/7P0jetzGwOln2jWT//AC4AbgI\nOADYGehnZt9GMksFQEptM2Cxu9c28NpbwKYFz9tySmaIu3/s7rOAPwHHtfPz6kwiHOgB9gOuKni+\nf/I67v6Ku09095Xuvhi4rm49d/83MBX4r+R9BwDL3X2KmW1BOFifneR/B7iecKBuKPuxwP3JtlYD\n1wBdCAUWQrH7jbu/6e4rCt53mbt/6u6PAkuBO9x9sbsvAJ4kFB7JKBUAKbXFwGZm1tDv2lbJ6+3x\nesHjfwMd1WH6d2AHM/sCsCswCtjWzDYF9gQmA5jZFmZ2Z3IK5wPgNoqL2h2sLUrHs/bb/5eAdYCF\nyemY94DfA5s3kmer5O8HgIdRHF8Hvliwzuv13wQsKnj8cQPPN2hke5IBKgBSas8AK4BjChcmp0X6\nAhOTRR8B6xessmW9z2ls2Nrt6j1+s52fF150Xw78EzgLmOnuK4GnCR3ZL7v7kmTVKwmnW77m7t2A\nEyj+fzUeyJnZF4HvEQoChIP1CmBTd++e/HRz996NRFpAKBoAmJkRTje9WbBOW4b21XDAGaYCICXl\n7h8AQ4BhZvafZraOmfUAxhIOgrclq04nnC/vbmZbEg68hRYRzpXXd4mZdTGznYGTgbva+XmFJgFn\nJH9COO//s4LnEL5BfwR8mBzkzyv8gOTUTp5wvv9Vd5+bLF9I6Oi91sw2TDp/ezZxTn4scJiZHZBc\nOXUu8AmhKLVHmq+EkhJTAZCSc/ehhM7Ha4APCKdXXgMOTL5ZQygEzwPzgYeAOyn+dnoV4WD/npmd\nU7B8EvAy8BgwNOlAbc/nFZpEOMBPTp5PBroWPIdQ3HZL/l73AX/ms9+q7wAOZO23/zonAusCs4El\nwDiKWyprPsfd5xGumBoGvAMcBhzh7qsayV70/nauI1XKNCGMVKKkFfEq0LmRDmYRaYZaACIiGaUC\nIJVMzVeRdtApIBGRjFILQEQko1I5aJSZqVkiItIG7t7iS3tT2wJw99T/DB48OHoG5VTOSs2onB3/\n01qpLQAiIlJaKgAiIhmlAtAOuVwudoQWUc6OVQk5KyEjKGdsqbwM1Mw8jblERNLMzPBq6AQWEZHS\nUgEQEckoFQARkYxSARARyaiSFQAzG2lmi8xsZgOvnWtmtWa2Sam2LyIiTStlC+BPhCn/ipjZtsDB\nhAlBREQkkpIVAHd/EnivgZeuBc4v1XZFRKRlytoHYGZHAW+4+4xybldERD6rbKOBmtn6hHlhDy5c\n3Nj6NTU1ax7ncrmqvRNPRKSt8vk8+Xy+ze8v6Z3Aybyt97l7bzPrTZi4e3ny8jbAm8A33P3teu/T\nncAiIq3U2juBy9YCcPeZwBZ1z83sX8Du7r6kXBlERGStUl4GOgZ4GtjBzF43s/71VtFXfBGRiDQY\nnIhIldBgcCIi0iIqACIiGaUCICKSUSoAIiIZpQIgIpJRKgAiIhmlAiAiklEqACIiGaUCICKSUSoA\nIiIZpQIgIpJRKgAiIhmlAiAiklEqACIiGaUCICKSUSoAIiIZpQIgIpJRKgAiIhmlAiAiklEqACIi\nGaUCICKSUSUtAGY20swWmdnMgmVDzWyOmT1vZnebWbdSZhARkYaVugXwJ6BvvWWPADu7+y7APGBg\niTOIiEgDSloA3P1J4L16yx5199rk6T+AbUqZQUREGha7D+AU4IHIGUREMqlzrA2b2cXAp+5+R0Ov\n19TUrHmcy+XI5XLlCSYiUiHy+Tz5fL7N7zd377g0DW3ArAdwn7v3Llh2MnAqcKC7f9LAe7zUuURE\nqo2Z4e7W0vXL3gIws77AecD+DR38RUSkPEraAjCzMcD+wGbAImAw4aqfdYElyWrPuPtP671PLQAR\nkVZqbQug5KeA2kIFQESk9VpbAGJfBSQiIpGoAIiIZJQKgIhIRqkAiIhklAqAiEhGqQCIiGSUCoCI\nSEapAIiIZJQKgIhIRqkAiIhklAqAiEhGqQCIiGSUCoCISEapAFS51atjJxBpnH4/41IBqHL9+8O4\ncbFTiHzW5Mlw6KGxU2Sb5gOoYjNnwsEHw6JFsZNUH/16to877LcfPPVU7CTVJuVTQkr5XHwxXHAB\nnH127CQixR54AN5/H1atgk6dYqepHtbiQ3+gAlClnnkGnn8exo6NnUSkWG1t+HJy+eU6+MemPoAq\n5A4DB8Kll8J668VOI1LsrrvC7+VRR8VOImoBVKFHHoGFC+Gkk2InESm2ciUMGgQ339z60xXS8dQC\nqDK1tXDRRaF53VnlXVJm5EjYfns44IDYSQRKWADMbKSZLTKzmQXLNjGzR81snpk9YmYbl2r7WfXn\nP4dvVv/937GTiBT7+GO47DK48srYSaROKVsAfwL61lt2IfCou+8ATEyeSwdZtSo0r6+4Qs1rSZ8b\nb4RvfhP23DN2EqlT0vsAzKwHcJ+7906evwjs7+6LzGxLIO/uOzXwPt0H0AYjR8KoUfDEEyoAki4f\nfABf+Qrk8/DVr8ZOU73M0n0fwBbuXndb0iJgizJvv2p98gkMGQJjxujgL+lzzTVw2GE6+KdNtG5C\nd3cza/Rrfk1NzZrHuVyOXC5XhlSV6/e/h112gX32iZ1EpNjbb8NNN8HUqbGTVJ98Pk8+n2/z+2Oc\nAsq5+1tmthXwhE4Btd/SpaF5/eij0Lt37DQixQYMCH/ecEPcHFmQ9lNA9wInAb9O/pxQ5u1XpWuv\nhYMO0sFf0ue11+D222HOnNhJpCElawGY2Rhgf2Azwvn+S4F7gLHAdsB8oJ+7v9/Ae9UCaKHFi2HH\nHWHKFOjZM3YakWL9+8M224TLP6X0WtsC0GigFe7cc8P11TfdFDuJSLHZsyGXg5degm7dYqfJhpIU\nADPrCiwAjnH3x9qRr2WhVABa5I03QsfvrFmw1Vax04gUO/po2HtvOO+82Emyo7UFoKU3gn0feAH4\nnzalkpIYMgROPVUHf0mfKVPCz89+FjuJNKWlncD/k/zcbWbd3f29EmaSFpg3DyZMgLlzYycR+ayL\nLw53pXfpEjuJNKXZFoCZ7UQ4VTQHuBP4UclTSbMGDYJzzoFNNomdRKTY44/D/Plwyimxk0hzmu0D\nMLOhwIvuPiK5rv8v7t6npKHUB9CkadPCXKovvwxdu8ZOI7KWO+y1F5x1Fhx3XOw02dOhfQBmtg5w\nDHAXgLvPB941sz3aE1La56KLQhNbB39Jm3vuCcOSHHts7CTSEs31AaxDuPJnWcGyHwOrShdJmjJ5\nMrz4YviPJpImq1eHLya//jV8TjONVIQmC4C7Lwem1T03s93cXSN6ROIevv0PGQLrrhs7jUix0aOh\ne/cw6JtUhtYOBTECKOn5f2ncX/8K778PP/xh7CQixT79FAYPDsORazTayqGGWoWorQ3N68svh06d\nYqcRKXbzzdCrF+y3X+wk0hqtbQEMKUkKadZdd4Vrqo86KnYSkWLLloVZ6B54IHYSaS2NBVQBVq4M\n367++Ef4zndipxEpduWVMGMG3Hln7CSS9uGgpQ1GjIDtt9fBX9JnyRK47jp4+unYSaQt1AJIueXL\nw2QvEyZoMm1JnwsvDEXg5ptjJxEoUQsgGQ10W8CBN9z9ozbmk1a68cYwoqIO/pI2CxaE05LPPx87\nibRVoy0AM9sQOBX4AWsndTHCRO7vAqOBP9a7SaxjQqkFAIRLPr/ylXDzV69esdOIFPvpT8Pd6EOH\nxk4idTqyBTCBMPjbke7+Vr2NbAkcSZjh68C2BJXmXXMNHH64Dv6SPq+8AmPHajTaSqc+gJRatAi+\n+lWYOhW+9KXYaUSK/ehHsMMOcOmlsZNIoQ6fEczMJrr7gc0t60gqAPDzn4fxVK6/PnYSkWIzZsDB\nB4fRaDfcMHYaKdRhp4DMrAuwPrC5mRWOOr8R8MW2R5TmzJ8fxlWZMyd2EpHPuuQSGDhQB/9q0FQf\nwP8CA4CtgX8WLF8K3NiejZrZQMLEMrXATKC/u69oz2dWk5qa0MH2hS/ETiJS7OmnYfr0cP5fKl9L\nTgGd6e7DOmyDYVKZx4Fe7r7CzO4CHnD3WwvWyewpoNmzIZeDl16Cbt1ipxFZyz3cjHjiiZrtK606\n8hTQMYTr/heY2dH1X3f3u9sWkQ+BlcD6ZraacJrpzTZ+VtW55BI4/3wd/CV9Hn44XJxw4omxk0hH\naeoU0BGEAtCYNhUAd19iZv8H/Bv4GHjY3R9ry2dVmylTws/o0bGTiBSrrQ1zUVx+OXTWADJVo9F/\nSnc/uRQbNLOewFlAD+ADYJyZ/dDdM3/Yu+iicFldly6xk4gUGz8+XJV29GfOBUgla7aWm9nGwGDg\n28miPPBLd/+gjdvcA3ja3d9NPv9uYB/CncVr1NTUrHmcy+XI5XJt3FxlmDgRXnsN+vePnUSk2KpV\nMGgQDBumyV7SJp/Pk8/n2/z+lnQC3024UudWwlAQJwBfd/c2fRcws10IB/s9gU+AW4Ap7v7bgnUy\n1QnsDnvtBWedBccdFzuNSLERI+D22+Hxx1UA0q4Ug8H1rHewrzGzNg//5O7Pm9ko4DnCZaBTgUyP\nJThhAqxYAcceGzuJSLFPPglzUI8dq4N/NWpJAfjYzPZz9ycBzGxfYHl7NuruVwNXt+czqsXq1eHK\nn6uvDudYRdLkd7+DPn1CC1WqT0sKwE+AUWZWd2Hie8BJpYuULaNHwyabwKGHxk4iUuzDD+FXvwr9\nU1KdWtIH0MndV9cVgHZ0/rY8VEb6AFasgJ12glGjNJm2pM+QIeGGxNtvj51EWqoUfQD/MrOHgLsI\nd/BKB7n55jDipw7+kjbvvAO/+Q08+2zsJFJKLWkBdAUOJ0wMsxtwH3BXXZ9ASUJloAWwbFmY7OXB\nB2HXXWOnESl27rmhA/i3v21+XUmPDh8Out6Hdwd+Axzv7p3akK+l26n6AnDFFTBzJtx5Z+wkIsVe\nfz18KZk1C7baKnYaaY1SzQmcA44F+gLPAv3alE6AMIn2ddeFkRVF0mbIEDjtNB38s6Alp4DmA9MJ\nfQD3lWIO4Aa2WdUtgAsvDEXg5kzf/SBpNG8efOtb4c/u3WOnkdYqxYxg3cpx5U+9bVZtAViwAHr3\nhuefh222iZ1GpNixx4bTPwMHxk4ibVHSPoByqeYCcPrpsMEGMHRo7CQixaZOhcMPD5d+du0aO420\nhQpAir3yCnzzmzB3Lmy6aew0IsX69oUjjoAzzoidRNqqtQVAgw+U0aWXwoABOvhL+kyaFM77n3pq\n7CRSTi3pA1gPOIYwfn/dVUPu7r8sWagqbAHMmAGHHBKa15pMW9LEHfbdF37yEzjhhNhppD1KcRno\nPcD7hInhP2lrsKy7+OJw9Y8O/pI2998PH3wAxx8fO4mUW0sKwBfd/T9LnqSKPfVUuOpn3LjYSUSK\n1daGLydXXAGdSnZrp6RVS/oAnjazr5c8SZVyD//BampgvfVipxEpdued4YqfI4+MnURiaEkfwBzg\ny8C/gBXJYnf3khWFauoDeOghOPvsMOyDJtOWNFm5MoxGO3w4fOc7sdNIRyhFH8B325En02prw0Tv\nl1+ug7+kz/Dh0LOnDv5Z1uhhycw2cvcPgQ/LmKeqjB8fZvk6uk2zJ4uUzvLl4YvJPffETiIxNfW9\ndAxwGGHO3vrnYxz4j1KFqgarVsGgQTBsmOZSlfS58UbYe2/YY4/YSSQm3QlcIsOHh+keH39cBUDS\n5f33w1wUkydDr16x00hH6rChIMzsP9z91WY21tPdX2llxuZDVXgB+OQT2GEHGDtWk2lL+lx8MSxc\nCCNHxk4iHa0jO4GvSmYDuxd4DlgIGLAVsAdwJLCUMFNYa0NuDAwHdiacTjrF3f/e2s9Jq5tugj59\ndPCX9Fm0CH7/e5g2LXYSSYMmTwGZ2ZcJB/hvAV9KFr8G/A0Y01wLoYnPvRWY5O4jzawz0LVwyOlK\nbgF8+GFoXk+cCF/7Wuw0IsXOPDPc8HX99bGTSCmkfjRQM+sGTHP3RjuRK7kA1NTAq6/CqFGxk4gU\nmz8fdt8d5syBL3whdhophUooALsCfwBmA7sQxhga4O7LC9apyALwzjvhxprnnoPtt4+dRqTYySfD\ndtvBL0s2jKPEVgkFYA/gGWAfd3/WzK4HPnT3SwvWqcgCcM45sGIF/Pa3sZOIFJs9G3K5MBptt26x\n00iplGRS+A72BvCGuz+bPB8PXFh/pZqamjWPc7kcuVyuHNna7PXX4dZbYdas2ElEPuuSS+D883Xw\nrzb5fJ58Pt/m97eoBWBmRwHfrtumu9/X5i2Gz5sM/Njd55lZDdDF3S8oeL3iWgA//jFsvjlcdVXs\nJCLFpkwJd6O/9BJ06RI7jZRSKSaF/xWwJzCacBnoD4Dn3L3N00ab2S6Ey0DXBV4B+lfyVUBz54YJ\nNebNg+7dY6cRKXbQQdCvH5x2WuwkUmqlKAAzgV3dfXXyvBMw3d17tytp09usqALQrx/stluY8EUk\nTR57DE4/PfQBrLNO7DRSaqXoA3BgY+Dd5PnGfHZsoMyaOhX+9je45ZbYSUSKuYfRaC+7TAd/aVhL\nCsBVwFQzyyfP96eBTtusuuiicGv9+uvHTiJS7C9/CWP+9+sXO4mkVVNjAd0E3OHufzOzrQn9AA48\n6+4LSxqqQk4BTZoE/fvDiy/CuuvGTiOy1urV0Ls3XHMNHHpo7DRSLh15CmgeMDQ5+N9FGPpBI4gk\n3GHgQBgyRAd/SZ/bb4dNN4XvajonaUJLOoF7EK78ORZYH7iDUAzmlSxUBbQA7r8/FIDp0zWZtqTL\nihWw446hCOy7b+w0Uk4lvRPYzPoAfwJ6u3vJDntpLwC1tbDrrmFGJU2mLWkzbBg8/HD4kiLZ0uFX\nASWjdR5KaAUcCDwBDG5zwiowZgx07QpHHBE7iUixZcvgyivhoYdiJ5FK0NScwIcQDvqHAVMIU0Se\n5u7LypQtlT79FC69FEaM0Exfkj433BDG/Nlll9hJpBI0dRXQ44SD/p/dfUlZQ6X4FNDvfhcur3vk\nkdhJRIotWRJmonvmmTAnhWRP6kcDbYm0FoDly8N/rHvu0WTakj4XXBDm+/3DH2InkVgqYTTQijVs\nGOy9tw7+kj4LFsDw4TBjRuwkUknUAmih998P3/6ffDJM+iKSJqefDhtsAEOHxk4iMakFUCJDh4ZL\nPnXwl7R5+WUYNy6MSivSGmoBtMBbb8HOO8O0aWFKPZE0Of546NULBg2KnURiUydwCZx5JnTuDNdd\nFzuJSLEZM+CQQ8JkLxtuGDuNxKYC0MHmz4fddw8Dvm2+eew0IsWOOCJM+DJgQOwkkgbqA+hggwfD\nGWfo4C/p89RToQUwfnzsJFKpVACa8MIL8OCDoXktkiZ1o9HW1MDnPx87jVSqz8UOkGaDBsH550O3\nbrGTiBR7+GFYvBhOOCF2EqlkagE0YsoUePZZGD06dhKRYrW1a6d67Kz/wdIOagE0YuDA0ALo0iV2\nEpFi48eHOSiOPjp2Eql00a4CMrNOwHPAG+5+RL3XPC3zzqfkYiRJkbSMAqvfTamvkq4CGgDMBhq8\nelm/3JJW+t2UahHlFJCZbUOYZGY4kJLvUyIi2RKrD+A64DygNtL2RUQyr+yngMzscOBtd59mZrnG\n1qupqVnzOJfLkcs1uqqISCbl83ny+Xyb31/2TmAzuxI4AVgFrAdsRJh17MSCdVIzFISISKWoqLGA\nzGx/4BcNXQWkAiAi0jqtLQBpuA9AR3oRkQg0GqiISJWoxBaAiIhEoAIgIpJRKgAiIhmlAiAiklEq\nACIiGaUCICKSUSoAIiIZpQIgIpJRKgAiIhmlAiAiklEqACIiGaUCICKSUSoAIiIZpQIgIpJRKgAi\nIhmlAiAiklEqACIiGaUCICKSUSoAIiIZpQIgIpJRKgAiIhkVpQCY2bZm9oSZvWBms8zs5zFyiIhk\nmbl7+TdqtiWwpbtPN7MNgH8C33P3OcnrHiOXiEglMzPc3Vq6fpQWgLu/5e7Tk8fLgDnA1jGyiIhk\nVfQ+ADPrAfQB/hE3iYhItnSOufHk9M94YEDSElijpqZmzeNcLkculytrNhGRtMvn8+Tz+Ta/P0of\nAICZrQPcDzzo7tfXe019ACIirdTaPoBYncAG3Aq86+5nN/C6CoCISCtVSgHYF5gMzADqAgx094eS\n11UARERaqSIKQHNUAEREWq8iLgMVEZH4VABERDJKBUBEJKNUAEREMkoFQEQko1QAREQySgVARCSj\nVABERDJKBUBEJKNUAEREMkoFQEQko1QAREQySgVARCSjVABERDJKBUBEJKNUAEREMkoFQEQko1QA\nREQySgVARCSjVABERDIqSgEws75m9qKZvWRmF8TIICKSdWUvAGbWCbgR6At8FTjOzHqVO0dHyOfz\nsSO0iHJ2rErIWQkZQTlji9EC+AbwsrvPd/eVwJ3AURFytFul/FIoZ8eqhJyVkBGUM7YYBeCLwOsF\nz99IlomISBnFKAAeYZsiIlKPuZf3eGxmewE17t43eT4QqHX3XxesoyIhItIG7m4tXTdGAegMzAUO\nBBYAU4Dj3H1OWYOIiGRc53Jv0N1XmdnPgIeBTsAIHfxFRMqv7C0AERFJh9TdCVwpN4mZ2Xwzm2Fm\n08xsSuw8AGY20swWmdnMgmWbmNmjZjbPzB4xs41jZkwyNZSzxszeSPbnNDPrGzNjkmlbM3vCzF4w\ns1lm9vNkear2aRM5U7VPzWw9M/uHmU03s9lmdlWyPG37s7GcqdqfSaZOSZb7kuet2pepagEkN4nN\nBQ4C3gSeJaX9A2b2L2B3d18SO0sdM9sPWAaMcvfeybKrgcXufnVSULu7+4UpzDkYWOru18bMVsjM\ntgS2dPfpZrYB8E/ge0B/UrRPm8jZj/Tt0/XdfXnSF/g34BfAkaRofzaR80DStz/PAXYHNnT3I1v7\n/z1tLYBKu0msxb3t5eDuTwLv1Vt8JHBr8vhWwoEhqkZyQvr251vuPj15vAyYQ7hnJVX7tImckL59\nujx5uC6hD/A9UrY/odGckKL9aWbbAIcCw1mbq1X7Mm0FoJJuEnPgMTN7zsxOjR2mCVu4+6Lk8SJg\ni5hhmnGmmT1vZiNinwaoz8x6AH2Af5DifVqQ8+/JolTtUzP7nJlNJ+y3J9z9BVK4PxvJCenan9cB\n5wG1BctatS/TVgDScz6qed9y9z7Ad4EzktMaqebhfF9a9/HvgO2BXYGFwP/FjbNWclrlz8AAd19a\n+Fqa9mmSczwh5zJSuE/dvdbddwW2Ab5tZt+p93oq9mcDOXOkaH+a2eHA2+4+jUZaJS3Zl2krAG8C\n2xY835bQCkgdd1+Y/PkO8BfC6as0WpScI8bMtgLejpynQe7+ticITdpU7E8zW4dw8L/N3Scki1O3\nTwty3l6XM637FMDdPwD+Sjh/nbr9Wacg5x4p25/7AEcmfZFjgAPM7DZauS/TVgCeA75iZj3MbF3g\nWODeyJk+w8zWN7MNk8ddgUOAmU2/K5p7gZOSxycBE5pYN5rkl7XOf5GC/WlmBowAZrv79QUvpWqf\nNpYzbfvUzDarO21iZl2Ag4FppG9/Npiz7sCaiLo/3f0id9/W3bcHfgA87u4n0Np96e6p+iGcUpkL\nvAwMjJ2nkYzbA9OTn1lpyUn4JrAA+JTQl9If2AR4DJgHPAJsnMKcpwCjgBnA88kv7RYpyLkv4fzq\ndMKBahphGPNU7dNGcn43bfsU6A1MTXLOAM5LlqdtfzaWM1X7syDv/sC9bdmXqboMVEREyidtp4BE\nRKRMVABERDJKBUBEJKNUAEREMkoFQEQko1QAREQySgVAKp6ZdTOz05t4/fNmNsmCrc1sXBmzTay7\naVAkbVQApBp0B37axOs/BO73YIG7f79MuSCMaNvsYIHJ3eXrlCGPyBoqAFINfgX0TCbG+HUDrx8H\n3ANhtExLJqIxs5PN7G4zezCZQKOh99ZN/nNl8vnPmdluyWQbL5vZ/ybrbGVmk5N1ZprZvsnb7yXc\nqt+cHYG5ZjbUzHZq5d9fpE3KPiewSAlcAOzsYXTWIskkQ19z93mNvHcXwuiOnxIOwL9x9zfrrePA\na+7ex8yuBW4B9ga6EIYC+QNwPPCQu1+ZjM3TFcDdFyVjy3R1948a+wu4+zQz+zph/KvhZuaE8X3G\nNfU+kfZQC0CqQVOTdGwGLG3i9YnuvtTdVwCzgR6NrFc3KOFM4Bl3/8jdFwMrzGwjYArQP5nZ7Ose\nhmOus4iw8ouOAAABRklEQVTiUW4b5O7L3H2Eu+8LnJb8LGjufSJtpQIgWdBUgVhR8Hg1Yfanptar\nJbQWKHje2cMsZ/sRhjS/xcxOqLf9okG3zOx7tnZu2d0KlvdIisjdwGvAMU1kF2kXnQKSarAUaOxK\nm8XABq34rOam/GvwdTPbDnjT3Yeb2eeB3YDbkpe3oN68Fh7G7J9Q8P4ehDHmNwVGAvu4e0PTZop0\nGBUAqXju/q6ZPZV07j7g7hcUvLbazGaZ2Y7uPrduccGf9YfDbWh4XK/3uP5zgBxwnpmtJBSkE2HN\nhO3vtuA8/irgQnd/rpn1RDqMhoOWqmdmJxPGbm/wKp8Sb/s0oKu7X1fubYs0RwVAql4yu9xjwP5e\n5l94M5sIHFWvU1gkFVQAREQySlcBiYhklAqAiEhGqQCIiGSUCoCISEapAIiIZJQKgIhIRv0/gS6r\npvtxRpEAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x61964f0>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "import math\n",
    "import numpy\n",
    "%matplotlib inline\n",
    "from matplotlib.pyplot import ylim,xlim,plot,title,xlabel,ylabel\n",
    "\n",
    "#Variables\n",
    "\n",
    "VSmax = 20.0                    #peak voltage (in volts)\n",
    "VD2 = 0.7                       #Voltage drop across diode D2 (in volts) \n",
    "\n",
    "#Calculation\n",
    "\n",
    "Vomin = 5.0 - VD2               #Minimum output voltage (in volts)  \n",
    "Vomax = 10.7                    #Maximum output voltage (in volts)  \n",
    "\n",
    "#Graph\n",
    "\n",
    "t = numpy.linspace(0,4,100)\n",
    "t1 = numpy.linspace(4,10,100)\n",
    "t2 = numpy.linspace(10,20,100)\n",
    "t3 = numpy.linspace(20,24,100)\n",
    "t4 = numpy.linspace(24,30,100)\n",
    "t5 = numpy.linspace(30,40,100)\n",
    "\n",
    "ylim((0,15))\n",
    "xlim((0,40))\n",
    "plot(t,4.3+t-t,'b')\n",
    "plot(t1,4.3 + 6.4/6*(t1 - 4))\n",
    "plot(t2,(10.7)+t2-t2,'b')\n",
    "plot(t3,(4.3+t3)-t3,'b')\n",
    "plot(t4,4.3 + 6.4/6*(t4 - 24),'b')\n",
    "plot(t5,(10.7)+t5-t5,'b')\n",
    "\n",
    "title(\"Output waveform\")\n",
    "xlabel(\"t (in ms) ->\")\n",
    "ylabel(\"Vo (in volt) ->\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 33.13 , Page Number 872"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<matplotlib.text.Text at 0x6594970>"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEZCAYAAACQK04eAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm81mP+x/HXp01SlhRlNwiJKWHsHRWyjLEvY99+Y0mM\nfRvV2GUra1kqSxlki0mSTpYYpIjQRCgSkkol1fn8/ri+Zzpyzuk+59z3fd3L+/l4nMe57++57/v7\n7lSf+7qv77WYuyMiIsWjXuwAIiKSXSr8IiJFRoVfRKTIqPCLiBQZFX4RkSKjwi8iUmRU+EVymJld\nY2bfm9k3sbNI4VDhl6wxs5PMbJKZLTCzmWZ2t5mtUYPnf2FmndOYJ62vl25mthFwPrCVu68XO48U\nDhV+yQozuwC4AbgAWB3YGdgYGGVmDVN8GQcsjbHS/XrpthEw291n1/SJZtYgA3mkQKjwS8aZ2epA\nL6C7u7/k7svc/UvgSGAT4LjkcYPM7OoKzysxs+nJ7YcJhXC4mc03swvNbBMzKzOz083sazP7JnmD\noTavV0nusWZ2aHJ7t+Rc+yf3u5jZhOT2Zmb2ipn9kHTLPFL+ScbMLjGzJ1Z43b5m1je5vYaZPZBk\nn2FmV5tZPTPrCrwErJfkezB5/EFm9pGZzTGzMWa2VYXX/cLMLjazD4D5Sa6y5JPWV2Y228zOMLMd\nzeyD5DXuqPnfqOQ7FX7Jhl2BxsBTFQ+6+wLg38De5YeSr99x9+OBr4AD3b2Zu99c4cclwObAPsAl\nZtaljq9XrjR5bYBOwOfAnhXul1Z47LVAa2BrYEPCGx3AUGB/M2sKYGb1gSOAR5OfDwJ+BTYDOiR/\nhtPc/WVgP+CbJN8pZtYGGAL0AFoQfnfDV2jdH508b01gWXJsp+T3czTQF7gc6AxsAxxpZnsiRUWF\nX7KhBfCDu5dV8rNvgbUr3K9N10tvd1/k7h8CA4Fj6vh65cYSCjzAHsD1Fe53Sn6Ou3/m7qPdfYm7\n/wDcVv44d/8KeA84JHleZ2Chu79tZusSivTfk/zfA7cTCnRl2Y8Cnk/OtQy4GViV8MYK4U2un7t/\n7e6LKzzvanf/1d1HAfOBIe7+g7t/A7xGeMORIqLCL9nwA9DCzCr799Y6+XldTK9w+ysgXRdC3wLa\nmNk6QHvgIWBDM1sb2BF4FcDM1jWzx5KumrnAw/z2zWwIy9+M/sry1v7GQENgZtLtMge4F2hZRZ7W\nyZ8PAA8rLE4H1q/wmOkrPgmYVeH2okruN63ifFKgVPglG94EFgOHVTyYdH90A0YnhxYATSo8pNUK\nr1PVUrIbrXD76zq+Xvih+0JgPHAeMMndlwDjCBeop7r7j8lDryN0q7Rz9zWA4/nt/60ngRIzWx84\nmPBGAKFILwbWdve1kq813H3bKiJ9Q3izAMDMjNCt9HWFx9RmuV0t0VtkVPgl49x9LtAbuMPM9jWz\nhma2CfA4ofg9nDx0IqE/fC0za0UouBXNIvSFr+hKM1vVzLYBTgL+VcfXq2gscHbyHUK/fvcK9yG0\nmBcA85LiflHFF0i6cEoJ/fmfu/unyfGZhAu4t5pZs+Si7mbV9Lk/DhxgZp2TkVAXAL8Q3ozqIpdH\nNkkGqPBLVrh7H8JFxZuBuYRulC+BLklLGsIbwPvAF8CLwGP8tjV6PaHIzzGz8yscHwtMBV4G+iQX\nRuvyehWNJRT2V5P7rwKrVbgP4U1t++TPNRwYxu9b0UOALixv7Zc7AWgETAZ+BJ7gt59M/vc67j6F\nMALqDuB74ADgz+6+tIrsv3l+HR8jBcQyvRGLmX0BzCN8FF7i7juZWXNCq2xjwn/KI939p4wGkYKT\nfGr4HGhQxYVjEalENlr8DpS4ewd33yk5dikwyt3bEPp3L81CDhERIXtdPSv2IR4EDE5uDyZc8BKp\nDXVTiNRQNrp6Pif0fS4D+rv7fWY2x93XSn5uwI/l90VEJLOysZ7Hbu4+08xaEtZl+aTiD93dzUyt\nNhGRLMl44U+GrOHu35vZ04Tp47PMrJW7f2tmrYHvVnye3gxERGrH3asdopvRPn4za2JmzZLbqxHW\nIZkEPAecmDzsROCZyp7v7nn71bNnz+gZijG78sf/Uv64X6nIdIt/XeDp0I1PA+BRd3/JzN4FHjez\nU0mGc2Y4h4iIJDJa+N19GmGNkxWP/wh0zeS5RUSkcpq5myElJSWxI9RaPmcH5Y9N+XNfxodz1paZ\nea5mExHJVWaGx7y4KyIiuUeFX0SkyGhD5jyxcCG88gpMmACTJsHkyTB3LixaBIsXw9prw/rrw4Yb\nwo47QqdO0L49NNDfsIisQH38OWzxYnjqKXjySXj5Zdh+e/jTn2DbbWGbbaB5c1h1VWjUCH74Ab7+\nGr76Ct58E0pLw/1DD4VTT4VddwXTqusiBS+VPn4V/hw0dy707w99+0LbtnDssfDnP4dWfU3MnAmP\nPAL33w/16sHFF8Pxx+tTgEghU+HPM0uXwp13wjXXQLducOGFobumrtxh7Fi46qrwyeCaa+CQQ/QJ\nQKQQqfDnkbFjoXt3aNUK7rgDttoq/edwhxdfhEsvhXXWCZ8ENt545c8Tkfyh4Zx54Ndf4YILQndO\nz57w0kuZKfoQWvj77Qfjx0PnzrDDDjBgQHhDEJHioRZ/RFOnwtFHh9E4Dz5Y8z78uvroIzjppDAS\naPBgaNYsu+cXkfRTiz+H/fvfsMsuofA+80z2iz6EkUGvvw4tWoTRQlOmZD+DiGSfCn8E994bhlg+\n91zo1495kXWVVUJ3z3nnwe67w6hR8bKISHaoqyeLysrChdVnnw0t/s02i53ot159FQ4/HO6+O3wX\nkfyTSlePRnRnSVkZnHlmmHU7blycrp2V2XNPGDkSDjggzCU49dTYiUQkE1T4s6CsDM44IyyzMHJk\nbl9E7dAhzPrdZ5+wHET37rETiUi6qfBnWFkZ/O1v8MknMGJEbhf9cm3ahHkFe+wBq60GJ58cO5GI\npJMKf4ZddNHyln7TprHTpG7jjcOF3r32CrmPOCJ2IhFJFxX+DLr11tDKf/31/Cr65bbcMuTfZx9Y\nfXXYd9/YiUQkHTSqJ0Meeyy09t94AzbaKHaaunnjjbC2zyuvQLt2sdOISHU0gSuS11+HHj3ghRfy\nv+gD7LYb3HZbWCF01qzYaUSkrlT402zGDDjySHjoIdhuu9hp0ufYY8OSzgcfHEb7iEj+UldPGi1a\nFMbCH3FEWPu+0LjDMcdA48YwcKCWdRbJRVqWOYvcw7o7ixfD0KGFWxQXLAjr+px7Lpx+euw0IrIi\nzdzNov79YeLEMCu3UIs+hHH9w4aFdX06dgzbQYpIflGLPw0++AC6dAmjX9q0iZ0mO554Ai65JKzt\nv9ZasdOISDl19WTBggVhQ5PLLw8XP4vJeeeFzd2HDSvsTzki+USFPwtOOSUsyzBoUOwk2bd4cejv\nP+ccLegmkivUx59h//pX6N4ZPz52kjhWWQUefRRKSsJopi22iJ1IRFKhFn8tzZwJ7dvD88/DjjvG\nThPXnXeGeQtvvAENG8ZOI1LcNHM3Q9zhtNPCqpvFXvQBzj4bWraEa66JnUREUqEWfy088ADcdRe8\n9RY0ahQ7TW6YORP++Ed46aXwSUhE4tDF3Qz48sswimfMGC1YtqLBg+H22+Htt9XlIxKLunrSzD3s\npPX3v6voV+aEE6B1a7jxxthJRKQ6avHXwJAhcMMNYRSPWrSVmz49zObVJyKRONTVk0azZ8M228Cz\nz4ax61K1/v3DvIY33oB6+kwpklU50dVjZvXNbIKZDU/uNzezUWY2xcxeMrM1M50hHS64AI46SkU/\nFaefHmby3n9/7CQiUplstMfOBSYD5c33S4FR7t4GGJ3cz2mvvBK6LjRcMTX16sG998KVV8J338VO\nIyIrymjhN7MNgP2B+4Hyjx4HAYOT24OBgzOZoa5+/TWMU+/bF5o1i50mf2y3HZx4Yth+UkRyS6Zb\n/LcBFwFlFY6t6+7lG/jNAtbNcIY66dsXNt0U/vKX2EnyT8+eUFoaPi2JSO7I2Fo9ZnYg8J27TzCz\nksoe4+5uZlVewe3Vq9f/bpeUlFBSUunLZMyMGWFo4ltvafXJ2mjaNIzr79497FWgkVAi6VdaWkpp\naWmNnpOxUT1mdh1wPLAUaAysDjwF7AiUuPu3ZtYaGOPuW1Xy/Oijeo4+GjbfXH37deEO++wTNmrv\n0SN2GpHClzPDOc2sE3Chu//ZzG4CZrv7jWZ2KbCmu//uAm/swl9aGrZSnDwZmjSJFqMgTJ4MnTqF\n7y1bxk4jUthyYjhnBeVV/AZgbzObAnRO7ueUZcvCJiN9+qjop0PbtnDssfCPf8ROIiKgCVyVuv/+\nsMzw2LHq20+Xn36CrbaCESOgQ4fYaUQKV8509dRGrMI/bx5suSUMHx4WY5P0GTAgbNxSWqo3VJFM\nybWunrxw/fWw774q+plwyilh6Yvhw2MnESluavFXMG1aKPiTJsF662X11EVjxIiwuumkSRreKZIJ\navHX0BVXhCGHKvqZ060bbLgh3Hdf7CQixUst/sT48WGs+ZQpYeKRZM7EieEN4NNPYY01YqcRKSxq\n8afIHS65JAw3VNHPvPbtYb/9tGGLSCxq8RP2iT3nHPjwQ/U7Z8uMGWGPXl1PEUkvtfhTUFYWWvvX\nXaein00bbBBG+Vx9dewkIsWn6Fv8jz4Kd9wBb76pseXZNnt2mDPx5puwxRax04gUBk3gWoklS2Dr\nrcNM3Swv/CmJa66Bjz6CoUNjJxEpDOrqWYmBA8Na+yr68Zx3XpjJO2FC7CQixaNoW/y//BK6F4YN\ng512ythpJAV33gn//nf4EpG6UYu/GvfcAx07qujngtNPD909b74ZO4lIcSjKFv/PP4cNVkaNgm23\nzcgppIbuuw/+9S94+eXYSUTyW1pb/GbW2MxWqXus+Pr1g86dVfRzyUknhbWSxo6NnUSk8FXZ4jez\nesDBwDHAroQ3CQOWAW8CjwLPZKpZnqkW/7x5obX/2mthKKHkjsGD4cEHtWyzSF3UtcVfCnQEbgb+\n4O6t3b0V8Ifk2I5A3rXP+vULyy6r6OeeY4+Fb7+F0aNjJxEpbNW1+Fdx98XVPjmFx9Q6WAZa/HPn\nhtb+G29AmzZpfWlJk6FDw4S6N95Qq1+kNurU4q9Y0M2svZmdY2bdzeyPlT0mH/TrFxYHU9HPXUce\nCXPm6CKvSCatdFSPmZ0LnA48RejjPxi4z937ZTRYmlv8P/0Uxu2rtZ/7hgyBu+8O12HU6hepmbQs\n2WBmk4Cd3X1Bcn814C13z+iYmHQX/n/+E6ZODZuoS25btgzatg1zLTp3jp1GJL+kczhnWRW388K8\neaHf+IorYieRVNSvD1deCb17x04iUphSKfwDgf+YWS8z6w28BTyY2Vjpdffd0LWrRvLkk2OOgW++\n0bh+kUyoblTPxcBQd59uZh2B3QEHXnP3jC+pla6ungUL4A9/CEME27VLQzDJmkGDQtfcK6/ETiKS\nP+ra1bMeMM7MXgP+BAxx937ZKPrpNGAA7L67in4+OvbYMJtXa/iIpFe1F3eT2bt7AkcDfwHeB4YC\nT7n7/IwGS0OL/5dfYLPN4PnnoUOHNAWTrLr33vD39/zzsZOI5Ie0bsRiZvWBrsANwJbu3qTuEas9\nX50L/113wYsvwvDhaQolWac3b5GaSVvhN7PtCK3+I4EfCH3/fdOSsupz1qnwL1kSxu0/9hjsvHMa\ng0nW3Xpr6O554onYSURyX50Kv5m1IRT7owhDOIcCj7n75+kOWsX561T4H3ooXBzUhcH8t2BB2Clt\n7NiwVaaIVK2uhf9zQrEf6u4fZiBftepS+MvKwsXcfv3CME7Jf9deC59+qgl4IiuTSuFvUM3PNnf3\naidrWTZ2RK+FZ5+Fpk2hS5fYSSRdzj479PV/+SVsvHHsNCL5rbrhnGPM7KKky+c3zGxLM7uEHFyW\n2R2uuw4uv1zrvBSSNdcMWzTeckvsJCL5r9plmYFjCRuxtAPmExZpawp8SNiIZYi7/5qRYLX8MDFq\nFJx3HkyaBPWKdkfhwjRzJmyzTejyadkydhqR3JTOUT31gRbJ3R/cfVka8q3snLUq/F26wIknwgkn\nZCCURHfGGaHoX3117CQiuSmt4/izrTaF/5134PDDwyqcDRtmKJhENXVqGJ47bRo0axY7jUjuSetm\n67U4eWMz+4+ZTTSzyWZ2fXK8uZmNMrMpZvaSma2ZrnPeeCOcf76KfiHbfPMwUmvAgNhJRPJXRlv8\nZtbE3ReaWQPgdeBC4CBCd9FNyQXitdz90kqeW6MW/5QpYU2eadNgtdXS9SeQXDRhAhx4IHz+Oayy\nSuw0IrklbS1+M9vEzLomt5uY2eqpPM/dFyY3GwH1gTmEwj84OT6YsKNXnd18M5x5pop+MejQIczT\nGDIkdhKR/JTKDlz/R9h6sbm7b5YM77zH3Vc6Sj5Z5O09YLPkOReb2Rx3Xyv5uQE/lt9f4bkpt/jL\nR3tMmQItWqz88ZL/Ro+Gc86BDz/U6C2RitLV4j+bsBb/PAB3nwKsk0oAdy9z9/bABsCeZrbXCj93\nwhr/ddK3b1jCV0W/eHTuDKuuCi+8EDuJSP6pbuZuucXuvtiS2VBJf32NirW7zzWzF4COwCwza+Xu\n35pZa+C7qp7Xq1ev/90uKSmhpKTkd4+ZNw/uuw/efbcmiSTfmcHFF4cL+n/+c+w0IvGUlpZSWlpa\no+ek0tXTB/gJOAHoDpwFTHb3anewNbMWwFJ3/8nMVgVGAr2BfYHZ7n6jmV0KrFmXi7u33BKGcT72\n2EofKgVm6VJo0wYefhh22y12GpHckJZx/MnkrVOBfZJDI4H7V1aVzWxbwsXbesnXw+7ex8yaA48D\nGwFfAEe6+0+VPH+lhX/JkrCt4jPPQMeO1T5UCtTdd8PIkWF9JhEpgglcDz8MAwdq6eVitnAhbLIJ\nvPYabLll7DQi8aWrxT+J0Kdf8YXmAu8A17j77LoGreK81RZ+d/jjH+Gmm6Bbt0wkkHzRq1cY2dW/\nf+wkIvGlq/D3AZYCQwjF/2igCfAtsJu7Z+TS2soK/8iRcNFF8P77WoWz2H33XWjtf/IJrLtu7DQi\ncaWr8E9w9w6VHTOzSe6+bRqyVnbeagt/165hITYtxiYQFm9bZx345z9jJxGJK13j+Oub2Z8qvOhO\nFZ63tA75am3ixNC6O/roGGeXXHT++XDvvaHPX0Sql0rhPxV4wMy+MLMvgAeA081sNeD6TIaryi23\nQI8e0KhRjLNLLmrTJgzpHDgwdhKR3JfyqJ5kFU1397mZjfS/81Xa1TN9erio+/nnYVcmkXLjxsHx\nx4elO+rXj51GJI667rlb8YUOBNoCjctn8Lp7lN7Ufv3CRisq+rKiXXcN/fzPPAOHHRY7jUjuSuXi\nbn9gVaAzcB9wBPAfdz81o8EqafHPmwebbgrjx4ex2yIrGjYsdAWOGxc7iUgc6bq4u6u7n0BYRbM3\nsDMQZarM/ffDPvuo6EvVDj4YZs2CN9+MnUQkd6VS+Bcl3xea2fqEkTytMhepckuWwO23wwUXZPvM\nkk/q14fzzgutfhGpXCqF/3kzWwvoA4wnrK8zNJOhKjNsWOjm2WGHbJ9Z8s3JJ0NpKXz2WewkIrkp\nlT7+xu7+S/ltoDHwS/mxjAWr0MfvDjvtBP/4Bxx0UCbPKoXi8sth/ny4447YSUSyK10zd99z9+1X\ndizdKhb+V1+F004Lk7a025KkonxXtqlToXnz2GlEsqdOF3fNrLWZdQSamNn2ZtYx+V5CWKsna265\nBf7+dxV9SV3r1uHT4YABsZOI5J4qW/xmdhJwEmHXrIr7W80HBrn7UxkNlrT4p0yB3XeHL76AJll9\nu5F89/77sP/+MG2aZnlL8UhXV89h7j4srclSUF74zzwz7KV79dXZTiCFYO+9w2xeLeYnxaJOhd/M\nLmD5OvwVH2SEpRtuTVfQKs7v33/vbLEFfPwxtMr6AFIpBCNGwGWXwYQJWr5bikNdJ3A1S76aVrhd\n8Svj+veHQw5R0Zfa69YtzAHRLm0iy+X01outWjmjRkG7drHTSD67/354+ml44YXYSUQyLy1LNpjZ\nhmb2tJl9n3wNM7MN0hezatttp6IvdXfccWF9p8mTYycRyQ2pDJAcCDwHrJd8DU+OZdz552fjLFLo\nGjeGM88MS36ISGqjet539z+u7Fjag5l5WZnrgpykxfffh81apkyBli1jpxHJnHStzjnbzI43s/pm\n1sDMjgN+SE/E6qnoS7q0bAlHHAF33x07iRSa8ePh8MNjp6iZVDZiOQW4AygfvjkOODljiSqw3r+v\n/D079aRXSa/fHe9V2oveY3vr8Xp81Y9fH1Z7pyeX/NKLxo1zII8eXxCPv/VW2GWX3z00p6XS1dPS\n3b/PUp6K561060WRujjgADj0UDg1o9sISbEo3wp22jRYY43YaYJ0dfWMM7OXzOzUZHlmkbx1/vmh\nhaY2haTDHXeErWBzpeinaqWF3923AP4BtAPGm9nzZnZ8xpOJZEDnztCwIYwcGTuJ5Lv58+GBB+Dc\nc2MnqbmU1rt09/+4+9+BnYA5wOCMphLJELPQ6tcOXVJXDz4IXbrk51awqUzgWsPMTjKzEcCbwExg\nx4wnE8mQo48Ok7k++CB2EslXy5aFeSH5OtcolRb/RKA98E+gjbtf7O7jMxtLJHMaNYLu3UNfv0ht\nPP102PNh551jJ6mdVEb11HP3sizlqXhejeqRjPnxR9hss9Dyb906dhrJN7vsAhdeCIcdFjvJ76Vl\nVE+Moi+Sac2bw7HHwp13xk4i+WbcOPjuOzj44NhJai+nV+fM1WxSGKZODS23L76A1VaLnUbyxWGH\nQUkJnHNO7CSVS9fqnLtXcmy3ugQTyQWbbx629RysMWqSos8+g7Fj4eSsrF2QOan08U9w9w4rO5b2\nYGrxSxa8/jqcdBJ8+inUrx87jeS6Hj3C3t833BA7SdVSafFXuVaPme0C7Aq0NLPzCVsuQth9K6Xx\n/yK5brfdYO214bnnwm5vIlWZMwceeQQmTYqdpO6qK+CNCEW+Psu3YGwKzANSWosu2cRljJl9ZGYf\nmlmP5HhzMxtlZlOS5SDWrNsfQ6R2zOCCCzShS1auf3848EBYf/3YSeoula6ejd39y1q9uFkroJW7\nTzSzpsB44GDC6p4/uPtNZnYJsJa7X7rCc9XVI1mxdClssQUMHZq/47IlsxYvhk03hREjwqJsuSyV\nrp5UCv+YSg67u3euRaBngDuTr07uPit5cyh1961WeKwKv2RN376hv/+JJ2InkVw0aBAMGQIvvRQ7\nycqlq/DvUOFuY+AwYKm7X1TDMJsAYwmLvX3l7mslxw34sfx+hcer8EvWzJ8fWnRvvw1/+EPsNJJL\n3MP+37fcAvvsEzvNytXp4m45d393hUOvm9k7NQzSFBgGnOvu863C1lru7mamCi9RNWsGp50W1l/p\n1y92GsklL70UrgXtvXfsJOmz0sJvZs0r3K0H7ACsnuoJzKwhoeg/7O7PJIdnmVkrd//WzFoD31X2\n3F69ev3vdklJCSUlJameVqTGevSAdu2gV68ws1cE4OabwwCAXN0KtrS0lNLS0ho9J5Wuni+A8gct\nBb4Aerv76yt98dC0HwzMTpZ1Lj9+U3LsRjO7FFhTF3clF5x8cpjYdcUVsZNILpg4MezaNm1aWNwv\nH6Slj7+OAXYHXgU+YPmbx2XA28DjwEaEN5Ij3f2nFZ6rwi9Z99FH0LVr+I++4r68UnyOOw623RYu\nuSR2ktSl6+LuqsBZwO6E4v0acI+7/5KuoFWcV4Vfoth//7Aei/blLW5ffQXt28Pnn8OaeTTTKF2F\n/wnCpK1HCLN3/wqs4e5HpCtoFedV4ZcoxoyBs84Krf96mqNetM4/P/z933xz7CQ1k67CP9nd267s\nWLqp8Ess7rDDDtCzJxx0UOw0EsNPP4Vhve+/DxtuGDtNzaRldU7gvWTdnvIX3ZkwA1ekIJnBxRdD\nnz6xk0gs994blmfIt6KfqlRa/J8AbYDphD7+jYBPCSN83N23y0gwtfgloqVLoU2bsCjXrrvGTiPZ\nVL48w4svholb+SYtE7iAfVm+Mmc5r+SYSMFo0CCM3e7TJ+yvKsXj0UdDwc/Hop+qVFr8D7v78Ss7\nlvZgavFLZAsXwiabwKuvwlZbrfThUgDKyqBtW7jnHthrr9hpaiddffztVnjRBkDHugQTyQdNmsDZ\nZ2vJ5mLy7LOw+upha8VCVmXhN7PLzWw+sK2ZzS//Iiyv8FzWEopE1L07DBsG33wTO4lkmjvceGOY\nrJWryzOkSypdPTesuJxCNqirR3JFjx5hFu9NN8VOIpk0diycfjp8/HF+b8OZrnH8nVi+3ML/uPur\ndYtXPRV+yRVffgnbbw9Tp8Jaa6388ZKf9t8/bL95+umxk9RNugr/8ywv/I2BnYDxtdmIpSZU+CWX\nnHgibLklXH557CSSCR98AN26heUZ8n2Npows0mZmGwJ93f3QuoRL4Twq/JIzJk+Gzp1DYWjSJHYa\nSbe//jVsqZhPi7FVJV2jelY0A9i6dpFE8lPbtmE/3oEDYyeRdPvss7DZyplnxk6SPal09dxR4W49\noD0wzd2Py2gwtfglx7z1Fhx9NPz3v9CwYew0ki5/+xussw5cfXXsJOmRrj7+k1jex7+MUPTfSEvC\n6s+rwi85Z6+94JRT4PiMTl+UbPn667De/pQp0KJF7DTpkc71+DcnFP+pmV6Hv8J5Vfgl57z8chje\n+eGHWrK5EFxwQZite9ttsZOkT536+M2sYbJF4nTC9okPATPMrE+yj65I0enSJWzMrvV78t/s2eGa\nzQUXxE6SfdW1WfoAzYFN3X17d98e+AOwJpBnWxOIpIdZ2I/32mvDTE/JX/36hXH7G2wQO0n2VdnV\nY2ZTgTbuXrbC8frAp+6+eUaDqatHclRZWdiS78YbYb/9YqeR2pg7FzbbLFyw3zyjlSz76jqcs2zF\nog/g7suA3x0XKRb16oWJXGr156+77gpv2oVW9FNVXeH/2MxOXPGgmR0PfJK5SCK574gj4Lvvwvou\nkl9+/hnZoN8rAAAOe0lEQVT69i3uWdjVdfVsADwFLGL5VosdgSbAIe4+I6PB1NUjOW7QIHjoIXjl\nldhJpCZuvhnefhsefzx2ksyo83BOMzOgM7ANYTjnZHcfndaUVZ9bhV9y2tKlYf2eQYNgjz1ip5FU\nLFoUNlEfObJwd9jKyFo92aLCL/ngwQdhyJAwvl9yX79+4RPaM8/ETpI5KvwiGbZkyfJN2XfbLXYa\nqc6iReFi7vDhYZntQpWpRdpEJNGwYbhI+M9/xk4iK3PffbDjjoVd9FOlFr9IHf36K2yxBTz2GOyy\nS+w0Upny1v7zz0OHDrHTZJZa/CJZ0KhRmM171VWxk0hVBgyAnXYq/KKfKrX4RdJgyZLlI3z23DN2\nGqlo0aIwS/ff/w4zrgudWvwiWdKwYWjxX3WVZvPmmnvvDZvoFEPRT5Va/CJpsnRp2KnrnnvCKp4S\n388/h779UaPCuvvFQC1+kSxq0AB69oR//EOt/lzRt294Ey6Wop8qtfhF0mjZsjAjtE8f2H//2GmK\n25w5YY7Fm28W12JsavGLZFn9+mHv1iuuCMs3Szx9+sDBBxdX0U+VWvwiaeYOf/oTnH9+2Jxdsm/W\nrHC9ZcIE2Gij2GmyS0s2iETyyivwf/8HH38cRvxIdvXoEXZL69s3dpLsi97VY2YPmtksM5tU4Vhz\nMxtlZlPM7CUzWzOTGURi6NwZNt0UHnggdpLi89lnYeG8K66InSR3ZbqPfyDQbYVjlwKj3L0NMDq5\nL1Jwrrsu9PcvXBg7SXG58ko491xYZ53YSXJXxrt6zGwTYLi7b5vc/wTo5O6zzKwVUOruW1XyPHX1\nSN474oiwTEAx7/aUTe++CwcdBP/9L6y2Wuw0ceREH38lhX+Ou6+V3Dbgx/L7KzxPhV/y3tSpYdbo\n5MlqgWaaO3TtCkceCX/7W+w08aRS+BtkK0xl3N3NrMrq3qtXr//dLikpoaSkJAupRNJn883huOOg\nd++wwbdkzsiRMGMGnHJK7CTZVVpaSmlpaY2eE6urp8TdvzWz1sAYdfVIIZs9G7baCl57LXyX9Fu6\nNHSp9e4Nhx4aO01c0Uf1VOE54MTk9olAAW+CJgJrrw2XXBK+JDMeeCD8ng85JHaS/JDRFr+ZDQU6\nAS2AWcBVwLPA48BGwBfAke7+UyXPVYtfCsYvv8DWW4c9evfaK3aawjJ3blgSe8QIrbcPOXJxt7ZU\n+KXQPP44XHstjB8fFnST9Lj44tCdpjkTgQq/SA5xD639o46CM8+MnaYwfP552Flr0iRo3Tp2mtyg\nwi+SYz74APbeOyzl0Lx57DT579BDoWNHzdKtSIVfJAeddRbUqwd33hk7SX578UXo3h0+/BAaN46d\nJneo8IvkoNmzw4Xe0aO1QUhtLV4M7drB7bfDAQfETpNbcnU4p0hRW3tt6NUrtPy1Zn/t3HJLWHZZ\nRb921OIXiWDZMthlFzjjjOKbaVpXX34J228f1uXZdNPYaXKPunpEcth778F++8FHH0GLFrHT5I+D\nDw6F/6qrYifJTSr8IjnuvPNg/nyNQU/VU0+FlU4nTtQF3aqo8IvkuHnzQl/10KGwxx6x0+S2n34K\nF3T1u6qeCr9IHnjqKbjsstCKXXXV2Gly1xlnhElw/fvHTpLbVPhF8sSRR4YLlTfeGDtJbnrttbBx\n/UcfwZrarLVaKvwieeK772C77eC558ISBLLcwoVh8bXrr9eSy6nQOH6RPLHOOnDbbWFo5+LFsdPk\nlssuC8syqOinj1r8IjnCPawn37Zt2KhdYMwYOP74sMaR1jZKjbp6RPLMrFnQvn1YwrnYR67Mmxe6\nv+65J8x3kNSo8IvkoeefD4uPTZxY3BcyTzkl7FswYEDsJPlFhV8kT511VthZ6tFHYyeJY+hQ6Nkz\nbFrTrFnsNPlFhV8kTy1cuHyd+eOOi50mu6ZODesYjRoVur2kZlT4RfLY++9D164wdmy44FsMFi+G\nXXeFk08O3V1Scyr8InnuwQehTx94++3i6PI491yYPh2GDQOrtnRJVVT4RQrAaafBzz+Hfu9CLoaP\nPBL2KXjnHVhrrdhp8pcKv0gBWLQodH+cdFJoERei8eOhW7cwbr9du9hp8lsqhb9BtsKISO2sumpY\nyG3XXWHLLUOBLCSzZoWJa/37q+hni5ZsEMkDm24KTz4JJ5wQNhcvFL/8AocfDieeqCUZskldPSJ5\n5NFH4cor4a23YN11Y6epm2XL4KijoH79cP2inpqhaaGuHpECc+yxMGUKHHggjB4Nq68eO1HtuIfd\nx2bPhhdfVNHPNrX4RfKMO5x9dlibfsQIaNIkdqKau+EGGDIEXn21uJelyASN6hEpUGVlYZTP99/D\nM8/AKqvETpS6W2+Fu+4KE9M22CB2msKjwi9SwJYuDTt3lZXBY4/lx+bjN98cVtscMwY22ih2msKk\njVhECliDBqHgN2oEBxwA8+fHTlS9m26Ce++F0lIV/dhU+EXyWKNGYUTMZptBly7hYmmuWbYsXMgd\nNCgU/Q03jJ1IVPhF8lz9+mHyU+fOYZLXxx/HTrTcggVw2GFhB6033lCffq5Q4RcpAGZhpMyll0Kn\nTvDss7ETweefhyxrrBGGbGr9ndyhwi9SQE4+Oezgdc45YS3/X3+Nk+Nf/4Kddw7zDgYNCl1Skjs0\nqkekAM2aBaeeGpY4HjQIOnTIznnnzIGLLgpDNR97LGwmI9mV06N6zKybmX1iZv81s0ti5RApROuu\nC8OHw4UXwr77wmWXha0cM6WsLOwdsPXW0LAhvPeein4ui1L4zaw+cCfQDWgLHGNmW8fIkimlpaWx\nI9RaPmcH5S9nBscfHzZtnzkTttgijKNftCgtLw+Egj98eNgqccAAeOEFOOqo0rzeNCbf//2kIlaL\nfydgqrt/4e5LgMeAv0TKkhH5/I8nn7OD8q9ovfWWD6UcNy6s9HnxxfDpp7V/zZ9+ggceCMso9+wJ\nf/97eO2OHfX7zwexFmlbH5he4f4M4E+RsogUhbZtw7r+n3wSumX23DO8CXTtGkbf7LILNG1a+XMX\nLQprA73zThgxNG5cGD56xx3heyHvDFaIYhV+XbUViWSrrcIs2muvDZ8Cxo6F3r3h3XdD4V9/fWjZ\nMowIWrQotO5nzIA2baB9+3DR+IknimMP4EIVZVSPme0M9HL3bsn9y4Ayd7+xwmP05iAiUgs5uUib\nmTUAPgW6AN8AbwPHuHsOzTkUESlMUbp63H2pmXUHRgL1gQdU9EVEsiNnJ3CJiEhm5NySDfk8scvM\nHjSzWWY2KXaW2jCzDc1sjJl9ZGYfmlmP2Jlqwswam9l/zGyimU02s+tjZ6opM6tvZhPMbHjsLLVh\nZl+Y2QfJn+Ht2HlqwszWNLMnzezj5N/PzrEzpcrMtkx+5+Vfc6v7/5tTLf5kYtenQFfga+Ad8qjv\n38z2AH4GHnL3bWPnqSkzawW0cveJZtYUGA8cnC+/fwAza+LuC5PrSK8DF7r767FzpcrMzgc6As3c\n/aDYeWrKzKYBHd39x9hZasrMBgNj3f3B5N/Pau6ewfnOmWFm9Qj1cyd3n17ZY3KtxZ/XE7vc/TVg\nTuwcteXu37r7xOT2z8DHwHpxU9WMuy9MbjYiXD/KmwJkZhsA+wP3A/k8Mj7vspvZGsAe7v4ghOuQ\n+Vj0E12Bz6oq+pB7hb+yiV3rR8pS1MxsE6AD8J+4SWrGzOqZ2URgFjDG3SfHzlQDtwEXAWWxg9SB\nAy+b2btmdnrsMDWwKfC9mQ00s/fM7D4zy8Nt7AE4GhhS3QNyrfDnTr9TEUu6eZ4Ezk1a/nnD3cvc\nvT2wAbCnmZVEjpQSMzsQ+M7dJ5CHLeYKdnP3DsB+wNlJ92c+aABsD9zt7tsDC4BL40aqOTNrBPwZ\neKK6x+Va4f8aqLgx24aEVr9kiZk1BIYBj7j7M7Hz1FbyMf0FYIfYWVK0K3BQ0kc+FOhsZg9FzlRj\n7j4z+f498DSh+zYfzABmuPs7yf0nCW8E+WY/YHzy+69SrhX+d4EtzGyT5J3rKOC5yJmKhpkZ8AAw\n2d1vj52npsyshZmtmdxeFdgbmBA3VWrc/XJ339DdNyV8VH/F3U+InasmzKyJmTVLbq8G7APkxQg3\nd/8WmG5mbZJDXYGPIkaqrWMIDYdqxVqrp1L5PrHLzIYCnYC1zWw6cJW7D4wcqyZ2A44DPjCz8oJ5\nmbu/GDFTTbQGBiejGuoBD7v76MiZaisfuz3XBZ4O7QcaAI+6+0txI9XIOcCjSaPzM+DkyHlqJHmz\n7Qqs9NpKTg3nFBGRzMu1rh4REckwFX4RkSKjwi8iUmRU+EVEiowKv4hIkVHhFxEpMir8UlTMbO0K\nS9fONLMZye35ZnZnGs9zs5l1Sm6fl0woK//Z6PKJTiIxaBy/FC0z6wnMd/db0/y6zYDR7r5Tcn8a\nsIO7z07un05Ydjmt5xVJlVr8UuwMwMxKyjc/MbNeZjbYzF5NNhY5NGnBf2BmI5K12jGzjmZWmqxE\n+WKynwGEpcRfTh7Tg7C09RgzK59FPJywLINIFCr8IpXbFNgLOAh4BBjl7tsBi4ADksXs7gAOc/cd\ngIHAtclzdyesO4W79wO+AUrcvUty7FugRTLFXiTrcmqtHpEc4cAId19mZh8C9dx9ZPKzScAmQBtg\nG8La8xDWlvomecxGwMyVnGMWYfXZT9IbXWTlVPhFKvcrhPX9zWxJheNlhP83Bnzk7rtW8fyVfZo2\n8nMhNikA6uoR+b1UNkL5FGhZviG3mTU0s7bJz74EWlV47Hxg9RWevy7aa0IiUeGXYucVvld2G37f\nMvdkT+jDgRuTrR4nALskP3+d324AMwB4sfzibnIReLa7L0jbn0KkBjScUyTNkq0rx7j7jlX8/P+A\n1dz9tuwmEwnU4hdJs2Sf4jFmtlcVDzkKuC+LkUR+Qy1+EZEioxa/iEiRUeEXESkyKvwiIkVGhV9E\npMio8IuIFBkVfhGRIvP/oMiPFSU8spUAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x625a790>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "import math\n",
    "import numpy\n",
    "%matplotlib inline\n",
    "from matplotlib.pyplot import plot,xlabel,ylabel,title\n",
    "\n",
    "#Variables\n",
    "\n",
    "Vp = 48.0                 #Peak-to-peak voltage (in volts)\n",
    "\n",
    "#Graph\n",
    "\n",
    "x = numpy.linspace(0,2 * math.pi,100)\n",
    "y = numpy.sin(x)\n",
    "plot(x,24 + 24*y)\n",
    "plot(x,(24)+x-x,'--')\n",
    "xlabel(\"Time(t)\")\n",
    "ylabel(\"Output voltage (Vo)\")\n",
    "title(\"Output waveform\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 33.14 , Page Number 872"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<matplotlib.text.Text at 0x64a0b30>"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEZCAYAAACJjGL9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHbhJREFUeJzt3X2wHVWZ7/HvTwQZBUwckPASiAooUAhYU5EBga0gE1Bg\ncFTEKxmduUpJITM1cocXucWJVGEY1HJEcJgaFEUSjGAogoAkXjYgInMViIEQk1xICAkg74TwYgLP\n/aPXCZ2dvfvsc/ZL9znn96nadbpXr939nE6nn16r+/RSRGBmZtbKm8oOwMzMqs2JwszMCjlRmJlZ\nIScKMzMr5ERhZmaFnCjMzKyQE4XZKCDpBEmrJK2VtH/Z8dj44kRhfSXp85IWSVon6TFJl0p6+zC+\nv0LSR7oYT+H6JP1R0qdz84dIer1J2QuSevn/6ZvAqRGxbUQs7OF2NiNpS0nXSHo4/e6H93P7Vj4n\nCusbSV8FZgJfBbYDDgJ2B+ZL2rLN1QSgLoY11PpuAw7LzR8GLGlS9puIeL2LcW0kScBuwOIRfr8b\n/89vBz4HPE62z2wccaKwvpC0HTAAnBYRt0TEaxGxEvg0MIXsJISkKySdn/teTdKqNH0l2QlzXuqC\nOUPSlHSV+0VJqyWtSQmJkayvSei3s2lS+BBwYUPZoakekn6WWkrPSbpN0j6p/IOpfGNSSt1JC9P0\nmySdJWm5pKck/VTSRElvAdYCWwALJS1L9feWVJf0rKT7JR3b8Dt/X9KNkl4EPpxaTmdI+kP6XS+X\ntKOkmyQ9L2m+pAnN/u0iYn1EfDci7gRea1bHxjYnCuuXg4GtgZ/nCyNiHXAj8NHBIlpcsUbEycAj\nwMdTF8w3c4trwB7AUcCZko7ocH2D7gD2lTQhXZn/FfBTYEKu7GBSogB+keLYAbgHuCpt625gHXBE\nbt2fHVwOfAU4jiwB7QQ8C1wSEa9GxDapzvsjYs/U+poH3Jy28xXgKkl75dZ9EnB++u6v0z74RNr+\ne4GPAzcBZwHvJDsXnN5sP5k5UVi/bA881aJ75nHgL3PzI+lamhERL0fE/cAPyU6UnawPgNTqeYTs\nBL4/sCwiXgHuzJVtBdyd6l8REesiYj0wA9hf0rZpdbMH40plR6cygFOAcyNiTe67n2zRbXQQ8LaI\nmBkRGyLiVuCGht/5uoi4K8X0aiq7OCKejIg1ZAnwrohYmJbPBQ4c6X6ysc2JwvrlKWD7Fie+ndLy\nTqzKTT8C7Nzh+vIGu582djGRXaUPlt0dEeslbSFpZuo+eh54mOxKfvv0ndnAJyRtRXZ1//uIGIx7\nCjA3dSU9S3Y/YgOwY5N4dmbT3xdgJW/8ztFkOcATuemXG+ZfAbbBrAknCuuXu4BXgb/LF0raBpgG\n/CoVrQPemqsyqWE9rW6k7tYwvbrD9eXlE8UdqewONk8enyXrPjoiIt4OvIusNSOAiFhMdkI/OtWd\nldvGI8C0iJiY+7w1Ih5rEs8aYHL+fgfZQwGrm9Qt0s2HAmwMc6KwvoiI58m6Uy6W9DfpkcspwByy\nq98rU9X7gGPSjdxJwD83rOoJ4D1NNnGupL+QtC/webL7CJ2sL+924ANkieHOVLYIeDfwYd5IFNuQ\nJcNnJL0NuKDJumalGA4FfpYr/w/gAkm7AUjaQdJxLeL5LfAS8K9pP9bI7jlcnZZ3PQFIeoukrdNs\nftrGAScK65uIuAg4h+xvAp4nO+GtJLsCX5+qXQksBFaQ3ay9mk2v+r9BlhSelfQvufLbgOXAAuCi\niFjQ4frycS8D/gQ8FhEvpLIguy+xLfCbVPXH6fdZDdxP1opqbLHMJks4v4qIZ3Ll/w5cD9wi6YX0\n3an5MHLxrAeOJWuZPAl8Dzg5Ipbm6rbTUoqG6aLv/JEsOe0M/BJYN5jUbOyTBy6y0Sy1Sh4C3tyr\nv2MwG+/cojAzs0JOFDYWuFls1kPuejIzs0JuUZiZWaE3lx3ASEhyM8jMbAQiYtiPT4/aFkVE+NOl\nz3nnnVd6DGPp4/3p/VnVz0iN2kRhZmb94URhZmaFSk0Ukn4g6QlJi3Jl70jvxl8q6ZZW78i37qnV\namWHMKZ4f3aX92f5Sn08VtKhwIvAjyNiv1T2b2Svo/43SWcCEyPirIbvRZlxm5mNRpKI0XYzOyLu\nIBugJe844Edp+kfA3/Y1KDMz20QV71HsGBGD78l/gubv47cuWboUbrih7CjGjptvhsUjGtnamrn0\nUnjllbKjsEr/HUVERKu/mZAGcnO19LGRck9ed8yaBVdeOXQ9a99JJ8HWfqn5iNTrder1esfrKf0V\nHuntn/Ny9yiWALWIeFzSTsCtEfG+hu/4HkWXzJkD11yT/bTOTZ8ORx6Z/bTOTZwIDz2U/bTOjcp7\nFC1cD/x9mv574LoSYzEzG/fKfjx2NtmgL++VtErSF4CZwEclLQU+kubNzKwkpd6jiIiTWiw6sq+B\nmJlZS1XsejIzswpxojAzs0JOFGZmVsiJwszMCjlRmJlZIScKMzMr5ERhZmaFnCjMzKyQE4WZmRVy\nojAzs0JOFGZmVsiJwszMClV24CJJK4AXgNeA9RExtdyIzMzGp8omCiDIBjB6puxAzMzGs6p3PQ17\nJCYzM+uuKieKABZI+p2kL5YdjJnZeFXlrqdDIuIxSTsA8yUtiYg7BhcODAxsrFir1ajVav2P0Mys\nwur1OvV6veP1VDZRRMRj6eeTkuYCU4GmicLMzDbXeBE9Y8aMEa2nkl1Pkt4qads0/TbgKGBRuVGZ\nmY1PVW1R7AjMlQRZjFdFxC3lhmRmNj5VMlFExMPAAWXHYWZmFe16MjOz6nCiMDOzQk4UZmZWyInC\nzMwKOVGYmVkhJwozMyvkRGFmZoWcKMzMrJAThZmZFXKiMDOzQk4UZmZWyInCzMwKVTJRSJomaYmk\nZZLOLDseM7PxrK23x0o6HjgszdYjYl6vApK0BfA94EhgNfB/JV0fEQ/2aptmZtbakC0KSTOB04EH\ngMXA6ZK+0cOYpgLLI2JFRKwHrgaO7+H2zMysQDstio8BB0TEawCSrgDuA87uUUy7AKty848CH+zR\ntszMbAjtJIoAJgBPp/kJqaxX2lp3fszsxnFhzcwM6vU69Xq94/W0TBSSLgVmARcA90i6FRBwOHBW\nx1tubTUwOTc/maxVsYl8ojAzs801XkTPmDFjROspalEsBS4CdgYWACvJupzOjIjHR7S19vwO2FPS\nFGANcCJwUg+3Z2ZmBVrezI6I70TEX5O1IJYBnyBLHKdI2qtXAUXEBuA04JdkN89/6ieezMzKM+RT\nT+npo5kRcQDwGeAEoKcn7oi4KSLeGxF7REQvn7AyM7MhtPN47JslHSdpFnAzsISsdWFmZuNA0c3s\no8haEB8D/huYDXwpIl7sU2xmZlYBRTezzyJLDmdExDN9isfMzCqmZaKIiI/0MxAzM6umSr4U0MzM\nqsOJwszMCjlRmJlZIScKMzMr5ERhZmaFnCjMzKyQE4WZmRVyojAzs0KVSxSSBiQ9Kune9JlWdkxm\nZuNZOyPc9VsA346Ib5cdiJmZVbBFkajsAMzMLFPVRPEVSQslXS5pQtnBmJmNZ6V0PUmaD0xqsuhr\nwPeBr6f584FvAf/YWDE/ZnbjuLBmZgb1ep16vd7xehQRnUfTI2nc7HkRsV9DeVQ57tFkzhy45prs\np3Vu+nQ48sjsp3Vu4kR46KHsp3VOEhEx7K79ynU9SdopN3sCsKisWMzMrJpPPV0o6QCyp58eBk4p\nOR4zs3GtcokiItxoNzOrkMp1PZmZWbU4UZiZWSEnCjMzK+REYWZmhZwozMyskBOFmZkVcqIwM7NC\nThRmZlbIicLMzAo5UZiZWSEnCjMzK+REYWZmhUpJFJI+JekBSa9J+kDDsrMlLZO0RNJRZcRnZmZv\nKOvtsYvIxpq4LF8oaR/gRGAfYBdggaS9IuL1/odoZmZQUosiIpZExNImi44HZkfE+ohYASwHpvY1\nODMz20TV7lHsDDyam3+UrGVhZmYl6VnXk6T5wKQmi86JiHnDWJUHxzYzK1HPEkVEfHQEX1sNTM7N\n75rKNjMwMLBxularUavVRrA5O/ZYOPFE0LCHW7dWrrwSpnucxq5YvBje8Y6yoxjN6unTGUWUd8Eu\n6VbgjIj4fZrfB5hFdl9iF2ABsEc0BCmpscjMzIYgiYgY9mVhWY/HniBpFXAQ8AtJNwFExGJgDrAY\nuAk41RnBzKxcpbYoRsotCjOz4RtVLQqrlnq9XnYIY4r3Z3d5f5bPicL8H7HLvD+7y/uzfE4UZmZW\nyInCzMwKjdqb2WXHYGY2Go3kZvaoTBRmZtY/7noyM7NCThRmZlbIicLMzApVOlFImpZGulsm6cwW\ndb6bli+UdGC/YxxNhtqfkmqSnpd0b/qcW0aco4GkH0h6QtKigjo+Nts01P70sdk+SZMl3ZpGEb1f\n0ukt6rV/fEZEJT/AFmQDF00BtgTuA/ZuqHMMcGOa/iDw27Ljruqnzf1ZA64vO9bR8AEOBQ4EFrVY\n3tVjk2xEyFXAWmD/sn//Evanj8329+Uk4IA0vQ3wx07PnVVuUUwFlkfEiohYD1xNNgJe3nHAjwAi\n4m5ggqQd+xvmqNHO/gTo6QvHJX1e0iJJ6yQ9JulSSW8fxvdXSPpIF+MpXJ+kP0r6dG7+EEmvAzsB\nz+bKXpCU///U7WPzm2Qvydw2IhZ2sJ5hk3SQpPmSnpb0J0lzJDUba2bEIuIO0v4sCqWb2xyrIuLx\niLgvTb8IPEg2KFzesI7PKieKXciuoAY1G+2uWZ1dexzXaNXO/gzg4NQUvTG99r1rJH0VmAl8FdiO\n7O3BuwPzJW3Z5mqC7p4whlrfbcBhufnDgCVNyn4Tm47t3rVjU5KA3cjeqjyS73f6/3wC8B9k/1a7\nk7VqftjhOoerp8fmWCVpCllL7e6GRcM6PqucKNr9A4/G/+T+w5Dm2tkv9wCTI2J/4GLgum5tXNJ2\nwABwWkTcEhGvRcRK4NNk3WGfS/WukHR+7nu19Ep6JF1JdsKcJ2mtpDMkTZH0uqQvSlotaU1KSIxk\nfU1Cv51Nk8KHgAsbyg5N9ZD0M0mPAdOAS3IntO2Am9NJfzCWEyQtTNNvknSWpOWSnpL0U0kTJb2F\n7MS8BbBQ0rJUf29JdUnPpn7oYxt+5++nE+qLwIdTy+kMSX9Iv+vlknaUdFPq+58vaUKzf7uIuDki\nro2IFyPiZeAS4JBmdXuoZ8fmWCVpG+Aa4J9Sy2KzKg3zLc8RVU4UjaPdTWbT8bSb1Wk5Ip4NvT8j\nYm1EvJSmbwK2lNSt8cUOBrYGft6wzXXAjcDgiIhBiwM2Ik4GHgE+nrpgvplbXAP2AI4CzpR0RIfr\nG3QHsK+kCenK/K+An5JdZW+X+91uT9O/SHH8EFgDXJXKtwNeBAbjAvhsbvlXyLoDDuONbq1LIuLV\niNgm1Xl/ROyZWl/zgJuBHdJ3r5K0V27dJwHnp+/+Ou2DT6Ttvxf4ONmYL2cB7yQ7FzS96dnEYcD9\nbdbtih4fm2NOOkauBX4SEc2S6rDOnVVOFL8D9kxXjFsBJwLXN9S5HpgOWT8q8FxEPNHfMEeNIfdn\nusJUmp5K9pf7z3Rp+9sDTzV0zwx6HPjLfCgjWP+MiHg5Iu4nO0mf1OH6AEitnkfITo77A8si4hXg\nTrL7PlsDW5Ga9hFxRUp+15E9NLB/ugfyHPCTwbgkbQscDcxOmzoFODci1qR7SDOAT7boNjoIeFtE\nzIyIDRFxK3BDw+98XUTclWJ6NZVdHBFPRsQasgR4V0QsTMvnknVRFJL0fuB/A/9rqLrd1ONjc0xJ\n++lyYHFEfKdFtWGdO3s2ZnanImKDpNOAX5I1uy+PiAclnZKWXxYRN0o6RtJyYB3whRJDrrR29ifw\nSeDLkjYALwGf6WIITwHbS3pTk2SxU1reiXx/6yPAfh2uL2+w++kR3mg57AkcS5YoNgAnpwT8t2Qt\nih2At5AlqUuA/wG8Atwp6ctkV/e/j4jBuKcAc9ON8kEbgB2Bxxri2ZlNf1+AlbxxwzLYvPUNkD8R\nvNww/wrZEzItSdqDrPV3ekTcWVR3uCTNBg4nO0ZWAeeRJdp+HJtjzSFkXbl/kHRvKjuHrJt1ROfO\nyiYK2NjEvKmh7LKG+dP6GtQoNtT+jIhLyE5qvXAX8Crwd8DPBgtTP+o04OxUtA54a+57jU/XtOpH\n3Y3sMcDB6cFm9EjXl3c72RX/SuAHqewfgP9KZYsj4geSTk7bPiIiVqY+/2eAj0XEQwCSVpK1JD5L\nNj78oEeALwy2AoawBpgsbTLU4+5kN9mHo+2WlqTdgfnA1yPiqqHqD1dEnDTE8l4em2NKRPyaNnqL\nhnPurHLXk40hEfE8WXfKxZL+RtKW6YmMOWRXx1emqvcBx6QbuZOAf25Y1RPAe5ps4lxJfyFpX+Dz\nZPcROllf3u3AB8haFYNX0ouAdwMf5o1WxjZkyfAZSW8DLmiyrlkphkPJJUyyp4oukLQbgKQdJB3X\nIp7fkl1V/2vajzWyew5Xp+VdfYxU0i7A/wG+FxH/2c112+jgRGF9ExEXkTWBvwk8T3bCW0l2Bb4+\nVbsSWAisILtZezWbXvV/gywpPCvpX3Llt5H9QeEC4KKIWNDh+vJxLwP+BDwWES+ksiC7L7Et8JtU\n9cfp91lNdrP3LjZvscwmSzi/auhj/3eyfuNbJL2Qvjs1H0YunvVk3V5HA08C3wNOjoilubrttJSi\nYbrVd/4n8C5gID0xtTbFaONEJV8zLmka8B2yvvT/iogLSw7JKiq1Sh4C3tziRrmZdahyLQpJW5Bd\nIU0D9gFOkrR3uVGZmY1flUsUtP+qCbNB1WsWm40hVUwU7bxqwgyAdEGxhbudzHqnio/HDnl1KI+Z\nbWY2IjGCMbOrmCjaeXUHVbwJPxrNmQMzZgzwwAMDZYcyJkyfDmvXDjB37kDZoYwJEyfCl740wIUX\nDpQdypiQe9XYsFSx66mdV3eYmVmfVK5F0epVEyWHZWY2blUuUUDzV01Y7+ywQ63sEMaU972vVnYI\nY8qHPlQrO4Rxr4pdT9Zn73xnrewQxpS9966VHcKY4kRRPicKMzMr5ERhZmaFnCjMzKyQE4WZmRVy\nojAzs0JOFGZmVsiJwszMCjlRmJlZIScKMzMr5ERhZmaFnCjMzKyQE4WZmRVyojAzs0KVSxSSBiQ9\nKune9JlWdkxmZuNZFcejCODbEfHtsgMxM7MKtiiSkQ3samZmXVfVRPEVSQslXS5pQtnBmJmNZ6V0\nPUmaD0xqsuhrwPeBr6f584FvAf/YWHFgYGDjdK1Wo1ardTtMM7NRrV6vU6/XO16PIqLzaHpE0hRg\nXkTs11AeVY57NJkzB665JvtpnZs+HY48MvtpnZs4ER56KPtpnZNERAy7a79yXU+SdsrNngAsKisW\nMzOr5lNPF0o6gOzpp4eBU0qOx8xsXKtcoogIN9rNzCqkcl1PZmZWLU4UZmZWyInCzMwKOVGYmVkh\nJwozMyvkRGFmZoWcKMzMrJAThZmZFXKiMDOzQk4UZmZWyInCzMwKOVGYmVkhJwozMyvkRGFmZoVK\nSRSSPiXpAUmvSfpAw7KzJS2TtETSUWXEZ2ZmbyhrPIpFZKPXXZYvlLQPcCKwD7ALsEDSXhHxev9D\nNDMzKKlFERFLImJpk0XHA7MjYn1ErACWA1P7GpyZmW2iavcodgYezc0/StayMDOzkvSs60nSfGBS\nk0XnRMS8YawqmhUODAxsnK7VatRqteGEZ2Y25tXrder1esfraStRSDoeOGxw2+2c6CPioyOIZzUw\nOTe/ayrbTD5RmJnZ5hovomfMmDGi9QzZ9SRpJnA68ACwGDhd0jdGtLUWm8hNXw98RtJWkt4F7An8\ndxe3ZWZmw9ROi+JjwAER8RqApCuA+4CzR7pRSScA3wW2B34h6d6IODoiFkuaQ5aQNgCnRkTTricz\nM+uPdhJFABOAp9P8BFrcN2hXRMwF5rZYdgFwQSfrNzOz7mmZKCRdCswiO2nfI+lWsm6iw4Gz+hOe\nmZmVrahFsRS4iOyR1QXASrIupzMj4vE+xGZmZhXQ8mZ2RHwnIv6arAWxDPgEWeI4RdJefYrPzMxK\nNuRTTxGxIiJmRsQBwGfIXr3xYM8jMzOzSmjn8dg3SzpO0izgZmAJWevCzMzGgaKb2UeRtSA+Rva3\nDLOBL0XEi32KzczMKqDoZvZZZMnhjIh4pk/xmJlZxbRMFBHxkX4GYmZm1VS1t8eamVnFOFGYmVkh\nJwozMyvkRGFmZoWcKMzMrJAThZmZFSolUUj6lKQHJL0m6QO58imSXpZ0b/pcWkZ8Zmb2hp6NmT2E\nRWTvjLqsybLlEXFgn+MxM7MWSkkUEbEEQNJQVc3MrGRVvEfxrtTtVJf0obKDMTMb73rWopA0H5jU\nZNE5ETGvxdfWAJMj4tl07+I6SftGxNpexWlmZsV6ligi4qMj+M6fgT+n6Xsk/T9gT+CexroDAwMb\np2u1GrVabaShmpmNSfV6nXq93vF6yrqZnbfxRoWk7YFnI+I1Se8mSxIPNftSPlGYmdnmGi+iZ8yY\nMaL1lPV47AmSVgEHAb+QdFNadDiwUNK9wM+AUyLiuTJiNDOzTFlPPc0F5jYpvxa4tv8RmZlZK1V8\n6snMzCrEicLMzAo5UZiZWSEnCjMzK+REYWZmhZwozMyskBOFmZkVcqIwM7NCThRmZlbIicLMzAo5\nUZiZWSEnCjMzK+REYWZmhZwozMysUFnjUVwk6UFJCyX9XNLbc8vOlrRM0hJJR5URn5mZvaGsFsUt\nwL4RsT+wFDgbQNI+wInAPsA04FJJbvWYmZWolJNwRMyPiNfT7N3Armn6eGB2RKyPiBXAcmBqCSGa\nmVlShav1fwBuTNM7A4/mlj0K7NL3iMzMbKOeDYUqaT4wqcmicyJiXqrzNeDPETGrYFXRi/jMzKw9\niijnPCzp88AXgSMi4pVUdhZARMxM8zcD50XE3Q3fjfPOO2/jfK1Wo1ar9SfwMebVV2HrrcuOYuwp\n6b/VmPP007D99mVHMZrV02fQDCJCw11LKYlC0jTgW8DhEfFUrnwfYBbZfYldgAXAHtEQpKTGIjMz\nG4KkESWKnnU9DeFiYCtgviSAuyLi1IhYLGkOsBjYAJzqjGBmVq7Sup464RaFmdnwjbRFUYWnnszM\nrMKcKIx6vV52CGOK92d3eX+Wz4nC/B+xy7w/u8v7s3xOFGZmVsiJwszMCo3ap57KjsHMbDQaNX9w\nZ2Zmo4e7nszMrJAThZmZFap0opA0LY10t0zSmS3qfDctXyjpwH7HOJoMtT8l1SQ9L+ne9Dm3jDhH\nA0k/kPSEpEUFdXxstmmo/eljs32SJku6VdIDku6XdHqLeu0fnxFRyQ+wBdnARVOALYH7gL0b6hwD\n3JimPwj8tuy4q/ppc3/WgOvLjnU0fIBDgQOBRS2W+9js7v70sdn+vpwEHJCmtwH+2Om5s8otiqnA\n8ohYERHrgavJRsDLOw74EUBkryKfIGnH/oY5arSzPwGG/UTEeBQRdwDPFlTxsTkMbexP8LHZloh4\nPCLuS9MvAg+SDQqXN6zjs8qJYhdgVW6+2Wh3zersijXTzv4M4ODUFL0xvfbdRsbHZnf52BwBSVPI\nWmp3Nywa1vFZ1mvG29Huc7uNVxl+3re5dvbLPcDkiHhJ0tHAdcBevQ1rTPOx2T0+NodJ0jbANcA/\npZbFZlUa5lsen1VuUawGJufmJ7PpeNrN6uyaymxzQ+7PiFgbES+l6ZuALSW9o38hjik+NrvIx+bw\nSNoSuBb4SURc16TKsI7PKieK3wF7SpoiaSvgROD6hjrXA9MBJB0EPBcRT/Q3zFFjyP0paUelkaQk\nTSX7g8xn+h/qmOBjs4t8bLYv7afLgcUR8Z0W1YZ1fFa26ykiNkg6Dfgl2RM7l0fEg5JOScsvi4gb\nJR0jaTmwDvhCiSFXWjv7E/gk8GVJG4CXgM+UFnDFSZoNHA5sL2kVcB7Z02Q+NkdgqP2Jj83hOAT4\nHPAHSfemsnOA3WBkx6df4WFmZoWq3PVkZmYV4ERhZmaFnCjMzKyQE4WZmRVyojAzs0JOFGZmVsiJ\nwqxLJL1d0pfLjsOs25wozLpnInBq2UGYdZsThVn3zATekwbWubDsYMy6xX+ZbdYlknYHboiI/cqO\nxayb3KIw6x4PrGNjkhOFmZkVcqIw6561wLZlB2HWbU4UZl0SEU8Dd0pa5JvZNpb4ZraZmRVyi8LM\nzAo5UZiZWSEnCjMzK+REYWZmhZwozMyskBOFmZkVcqIwM7NCThRmZlbo/wODNv2bYBc2BgAAAABJ\nRU5ErkJggg==\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x6264e10>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "import math\n",
    "import numpy\n",
    "%matplotlib inline\n",
    "from matplotlib.pyplot import plot,ylim,xlabel,ylabel,title,subplot\n",
    "\n",
    "\n",
    "#Variables\n",
    "\n",
    "Vi = 10.0                    #Input a.c. voltage (in volts)\n",
    "\n",
    "#Graph\n",
    "\n",
    "#Positive Clipping\n",
    "subplot(211)\n",
    "k1= numpy.arange(0.0001, 0.500, 0.0005)\n",
    "k2= numpy.arange(0.500, 1.000, 0.0005)\n",
    "k3= numpy.arange(1.000,1.500, 0.0005)\n",
    "k4= numpy.arange(1.500,2.000, 0.0005)\n",
    "m = numpy.arange(-10,10,0.0005)\n",
    "\n",
    "x5=(0.0500*m)/m\n",
    "x10=(0.500*m)/m\n",
    "x15=(1.000*m)/m\n",
    "x25=(1.500*m)/m\n",
    "\n",
    "plot(k1,10*k1/k1,'b')\n",
    "plot(k2,-10*k2/k2,'b')\n",
    "plot(k3,10*k3/k3,'b')\n",
    "plot(k4,-10*k4/k4,'b')\n",
    "plot(x10,m,'b')\n",
    "plot(x15,m,'b')\n",
    "plot(x25,m,'b')\n",
    "\n",
    "ylim( (-12,12) )\n",
    "ylabel('Vo')\n",
    "xlabel('Positive Clipping')\n",
    "title('Output Waveform 1')\n",
    "\n",
    "#Negative Clipping\n",
    "subplot(212)\n",
    "k1= numpy.arange(0.0001, 0.500, 0.0005)\n",
    "k2= numpy.arange(0.500, 1.000, 0.0005)\n",
    "k3= numpy.arange(1.000,1.500, 0.0005)\n",
    "k4= numpy.arange(1.500,2.000, 0.0005)\n",
    "m = numpy.arange(-20,0,0.0005)\n",
    "\n",
    "x5=(0.500*m)/m\n",
    "x10=(0.500*m)/m\n",
    "x15=(1.000*m)/m\n",
    "x25=(1.500*m)/m\n",
    "\n",
    "plot(k1,0*k1/k1,'b')\n",
    "plot(k2,-20*k2/k2,'b')\n",
    "plot(k3,0*k3/k3,'b')\n",
    "plot(k4,-20*k4/k4,'b')\n",
    "plot(x10,m,'b')\n",
    "plot(x15,m,'b')\n",
    "plot(x25,m,'b')\n",
    "\n",
    "ylim( (-22,0) )\n",
    "ylabel('Vo')\n",
    "xlabel('t')\n",
    "title('Output Waveform 2')"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}