summaryrefslogtreecommitdiff
path: root/A_Textbook_of_Applied_Electronics_by_R_S_Sedha/chapter27_5.ipynb
blob: 433935a4c38522fb416212ff40adce1d711c8951 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Chapter 27 , Power Amplifiers"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 27.1 , Page Number 689"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Collector current at saturation point is  8.77  mA.\n",
      "Collector-to-emitter voltage at saturation point is  0  V.\n",
      "Collector current at cut off point is  0  mA.\n",
      "Collector-to-emitter voltage at cut-off point is  5.26  V.\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "<matplotlib.text.Annotation at 0x6269f30>"
      ]
     },
     "execution_count": 1,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEZCAYAAABsPmXUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xu8VXP+x/HXp5t00UVRFEXukoqixEHTGMKIkVxzjTHx\ncxuMGU5mhhk0LjGYXCa6uf0aIpXUySWVUkqiyc8tyjWkhkGf3x/fdWp3Opd9zln7rLP3fj8fj/1o\n7bXWXt/Ppj7nez7ru75fc3dERCS31Ek6ABERiZ+Su4hIDlJyFxHJQUruIiI5SMldRCQHKbmLiOQg\nJXfJG2ZWaGYPZ+C6HcxsvZmV+u/JzN4zs8Oi7d+Z2ci4YxApqV7SAYjUoKQe6tjQrrvfkFAMkmfU\nc5d8YkkHIFJTlNylVjCzq8xsuZl9Y2ZLzOyX5Zy7pZkNj8odX5nZi2bWsAptHhO1tdrMZpjZ7unE\nY2Z1zOwWM/vMzN4BjqpEmxtKQynlnNPN7P3oer9LOddS4vjczB4xsxaV/Z6Sn5TcpbZYDhzk7lsB\nw4DRZtamjHNvAboCBwItgSuA9ZVpzMx2BcYCFwGtgEnARDMrLlWWFs+20bHzCAl9X2A/4ATSL/mU\ndl5vYFfgcOBaM9st2n8RcAxwMNAWWA3cle53lPym5C61grs/7u6rou1HgX8DPUqeF920PBO42N1X\nuvt6d5/t7v+tZJMDgafd/Xl3/4nwA2NLQqKtKJ4TgVvd/SN3Xw3cQPoln9LOG+bu37v7IuB1oEu0\n/3zg9+7+sbv/QPghc0JZN25FUumGqtQKZnY6cAnQIdrVBNi6lFNbAQ2Bd6rZ5HbAB8Vv3N3N7MNo\nf1nxtIq22wIfplzrA6pnVcr2uqgtgB2BCWaW+lvJj8C2wMpqtik5Tj0ASZyZ7Qj8A7gQaOnuLYA3\nKL2X+znwHdCpms1+REiexTEY0B74KI14VgI7pFwrdTtOHwBHuHuLlFcjd1dilwopuUtt0JhQi/4c\nqGNmZwJ7l3aiu68HHgD+ZmZtzayumR1oZg0q2eZjwFFmdpiZ1QcuI/zQmJVGPI8CF5nZ9tENzqsq\n2Xa67gFuMLMdAMystZkdk6G2JMcouUvi3P1NYDjwCqFEsTfwUvFxM+tjZmtSPnI5sBh4FfgCuJGo\nV21ma8ysd1lNRS/c/W3gVGAE8BnhBunR7v5jRfEAI4EphPr4POAJKndD1Uu8L8vtwFPAVDP7Jopn\ns/sQIqWxTC7WYWYXA+cQ/uGNdPfbM9aYiIhskLGeu5ntTUjs+xPu/vc3s50z1Z6IiGyUybLM7sAc\nd/8uGmo2ExiQwfZERCSSyeT+BtDHzFqaWSNCTbNdyZPM7OroCcDFZjbWzLYocfxyM1sQvRab2Y9m\n1jydz4qI5KuMJXd3fwv4KzAVeBZYQImnCM2sA3Au0M3dOwN1gZNKXOcWd+/q7l2Bq4Eid/8qnc+K\niOSrjN5Q3aQhsxuAD9z9npR9Sc3SJyKS1dy93KeiMzoU0sy2if7cATiOMJfHJu69916aNGlC69at\nOfXUU3H3Ul9r166lZcuWrF69esO+dD+b1Ou6665LPAZ9P32/fPx+ufzd3NPrE2d6nPvjZraEMFb3\n1+7+TckTbrvtNt577z0+/vhjvv32W8aMGVPqhSZOnMhBBx1E8+bNAXjnnXfS/qyISL7JaHJ394Pd\nfS9339fdZ5R2Tq9evdh6662pV68eAwYMYNasWaVea/z48QwaNGjD+3nz5qX9WRGRfJP4E6qvvDKb\n//znP7g706ZNY88999zsnK+//poXXniBY489dsO+3XffndmzK/5skgoKCpIOIaP0/bJbLn+/XP5u\n6aqxG6qlNm7m2233Vxo1GkXDhnXo1q0bI0eO5MEHHwRgyJAhAIwaNYopU6YwduymJfubbrqJUaNG\nUadO+Ox9991H/fr1a/x7iIjUJDPDK7ihmnhyHzHCGTYMRoyAkzSQUUSkQlmR3N2dBQvgxBOhoABu\nvx0aNUosJBGRWi+d5J54zR2ga1d47TVYtw569IA330w6IhGR7FYrkjtA06YwejRceikccgg88AAk\n+EuFiEhWqxVlmZKWLIGBA2HffeHuu0PiFxGRIGvKMiXttRfMnQtbbgndu8OCBUlHJCKSXWplcodw\nU3XkSBg2DPr1g7vuUplGRCRdtbIsU9Ly5aFM06ED3HcftGiR+dhERGqrrC3LlNSpE8yaBe3aQbdu\nMHt20hGJiNRuWdFzT/Wvf8GQIXD55XDZZVAnK348iYjEJ2seYqqsDz4IT7M2bw6jRkHr1hkITkSk\nlsqZskxJO+wAM2dCly7hAaiioqQjEhGpXbKy555qyhQYPBjOPx9+/3uoWzee2EREaqucLcuU9PHH\ncOqpYXv0aNhuu2pfUkSk1kq8LGNmV5vZEjNbbGZjzWyLTLSz3Xbw3HNh4rHu3WHy5Ey0IiKSPTLW\nczezDsB0YA93/97MHgEmufuolHNi6bmnmjkTTjklvP70J9D07iKSa5LuuX8D/AA0MrN6QCPgowy2\nB4RJxxYsgMWL4eCD4b33Mt2iiEjtk7Hk7u5fAsOBD4CPga/cfVqm2kvVujU8/TQcf3yYQnjChJpo\nVUSk9qiXqQub2c7A/wAdgK+Bx8zsFHcfk3peYWHhhu2CgoLY1j6sUyc86NSnTxgTP3063HwzNGwY\ny+VFRGpMUVERRZUc853JmvtA4Gfufk70/jTgAHe/MOWc2GvupfnqKzj7bHj3XXjkEdhll4w3KSKS\nMUnX3N8CDjCzLc3MgL5AImssNW8Ojz8O55wDvXrBmDEVf0ZEJJtldJy7mf0WOANYD7wGnOPuP6Qc\nr5Gee6qFC8MMk336wB13aL1WEck+efMQU2WtWQMXXBBG1Tz6aFgcREQkWyRdlqm1mjaFhx8ON1wL\nCsIc8VoIRERySV723FO9+WYo03TuDPfcA1ttlWg4IiIVUs89DXvuGdZrbdo0TF0wf37SEYmIVF/e\nJ3cIC3Hfe2+YruCII8KNVpVpRCSb5X1ZpqR33gllmnbt4IEHoGXLpCMSEdmUyjJVsPPO8PLL0LFj\nWAhk1qykIxIRqTz13Mvx1FNw7rlw6aVwxRVar1VEageNc4/Bhx/CoEHQpAk89BBss03SEYlIvlNZ\nJgbt24c1Wrt3D2Wa6dOTjkhEpGLquVfCc8/BGWeEOWquvRbqZWxOTRGRsqkskwGrVoX1Wn/4AcaO\nhe23TzoiEck3KstkQJs2MGUK9OsXSjWTJiUdkYjI5tRzr4YXXwxrtQ4cCH/+MzRokHREIpIP1HPP\nsD594LXXYOnSsP3uu0lHJCISKLlXU6tWMHFi6L337AlPPJF0RCIiKsvEau7csF7rL34Bw4drvVYR\nyYzEyzJmtpuZLUh5fW1mF2WyzST16BHKNJ9+CgccAMuWJR2RiOSrGuu5m1kd4COgh7t/GO3LqZ57\nMfcwy+Qf/gC33RZuuoqIxKVWjXM3s37Ate5+UMq+nEzuxV5/PdTie/WCESOgceOkIxKRXJB4WaaE\nk4CxNdhe4rp0gXnzYP162H9/WLw46YhEJF/UyAP0ZtYAOBq4suSxwsLCDdsFBQUUFBTUREg1pkkT\n+Oc/YdQoOOwwuOGGMH2BlfszV0Rko6KiIoqKiir1mRopy5jZscAF7n5Eif05XZYp6a23Qplmjz3g\nH//Qeq0iUjXVLsuYWTczu9nM5pjZJ2a2Ktq+2cy6ViKWQcC4Spyfk3bfHWbPhhYtoFs3rdcqIplT\nZs/dzCYBq4GngLnASsCAtkAPQpmlubsfVW4DZo2B94GO7r6mxLG86rmneuwxuPBCuOYauOgilWlE\nJH3VGi1jZtu6+ycVNLCNu39ajQDzNrkD/N//hYee2raFBx/Ueq0ikp5qlWXKSuxm1sfM7orOqXJi\nF9hpJ3jpJdhll7AQyMsvJx2RiOSKtIZCptTe3wf+CLyV2bDyR4MGcMst8Pe/w/HHw403hqGTIiLV\nUV5ZZjfCjdCBwGfAY8AV7r5DbI3neVmmpBUr4OSTYcstw3qt226bdEQiUhtVd7TMUqAb8HN3P9jd\nRwA/xRmgbKpdu7BGa48eYTTN888nHZGIZKvykvsA4D/AC2Z2j5kdThgtIxlUrx788Y/hoafTTgvz\n0/z4Y9JRiUi2qfAhJjNrAhxLKNEcCjwETHD3qdVuXGWZcq1aFRL899+H9VrbtUs6IhGpDWKZW8bd\nv3X3Me7eH2gPLACuiilGKUfxeq0//znstx8880zSEYlItkhr+gEza0FI7PWISjPuXu3nK9VzT99L\nL4Wbrb/6VRhRo/VaRfJXLFP+mtkfgcHA/wEbBum5+6ExBKjkXglffAFnnhnKNePHh3HyIpJ/4kru\ny4C93f2/cQYXXVvJvZLc4fbbw+ySd90VevIikl/iSu4TgPMrmoqgKpTcq27evDDDZL9+8Le/hbHx\nIpIf4kru+wNPAm8A30e73d2PiSFAJfdq+PprOO+8MJXwI4+EWSdFJPfFldyXAncTkntxzd3dfWYM\nASq5V5M7jBwZZpccPhxOPz3piEQk0+JK7q+6+/6xRrbx2kruMVm8GE48EXr2hDvvDCtAiUhuimsN\n1RfN7EYzOzCaQKybmXWLKUaJSefOoQ5vFtZrXbQo6YhEJEnp9NyLgM1O0lDI2uvhh+HSS8M0BkOG\naCEQkVwTS1mmmgE0B+4D9iL8gDjL3WenHFdyz5C33w5lmt12CzX5Zs2SjkhE4lKtsoyZDTazeuUc\nb2BmZ1YQw+3AJHffA9iHMNOk1IDddoM5c6BVq7AQyKuvJh2RiNSkMpM30AR41czeAuaxcQ3VNsB+\nwO7AyLI+bGbNgD7ufgaAu/8IfB1T3JKGhg3DIiBPPAFHHQVXXQWXXKIyjUg+KLcsY2YG9AYOAooX\n6XgfeAmYVV5Nxcz2Be4F3gS6APOBi919Xco5KsvUkHffDeu1brMN/POfsPXWSUckIlWVTlmmvJ47\nUeZ9KXpVVj3CYh+/cfdXzew2wmyS16aeVFhYuGG7oKCAgoKCKjQlFenYEV58MYyH79o1TCF80EFJ\nRyUi6SgqKqKoqKhSn8nYDVUzawO84u4do/cHAVdFUwcXn6OeewKeeQbOPhuGDg2lmrp1k45IRCoj\nrnHuVeLuq4APzWzXaFdfYEmm2pP0HXVUGBM/dWqYK37VqqQjEpG4ZSy5R4YCY8zsdcJomRsy3J6k\nqV27sEZr795hvdbnnks6IhGJU5llGTO7DPja3e8rsf9soKm731btxlWWqRWmTw/L+Q0eDMOGhXVc\nRaT2qtZDTGb2GnBAyXnczawBMN/dO8cQoJJ7LfHJJ2HSsbVrYdw4aN8+6YhEpCzVrbnXK22Bjmif\nRkrnmG23hWefhf79w3qtTz2VdEQiUh3lJXeLRryU3Lktpcw1I9mvTp0wembChDCS5pJL4L+xr78l\nIjWhvOR+M/CMmRWYWdPodSjwDDC8ZsKTJPTqBQsWhAefeveGd95JOiIRqayKnlD9BXA1YeIvCEMZ\nb3T3Z2NpXDX3Ws0dRowIs0veeWdY1k9Ekpf4rJAVUXLPDvPnh8R++OFw221ar1UkadUdLTOinM+5\nu19UneCiNpTcs8Q334S54ZcsCeu17rFH+eevWLGCCy+8kKVLl7J+/Xr69+/PzTffTP369WsmYJEc\nVt3RMvMJs0GWfM2PXpJHttoqzEdz0UVw8MEwalTZ57o7AwYMYMCAASxbtoxly5bx7bffcs0119Rc\nwCJ5TmUZqbQ33ghlmu7dw5TCJddrff7557n++uuZOXPjGupr1qyhY8eOrFixgoYNG9ZwxCK5JdG5\nZSR37b03zJ0L9euHBP/665seX7JkCd27d99kX9OmTdlhhx1Yvnx5DUYqkr+U3KVKGjeG+++H666D\nvn3h7rvD6BoIvYqy/PjjjzUUoUh+qzC5R1P1ltzXOzPhSLY5+WSYNSus03riifDVV7Dnnnsyf/6m\nt2W++eYbPvzwQ3bZZZeEIhXJL+n03EsbNXNn3IFI9tplF3jlFWjTJsww2bTp4axbt46HH34YgJ9+\n+onLLruMk08+mcaNGyccrUh+KG8o5IFAL+AS4G9snE+mKXCcu3epduO6oZpz/vd/4fzzYciQFbz+\n+oW89dZSPvvsM/r168fo0aM1FFIkBtW9odqAkMjrRn82iV7fACfEFaTklgEDws3WadPasX79k8ya\ntYxJkyaxZMkS3UwVqUEVDoU0sw7u/l6VGzB7j/AD4SfgB3fvkXJMPfcc9cMP8Pvfh7HxY8aEsfEi\nEo9Yph8ws92Ay4EObFxQ2939sDSDeBfo7u5flnJMyT3HTZ4MZ54Jv/41/O53Wq9VJA5xJfdFwN3A\na4TeN4TkntZTqlFy38/dvyjlmJJ7Hvj44zCqpm5dGD0a2rZNOiKR7BbXQ0w/uPvd7j7H3edFr8pM\nP+DANDObZ2bnVuJzkiO22y6s19qnTxhNM3Vq0hGJ5L50eu6FwGfA/wLfF+8vrcxSxufbuvtKM2sN\nPAcMdfcXo2PqueeZGTPCeq2nnQbXXx+echWRyomrLPMepay85O4dqxDQdcC37j48eu/XXXfdhuMF\nBQUUFBRU9rKSZT79NKzXumZNWK91hx2SjkikdisqKqKoqGjD+2HDhiU7n7uZNQLquvsaM2sMTAWG\nufvU6Lh67nlq/Xq45RYYPhz+8Q849tikIxLJHnH13BsDlwI7uPu5ZrYLsJu7P51GAB2BCdHbesAY\nd78x5biSe5575RUYNCgk95tugi22SDoikdovruT+KGH+9tPdfa8o2c/SE6oSl9Wr4ayz4IMPwkIg\nnTolHZFI7RbXaJmd3f2vwH8B3H1tHMGJFGvRIkxbMHgwHHggjB+fdEQi2S+d5P69mW1YNdPMdiZl\n1IxIHMxg6FCYMgX+8Ac47zxYty7pqESyVzrJvRCYDLQzs7HAdODKTAYl+atbN3jtNVi7Fnr0gDff\nTDoikexUbnI3szpAC+B44ExgLOFp0xk1EJvkqaZNw5Osl1wChxwCDzywcSEQEUlPOjdU57t793JP\nqmrjuqEqFViyJCwC0rVrWO2padOkIxJJXlw3VJ8zs8vNrL2ZtSx+xRSjSLn22gtefRUaNgzrtS5Y\nkHREItmhqk+ourvvVO3G1XOXShg3Di66CAoLwyyT5SzVKpLTqj3OPaq5/8rdH4k7uOj6Su5SKcuX\nw8CBsOOOYYHuFi2Sjkik5lW7LOPu64HfxhqVSDV06hQW5G7fPtThZ89OOiKR2imdssxfgM+BR4AN\nDzClOytkBddWz12q7F//giFD4LLL4PLLoU46d5BEckCtmxWylGsruUu1vP9+mJumWTN46CFo3Trp\niEQyL5bRMu7ewd07lnzFF6ZI1e24I8ycCfvuG8o0KbOiiuS1dHruZ1B6z/2hajeunrvEaMqUMD/N\n+eeHxbm1XqvkqrjKMneyMblvCRwGvObuJ8QQoJK7xGrlSjjllPBE65gxYYk/kVwTS3Iv5aLNgUfc\n/efVCS66lpK7xO6nn+DPfw5PtD74IBxxRNIRicQrU8m9AfCGu+9aneCiaym5S8bMnAmnngonnwx/\n+pPWa5XcEVdZZmLK2zrAnsCj7p7WzJBmVheYB6xw96NLHFNyl4z67LNQh//yy/CEa4cOSUckUn3p\nJPd6aVxneMr2j8D77v5hJeK4GHgT0JRPUuNat4aJE+HWW8MUwvfeC8cdl3RUIpmXTs99J2Clu/8n\ner8lsK27v1fhxc3aAf8E/gxcqp67JGnOHDjpJOjfH26+OUxGJpKN4poV8jHgp5T364HH04zhVuCK\n6DMiierZM8wquXIl9OoFy5YlHZFI5qST3Ou6+3+L37j790CFt6bMrD/wqbsvADR/n9QKzZvDY4/B\nOedA795huKRILkqn5v65mR3r7k8CmNmxhLlmKtILOMbMjgQaAluZ2UPufnrqSYWFhRu2CwoKKCgo\nSDN0kaoxC1MG9+oVZpicMQPuuAMaNUo6MpHSFRUVUVTJx6/Tqbl3AsYAxY+DrABOc/flaTdidghw\nuWruUtusWRMS/WuvwaOPhsVBRGq7uOaWWe7uPQlDIPd09wMrk9hTL1WFz4hkVNOmYcKxK66AgoIw\nR7z6G5ILKv0QU6yNq+cutcjSpWG91s6d4Z57YKutko5IpHRxjZYRyQt77AFz54befPfuoVQjkq3K\nTe5mVsfMetVUMCJJ23LL8KDTn/4U5qQZMUJlGslO6dxQXeju+2akcZVlpBZ7553w0FO7dqEW37Jl\n0hGJBHGVZaaZ2QlmWmte8svOO8NLL4X5aLp1g1deSToikfSl03P/FmhEeEr1u2i3u3u1bzep5y7Z\n4qmn4Nxz4dJLw8gardcqScrIlL9xUnKXbPLhh2G91iZNwvDJbbZJOiLJV7GNljGzY81suJndYmZH\nV/wJkdzTvn1Yo7V791CmmTEj6YhEypZOWeYvwP6Ep1QNOAmY5+5XV7tx9dwlSz33HJxxRijVXHut\n1muVmhXXYh2LgX3d/afofV1gobt3jiFAJXfJWqtWhfVaf/opTEC2/fZJRyT5Iq6yjAPNU943R1MJ\niNCmDUydCn37hlLNpElJRySyUTo990HAX4AZhLLMIcBV7j6+2o2r5y454oUXQi/+pJPC4twNGiQd\nkeSy2EbLmNl2hLq7A6+6+8qYAlRyl5zx+edhvdbPP4fx47Veq2ROLGUZM3ve3T929yfd/Sl3X2lm\nz8cXpkhuaNUqjIc/8cSwXusTTyQdkeSzMnvu0VqpjQjlmIKUQ1sBk91992o3rp675Ki5c0OJ5sgj\n4ZZbtF6rxKu6PfchwDxgN2B+yusp4M64ghTJRT16hFklP/kEDjxQ67VKzUvnhupQdx+RkcbVc5cc\n5x5mmfzDH+DWW+HUU5OOSHJBbEMhzaxFykVbmNmv0wygoZnNMbOFZvammd2YzudEcoUZnH8+TJsW\nphE+6yxYuzbpqCQfpJPcz3X31cVvou3z0rm4u38HHBpNGbwPcKiZHVSlSEWyWJcuMG9eeOBp//1h\n8eKkI5Jcl05yr2NmG86LnlCtn24D7r4u2mwA1AW+rFSEIjmiSRMYNQquvBIOOwxGjtRCIJI56ST3\nKcB4MzvczPoC44HJ6TYQrea0EPgEmOHub1YtVJHccMYZ4aGnESPCLJPffJN0RJKL6qVxzpWEMswF\n0fvngPvSbcDd1wP7mlkzYIqZFbh7UfHxwsLCDecWFBRQUFCQ7qVFstYee8CcOXDJJWGGyfHjYb/9\nko5KaquioiKKiooq9Zl0n1BtBOzg7m9VLbQN1/kD8B93vyV6r9EykvceewwuvBB+9zu4+OJwE1ak\nPHE9oXoMsICoFGNmXc3sqTQDaGVmzaPtLYGfRdcSkcivfgWzZ4eZJX/5S/jii6QjklyQTs29EOgJ\nrAZw9wXATmlevy0wPaq5zwEmurumLhApYaed4OWXoVMn6No1bItURzo19x/c/asS62OvT+fi7r4Y\n6FaVwETyTYMGMHw4HHooHH98KNFceaXWa5WqSeevzRIzOwWoZ2a7mNkIYFaG4xLJW/37hzHxkybB\nEUeEKQxEKiud5D4U2Av4HhgHfAP8TyaDEsl37dqFNVp79gyjaZ5XMVMqKa3RMhlrXKNlRCo0bVoY\nG3/WWXDddVAvnWKq5LRqLdZhZhPL+Zy7+zHVCS5qQ8ldJA2ffAKnnQbffQdjx4aeveSv6ib3gvI+\nmPogUlUpuYukb/16+Mtf4I474L77Qm1e8lNsy+xlipK7SOW99BKcfHIYH3/jjVqvNR9Vt+de3rx1\n7u77VCe4qA0ld5Eq+OILOPNMWLUqTF2wU7pPnkhOqG5y71DeB939vaoGltKGkrtIFbnD7bfDDTfA\nXXeFnrzkh9jKMma2LdADcGCuu38aU4BK7iLVNG8eDBwI/frB3/4GW26ZdESSaXHNLXMiMBf4FXAi\nMNfM1EcQqSX22y+s1/rll3DAAfBWtab3k1yRzhqqi4C+xb11M2sNPK+au0jt4h4WALnmmjCNwemn\nJx2RZEosZZnoxuo+xVk4WpXpdXfvHEOASu4iMVu8GE48EXr0CLX4Jk2SjkjiFtcC2ZMJi2wMNrMz\ngUnAs3EEKCLx69w51OHr1g0lm9dfTzoiSUK6N1SPB3pHb1909wmxNK6eu0hGPfwwXHop/PGPMGSI\nFgLJFdUdCrkLsK27v1Ri/0HASnd/J4YAldxFMuztt8Noml13DTX5Zs2Sjkiqq7plmdsIM0CW9E10\nTESywG67hZWeWrcOM0y++mrSEUlNKC+5b+vui0rujPZ1TOfiZtbezGaY2RIze8PMLqpqoCJSdQ0b\nhpurN90ERx0Ft94aRtdI7iqvLLPc3TtV9liJ89oAbdx9oZk1AeYDv3T3pdFxlWVEati778JJJ8G2\n28KDD8LWWycdkVRWdcsy88zsvFIuei4hSVfI3Ve5+8Jo+1tgKbBdOp8Vkczo2BFefDGUa7p2DduS\ne8rrubcBJgD/ZWMy7w5sARzn7isr1VCYq2YmsFeU6NVzF0nYpElhEZChQ+Gqq8LwSan90um5l7mm\ni7uvMrNewKHA3oR5ZZ529+lVCKQJ8DhwcXFiL1ZYWLhhu6CggIKCgspeXkSq6Mgjw5j4U06BoqIw\ndLJNm6SjkpKKioooKiqq1GcyPp+7mdUHngaedffbShxTz12kFvjxxzAWfuRIeOgh6Ns36YikPIkv\n1mFmBowCvnD3S0o5ruQuUotMnx6W8xs8GIYN03qttVVtSO4HAS8AiwhlHYCr3X1ydFzJXaSWKV6v\ndd06GDcO2rdPOiIpKfHkXhEld5Haaf36MCb+1lvDeq1HH510RJJKyV1EquXll8N6rQMGwF//qvVa\na4u4ZoUUkTzVuzcsWBAefOrdG96p9oxSUlOU3EWkXC1bwoQJoQ5/4IHw6KNJRyTpUFlGRNI2f36Y\nYbJv31CP13qtyVBZRkRi1b17WK/166+hZ09YujTpiKQsSu4iUilbbQVjx4YpCw4+GEaNSjoiKY3K\nMiJSZYsXhzLNfvvB3/+u9VprisoyIpJRnTuHxT/q1w8lm4ULk45Iiim5i0i1NG4M998P114LP/tZ\n6MHrF/KnnjkAAAAPH0lEQVTkqSwjIrFZtiyUaXbeOTzZ2rx50hHlJpVlRKRG7borvPIKtG0bFgKZ\nMyfpiPKXkruIxKphQxgxAoYPD3PS3HJLmKtGapbKMiKSMe+9B4MGhadcR42CVq2Sjig3qCwjIonq\n0AFeeAH23juUaV54IemI8od67iJSI559NqzXeuGFcPXVWq+1OjTlr4jUKh99FNZrrVsXRo8ON16l\n8hIvy5jZA2b2iZktzmQ7IpIdtt8enn8e+vQJDz1NnZp0RLkr08vs9QG+BR5y986lHFfPXSRPzZgR\nphE+7TS4/vrwlKukJ/Geu7u/CKzOZBsikp0OPTTMMLlwIRQUwAcfJB1RbtFoGRFJzDbbwDPPwLHH\nwv77w5NPJh1R7qiXdACFhYUbtgsKCigoKEgsFhGpeXXqwG9/G+rwgwbB9Olhce4ttkg6stqjqKiI\noqKiSn0m46NlzKwDMFE1dxGpyOrVcPbZ8P778Mgj0KlT0hHVTonX3EVEKqNFC3jiCTjzzLBe6/jx\nSUeUvTI9WmYccAiwNfApcK27P5hyXD13ESnVggVhhslDDoHbb4dGjZKOqPbQQ0wiktXWrIHzz4fX\nXw9lmr32Sjqi2kFlGRHJak2bhidZL700DJd84AEtBJIu9dxFJCssWRLKNF26wD33hMSfr9RzF5Gc\nsddeMHduqL137x5q8lI2JXcRyRqNGsHIkTBsGPTrB3fdpTJNWVSWEZGstHx5KNN06BAW6M6n9VpV\nlhGRnNWpE8yaBe3ahYVAZs9OOqLaRT13Ecl6//oXDBkCl18Ol10WpjTIZRrnLiJ54/33w9w0zZuH\n9Vpbt046osxRWUZE8saOO8LMmWGoZLduYTufqecuIjlnyhQYPDg83fr73+feeq0qy4hI3lq5MqzX\n6g5jxsB22yUdUXxUlhGRvNW2LTz3XFjxqXt3mDw56YhqlpK7iOSsunXh2mvD1MHnnANXXgk//JDe\nZzt06MA+++xD165d6dGjx2bHx4wZQ5cuXdhnn33o3bs3ixYtAuDtt9+ma9euG17NmjXjjjvuiPNr\npUVlGRHJC599BmecAV99BePGhRuw5enYsSPz58+nZcuWpR5/5ZVX2HPPPWnWrBmTJ0+msLCQ2SUG\n269fv57tt9+euXPn0r59+7i+isoyIiLFWreGp5+GAQOgR48wNr4i5XU+DzzwQJo1awZAz549WbFi\nxWbnTJs2jZ133jnWxJ6ujCZ3MzvCzN4ys3+b2ZWZbEtEpCJ16oQHnZ58Ei65BIYOhe++K/1cM6Nv\n377st99+jBw5stzr3n///Rx55JGb7R8/fjwnn3xyHKFXnrtn5AXUBZYDHYD6wEJgjxLneC6bMWNG\n0iFklL5fdsvl75fOd/vyS/cBA9y7dnVftmzz4x9//LG7u3/66afepUsXf+GFF0q9zvTp032PPfbw\nL7/8cpP933//vbdq1co//fTTSsdfkSh3lpuDM9lz7wEsd/f33P0HYDxwbAbbq3Uqu1p5ttH3y265\n/P3S+W4tWsDjj4cbrb16wdixmx5v27YtAK1bt+a4445j7ty5m11j0aJFnHvuuTz11FO0aNFik2PP\nPvss3bt3p3VCj8pmMrlvD3yY8n5FtE9EpFYwg1//OgyZHDYsJPp162DdunWsWbMGgLVr1zJ16lQ6\nd+68yWc/+OADBgwYwOjRo+nUqdNm1x43bhyDBg2qke9Rmkwmdw2DEZGssO++MG8efP897L8/vPXW\nJ/Tp04d9992Xnj170r9/f/r168e9997LvffeC8D111/P6tWrueCCCzYbLrl27VqmTZvGgAEDkvpK\nmRsKaWYHAIXufkT0/mpgvbv/NeUc/QAQEakCT2r6ATOrB7wNHA58DMwFBrn70ow0KCIiG9TL1IXd\n/Ucz+w0whTBy5n4ldhGRmpHoE6oiIpIZiT2hmssPOJnZA2b2iZktTjqWTDCz9mY2w8yWmNkbZnZR\n0jHFycwamtkcM1toZm+a2Y1JxxQ3M6trZgvMbGLSscTNzN4zs0XR99t8/GKWM7PmZva4mS2N/n4e\nUOp5SfTczawuoR7fF/gIeJUcqsebWR/gW+Ahd+9c0fnZxszaAG3cfaGZNQHmA7/Mlf9/AGbWyN3X\nRfeOXgIud/eXko4rLmZ2KdAdaOruxyQdT5zM7F2gu7t/mXQsmWBmo4CZ7v5A9Pezsbt/XfK8pHru\nOf2Ak7u/CKxOOo5McfdV7r4w2v4WWArk0GzZ4O7ros0GhHtGOZMozKwdcCRwH1DuiIsslpPfy8ya\nAX3c/QEI9zZLS+yQXHLXA045wsw6AF2BOclGEi8zq2NmC4FPgBnu/mbSMcXoVuAKYH3SgWSIA9PM\nbJ6ZnZt0MDHrCHxmZg+a2WtmNtLMGpV2YlLJXXdxc0BUknkcuDjqwecMd1/v7vsC7YCDzawg4ZBi\nYWb9gU/dfQE52rsFert7V+AXwIVRmTRX1AO6AX93927AWuCq0k5MKrl/BKTOgdme0HuXLGFm9YEn\ngNHunsbkqdkp+pX3GWC/pGOJSS/gmKguPQ44zMweSjimWLn7yujPz4AJhDJwrlgBrHD3V6P3jxOS\n/WaSSu7zgF3MrIOZNQAGAk8lFItUkpkZcD/wprvflnQ8cTOzVmbWPNreEvgZsCDZqOLh7r9z9/bu\n3hE4CZju7qcnHVdczKyRmTWNthsD/YCcGbXm7quAD81s12hXX2BJaedm7CGm8uT6A05mNg44BNja\nzD4ErnX3BxMOK069gVOBRWZWnPSudvdcWaWyLTDKzOoQOkAPu/vzCceUKblWIt0WmBD6H9QDxrj7\n1GRDit1QYEzUMX4HOLO0k/QQk4hIDtIyeyIiOUjJXUQkBym5i4jkICV3EZEcpOQuIpKDlNxFRHKQ\nknsWM7M2ZjbezJZH82g8Y2a7lHN+h+JpiM2soKrTvZrZ/0QP91RZHNeoQptHF08vbWa/NLM9Uo6d\nYWZtazieQjO7LNoenOn2zWy6mfUrse9/zOzv0fauZjbJzJaZ2Xwze8TMton+rnwdTaFb/DqsjDam\nmdlW0ZTQpbYVXXNS5r6pgJJ71oqeEp1AeMKwk7vvB1xNeIgj0y4GSp2sqCzRA0HVukZ1ufvElDV8\nfwnsmXJ4MJWc2TKaurpaIbHxIaJKt18F4whPpaYaCIw1s4aEaRbucvdd3b078HegdRTjC+7eNeU1\nveTFo4T/trt/A4wtqy13/xRYbWalPjYv8VByz16HAv91938U73D3RcVzjpvZzWa2OFq04MTyLmRm\njS0sMDInmmnumGh/XTO7JbrO62b2GzMbSkhCM8zs+ei8QVE7i83sLynX/Tb6/ELggJT9F6V7jVJi\nvcLM5kbxFEb7OlhY+OVBM3vbzMaYWT8zeznqhe4fnTfYzEaY2YHA0cDNUS/0t4S5Y8ZE37+hmXU3\ns6LoN6LJFuawJ9p3q5m9ClyUElcdM3vXwpSsxfv+bWato/imRzFPM7PUeZXMzI4nzK2e2v610fdc\nbGb3ppy8v21ciOLmlN/E6kbvi//bnFfKf74ngKMszAFePKPndtHfmZOBl939meKT3X2muy8h/QnG\nTgaeTKMtCNONDErzulIV7q5XFr4IieVvZRw7HphK+Ee5DfA+oUffAVgcnVMATIy2bwBOibabExZS\naQRcADwK1ImOtYj+fBdoGW1vF11/a8JUEs8Dx0bH1gMnlBFjWtco8Zl+wL3Rdh1gItAn+l4/AHtF\n33keYUoLgGOACdH2YGBEtP0gMCDl2jOAbtF2fWAWsHX0fmDK9WYAd5bxnW4DBkfbPYGp0fZE4LRo\n+8yUeK4DLi3Zfup/62j7IaB/tP0G0DPavhFYFG2fB1wTbW9BWACnQykxTgSOibavAm6KtocDQ8v4\nXgXAV4T5dYpfHUs5b2nx/9Py2oredwTmJP3vKJdf6rlnr/LmjehN+PXXPfwKPJPyZ8brB1xlYZ6Y\nGYTksANwOCGZrgdw99IWINmfMN/5F+7+EzAGODg69hOhB1eR8q5RMs5+UZzzgd2ATtGxd919iYfM\nsQSYFu1/g5D8S1OyR1r8fjfCD4ppUVvXsOl6A4+Ucb1HCD8IIJQkis87gFCmABgNHJRGPIeZ2Wwz\nWwQcBuxpYTKzJu5ePHf+2JTP9ANOj+KdDbRk43+bVKmlmYHR+9LaL+lF37Qs824p52znm65+VF5b\nKyn7/4vEIJGJwyQWS4ATyjle8h9qRZMIDXD3f29ygTD5UkW/knuJcyylre+iZIuZTSb89vCqu5cs\nGZR2DcysB1Bckrg2+vNGTylFRed1AL5P2bUe+G/Kdll/z0v+Nyl+b8ASd+9VxufWlrF/NtDJzFoR\nVha7PjXMMj6zWftR/fsuwlJxH5nZdUDDUuItec3fuPtzFbTxFHCrmXUFGnmY1x3C36dD0oixMspq\nCzb9eyIZoJ57lvJwQ2sLS1lpxsz2MbODgBeBgVEduDWhF1zeQsFT2LR+3DXafA4YUnzj0MxaRPvX\nAFtF268Ch5jZ1tF5JxF+UygZ7xFRj++8NK9R5O5zU3qKE6M4z7IwlStmtn30/aoitf2S798GWlu0\n8LCZ1TezPalA9INsAmGlozdTftOZxcYe7CnAC9G2sTFBp7bfMPrzCwsLovwquv7XwJrohx5sesNy\nCvDrlBr3rlbKCj0eFlWZQShLjU05NBboZWZHFu8ws4PNbK+KvneKj81s6zTagjDz5vuVuLZUkpJ7\ndjsO6GthKOQbwJ+Ble4+AVgEvE6oX18RlWdg095S8fYfgfrRjbo3gGHR/vuADwhT+y5k4w2wfwCT\nzex5DwsjXEX4R7wQmBcl4pJtlZTuNTYGG3qlY4FXonLFo0CTMtoq7Xumjk4ZD1xhYcjfTsA/gXvM\n7DXCv4sTgL9G33sBcGA53yXVI4QEnlq6GQqcaWavR8cuLiWe1Pa/A0YSSkqT2XQJw7OBkVH5pRFQ\nvH7mfcCbwGvRTda7Kfs3lnFAZ1LKJO7+HdAfGBrdhF4CnA98FsXYxzYdCjmglOu+xOaLmmzWVqQH\nG3/ISQZoyl+RLGJmjd19bbR9FbCtu1+ScFhAeHYCGOjuF6Rx7hjglhKlGomReu4i2eWoqOe8mHDj\n/E9JB1TM3YsIK6w1Le88M9sGaK7EnlnquYuI5CD13EVEcpCSu4hIDlJyFxHJQUruIiI5SMldRCQH\nKbmLiOSg/wedVsAa/LN/MwAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x26fc390>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "import math\n",
    "import numpy\n",
    "%matplotlib inline\n",
    "from matplotlib.pyplot import plot,title,xlabel,ylabel,annotate\n",
    "\n",
    "#Variables \n",
    "\n",
    "VCC = 10.0                        #Source voltage (in volts)\n",
    "R1 = 10.0                         #Resistance (in kilo-ohm)\n",
    "R2 = 5.0                          #Resistance (in kilo-ohm)\n",
    "RC = 1.0                          #Collector resistance (in kilo-ohm)    \n",
    "RE = 500.0 * 10**-3               #Emitter resistance (in kilo-ohm)  \n",
    "RL = 1.5                          #Load resistance (in kilo-ohm)\n",
    "beta = 100.0                      #Common emitter current gain\n",
    "VBE = 0.7                         #Emitter-to-Base voltage (in volts)\n",
    "\n",
    "#Calculation\n",
    "\n",
    "VR2 = VCC * (R2 /(R1 + R2))       #Voltage drop across R2 (in volts)\n",
    "IEQ = (VR2 - VBE) / RE            #Emitter current (in milli-Ampere)\n",
    "ICQ = IEQ                         #Collector current (in milli-Ampere)\n",
    "VCEQ = VCC - ICQ * (RC + RE)      #Collector-to-Emitter voltage (in volts)\n",
    "rL = RC * RL /(RC + RL)           #a.c. load resistance (in kilo-ohm)\n",
    "ICsat = ICQ + VCEQ / rL           #Collector current at saturation point (in milli-Ampere) \n",
    "VCEsat = 0                        #Voltage at saturation point (in volts)\n",
    "ICcutoff = 0                      #Collector current at cut off point (in milli-Ampere)\n",
    "VCEcutoff = VCEQ + ICQ * rL       #Collector-to-emitter voltage at cut-off point (in volts)\n",
    "\n",
    "#Result\n",
    "\n",
    "print \"Collector current at saturation point is \",round(ICsat,2),\" mA.\\nCollector-to-emitter voltage at saturation point is \",VCEsat,\" V.\"\n",
    "print \"Collector current at cut off point is \",ICcutoff,\" mA.\\nCollector-to-emitter voltage at cut-off point is \",VCEcutoff,\" V.\"\n",
    "\n",
    "#Slight variation due to higher precision.\n",
    "\n",
    "#Graph\n",
    "\n",
    "x = numpy.linspace(0,5.27,100)\n",
    "plot(x,8.78 - 8.78/5.27 * x)\n",
    "title(\"a.c. load line\")\n",
    "xlabel(\"Collector-to-emitter voltage VCE (V)\")\n",
    "ylabel(\"Collector current IC (mA)\")\n",
    "annotate(\"Q\",xy=(2.11,5.26))\n",
    "annotate(\"8.78\",xy=(0,8.78))\n",
    "annotate(\"5.27\",xy=(5.27,0))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 27.2 , Page Number 691"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Overall compliance (PP) of the amplifier is  9.61  V.\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "\n",
    "#Variables \n",
    "\n",
    "VCC = 20.0                        #Source voltage (in volts)\n",
    "R1 = 10.0                         #Resistance (in kilo-ohm)\n",
    "R2 = 1.8                          #Resistance (in kilo-ohm)\n",
    "RC = 620.0 * 10**-3               #Collector resistance (in kilo-ohm)    \n",
    "RE = 200.0 * 10**-3               #Emitter resistance (in kilo-ohm)  \n",
    "RL = 1.2                          #Load resistance (in kilo-ohm)\n",
    "beta = 180.0                      #Common emitter current gain\n",
    "VBE = 0.7                         #Emitter-to-Base voltage (in volts)\n",
    "\n",
    "#Calculation\n",
    "\n",
    "VB = VCC * (R2 /(R1 + R2))        #Voltage drop across R2 (in volts)\n",
    "VE = VB - VBE                     #Voltage at the emitter (in volts)\n",
    "IE = VE / RE                      #Emitter current (in milli-Ampere)\n",
    "IC = IE                           #Collector current (in milli-Ampere)\n",
    "VCE = VCC - IE*(RC + RE)          #Collector-to-emitter voltage (in volts)\n",
    "ICEQ = IC                         #Collector current at Q (in milli-Ampere)\n",
    "VCEQ = VCE                        #Collector-to-emitter voltage at Q (in volts)  \n",
    "rL = RC * RL/(RC + RL)            #a.c. load resistance (in kilo-ohm)  \n",
    "PP = 2 * ICEQ * rL                #Compliance of the amplifier (in volts) \n",
    "\n",
    "#Result\n",
    "\n",
    "print \"Overall compliance (PP) of the amplifier is \",round(PP,2),\" V.\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 27.3 , Page Number 694"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Voltage gain is  27.5  and Power gain is  1375.0 .\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "\n",
    "#Variables \n",
    "\n",
    "r1e = 8.0                       #a.c. load resistance (in ohm)\n",
    "RC = 220.0                      #Collector resistance (in ohm)\n",
    "RE = 47.0                       #Emitter resistance (in ohm)\n",
    "R1 = 4.7 * 10**3                #Resistance (in ohm)\n",
    "R2 = 470.0                      #Resistance (in ohm)\n",
    "beta = 50.0                     #Common emitter current gain\n",
    "\n",
    "#Calculation\n",
    "\n",
    "rL = RC                         #Load resistance (in ohm)\n",
    "Av = rL / r1e                   #Voltage gain\n",
    "Ai = beta                       #Current gain\n",
    "Ap = Av * Ai                    #Power gain  \n",
    "\n",
    "#Result\n",
    "\n",
    "print \"Voltage gain is \",Av,\" and Power gain is \",Ap,\".\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 27.4 , Page Number 698"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Collector efficiency is  25.0 % .\n",
      "Power rating of the transistor is  20.0  W.\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "\n",
    "#Variables \n",
    "\n",
    "Ptrdc = 20.0                        #dc Power (in watt)\n",
    "Poac = 5.0                          #ac Power (in watt)     \n",
    "\n",
    "#Calculation\n",
    "\n",
    "ne = Poac / Ptrdc                   #Collector efficiency   \n",
    "P = Ptrdc                           #Power rating of the transistor\n",
    "\n",
    "#Result\n",
    "\n",
    "print \"Collector efficiency is \",ne * 100,\"% .\\nPower rating of the transistor is \",P,\" W.\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 27.5 , Page Number 699"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The a.c. power output is  4.7  W.\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "\n",
    "#Variables \n",
    "\n",
    "Pcdc = 10.0                   #dc power (in watt)\n",
    "ne = 0.32                     #efficiency\n",
    "\n",
    "#Calculation\n",
    "\n",
    "Poac = ne * Pcdc / (1 - ne)   #a.c. power output (in watt)\n",
    "\n",
    "#Result\n",
    "\n",
    "print \"The a.c. power output is \",round(Poac,1),\" W.\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 27.6 , Page Number 699"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Total power within the circuit is  7.0  W.\n",
      "The power Pcdc =  3.5  W is dissipated in the form of heat within the transistor collector region.\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "\n",
    "#Variables \n",
    "\n",
    "nc = 0.5                       #Efficiency\n",
    "VCC = 24.0                     #Source voltage (in volts)\n",
    "Poac = 3.5                     #a.c. power output (in watt)\n",
    "\n",
    "#Calculation\n",
    "\n",
    "Ptrdc = Poac / nc              #dc power (in watt)\n",
    "Pcdc = Ptrdc - Poac            #Power dissipated as heat (in watt)   \n",
    "\n",
    "#Result\n",
    "\n",
    "print \"Total power within the circuit is \",Ptrdc,\" W.\\nThe power Pcdc = \",Pcdc,\" W is dissipated in the form of heat within the transistor collector region.\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 27.7 , Page Number 699"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Power supplied by the d.c. source to the amplifier circuit is  12.0  W.\n",
      "D.C. power consumed by the load resistor is  5.76  W.\n",
      "A.C. power developed across the load resistor is  0.72  W.\n",
      "D.C. power delivered to the transistor is  6.24  W.\n",
      "D.C. power wasted in the transistor collector is  5.52  W.\n",
      "Overall efficiency is  0.06 .\n",
      "Collector efficiency is  11.5 % .\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "\n",
    "#Variables \n",
    "\n",
    "VCC = 20.0                       #Supply voltage (in volts)\n",
    "VCEQ = 10.0                      #Collector-to-emitter voltage (in volts)\n",
    "ICQ = 600.0 * 10**-3             #Collector current (in Ampere)\n",
    "RL = 16.0                        #Load resistance (in ohm)\n",
    "Ip = 300.0 * 10**-3              #Output current variation (in Ampere)\n",
    "\n",
    "#Calculation\n",
    "\n",
    "Pindc = VCC * ICQ                #dc power supplied (in watt)\n",
    "PRLdc = ICQ**2 * RL              #dc power consumed by load resistor (in watt)  \n",
    "I = Ip / 2**0.5                  #r.m.s. value of Collector current (in Ampere) \n",
    "Poac = I**2 * RL                 #a.c. power across load resistor (in ohm) \n",
    "Ptrdc = Pindc - PRLdc            #dc power delievered to transistor (in watt)\n",
    "Pcdc = Ptrdc - Poac              #dc power wasted in transistor collector (in watt) \n",
    "no = Poac / Pindc                #Overall efficiency\n",
    "nc = Poac / Ptrdc                #Collector efficiency  \n",
    "\n",
    "#Result\n",
    "\n",
    "print \"Power supplied by the d.c. source to the amplifier circuit is \",Pindc,\" W.\"\n",
    "print \"D.C. power consumed by the load resistor is \",PRLdc,\" W.\"\n",
    "print \"A.C. power developed across the load resistor is \",Poac,\" W.\"\n",
    "print \"D.C. power delivered to the transistor is \",Ptrdc,\" W.\"\n",
    "print \"D.C. power wasted in the transistor collector is \",Pcdc,\" W.\"\n",
    "print \"Overall efficiency is \",no,\".\"\n",
    "print \"Collector efficiency is \",round(nc * 100,1),\"% .\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 27.8 , Page Number 702"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The effective resistance is  1.8  kilo-ohm.\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "\n",
    "#Variables \n",
    "\n",
    "a = 15.0                     #Turns ratio\n",
    "RL = 8.0                     #Load resistance (in ohm)   \n",
    "\n",
    "#Calculation\n",
    "\n",
    "R1L = a**2 * RL              #Effective resistance (in ohm)   \n",
    "\n",
    "#Result\n",
    "\n",
    "print \"The effective resistance is \",R1L * 10**-3,\" kilo-ohm.\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 27.9 , Page Number 702"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Turns ratio is  25.0 : 1.\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "\n",
    "#Variables \n",
    "\n",
    "RL = 16.0                    #Load resistance (in ohm)\n",
    "R1L = 10.0 * 10**3           #Effective resistance (in ohm)\n",
    "\n",
    "#Calculation\n",
    "\n",
    "a = (R1L / RL)**0.5          #Turns ratio\n",
    "\n",
    "#Result\n",
    "\n",
    "print \"Turns ratio is \",a,\": 1.\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 27.10 , Page Number 702"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The maximum power delievered to load is  100.0  W.\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "\n",
    "#Variables \n",
    "\n",
    "RL = 8.0                    #Load resistance (in ohm)\n",
    "a = 10.0                    #Turns ratio\n",
    "ICQ = 500.0 * 10**-3        #Collector current (in Ampere)\n",
    "\n",
    "#Calculation\n",
    "\n",
    "R1L = a**2 * RL             #Effective load (in ohm)\n",
    "Poac = 1.0/2* ICQ**2 * R1L  #Maximum power delieverd (in watt)\n",
    "\n",
    "#Result\n",
    "\n",
    "print \"The maximum power delievered to load is \",Poac,\" W.\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 27.11 , Page Number 702"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Maximum undistorted a.c. output power is  0.05  W.\n",
      "Quiescent collector current is  0.01  A.\n",
      "Transformer turns ratio is  8.0 .\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "\n",
    "#Variables \n",
    "\n",
    "Ptrdc = 100.0 * 10**-3           #Maximum collector dissipated power (in watt)\n",
    "VCC = 10.0                       #Source voltage (in volts)\n",
    "RL = 16.0                        #Load resistance (in ohm)\n",
    "no = nc = 0.5                    #Efiiciency\n",
    "\n",
    "#Calculation\n",
    "\n",
    "Poac = no * Ptrdc                #Maximum undistorted a.c. output power (in watt)\n",
    "ICQ = 2 * Poac / VCC             #Quiescent collector current (in Ampere)\n",
    "R1L = VCC / ICQ                  #Effective load resistance (in ohm)\n",
    "a = (R1L / RL)**0.5\n",
    "\n",
    "#Result\n",
    "\n",
    "print \"Maximum undistorted a.c. output power is \",Poac,\" W.\\nQuiescent collector current is \",ICQ,\" A.\\nTransformer turns ratio is \",round(a),\".\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 27.12 , Page Number 703"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Power transferred when directly connected is  4.9  mW.\n",
      "The average power transferred to the speaker is  260.0  mW.\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "\n",
    "#Variables \n",
    "\n",
    "VCC = 10.0                   #Source voltage (in volts)\n",
    "Ip = 50.0 * 10**-3           #Collector current (in Ampere)\n",
    "RL = 4.0                     #Load resistance (in ohm)     \n",
    "\n",
    "#Calculation\n",
    "\n",
    "I = round(Ip / 2**0.5,3)     #r.m.s. value of collector current (in Ampere)\n",
    "Poac = I**2 * RL             #Average power delievered (in watt)\n",
    "V1 = VCC                     #Primary voltage (in volts)\n",
    "R1L = V1 / Ip                #Effective load resistance (in ohm)\n",
    "a = round((R1L / RL)**0.5)   #Turns ratio\n",
    "V2 = V1 / a                  #Secondary voltage (in volts)\n",
    "I2p = V2 / RL                #Peak value of secondary current (in Ampere)\n",
    "I2 = I2p / 2**0.5            #r.m.s. value of secondary current (in Ampere)\n",
    "Pavg = I2**2 * RL            #Average power transferred to speaker (in watt) \n",
    "\n",
    "#Result\n",
    "\n",
    "print \"Power transferred when directly connected is \",Poac * 10**3,\" mW.\" \n",
    "print \"The average power transferred to the speaker is \",round(Pavg,2) * 10**3,\" mW.\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 27.13 , Page Number 706"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Power delivered to the load is  0.1  W.\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "\n",
    "#Variables \n",
    "\n",
    "RL = 1.0 * 10**3                   #Load resistance (in ohm)\n",
    "IC = 10.0 * 10**-3                 #Collector current (in Ampere)\n",
    "\n",
    "#Calculation\n",
    "\n",
    "PL = IC**2 * RL                    #Load power (in watt)\n",
    "\n",
    "#Result\n",
    "\n",
    "print \"Power delivered to the load is \",PL,\" W.\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 27.14 , Page Number 710"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The power drawn from the source is  16.0  W.\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "\n",
    "#Variables \n",
    "\n",
    "RL = 8.0                   #Load resistance (in ohm)\n",
    "VP = 16.0                  #Peak output voltage (in volts)\n",
    "\n",
    "#Calculation\n",
    "\n",
    "P = VP**2 / (2 * RL)       #Power drawn from the source (in watt)  \n",
    "\n",
    "#Result\n",
    "\n",
    "print \"The power drawn from the source is \",P,\" W.\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 27.15 , Page Number 710"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Maximum power output is  73.02  W.\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "\n",
    "#Variables \n",
    "\n",
    "Pcdc = 10.0              #Power rating of amplifier (in watt)\n",
    "n = 0.785                #Maximum overall efficiency           \n",
    "\n",
    "#Calculation\n",
    "\n",
    "PT = 2 * Pcdc            #Total power dissipation of two transistors (in watt)\n",
    "Poac = (PT * n) / (1-n)  #Maximum power output (in watt)\n",
    "\n",
    "#Result\n",
    "\n",
    "print \"Maximum power output is \",round(Poac,2),\" W.\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 27.16 , Page Number 711"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The d.c. input power is  12.5  W.\n",
      "The a.c. output power is  7.5  W.\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "\n",
    "#Variables \n",
    "\n",
    "no = 0.6                  #efficiency \n",
    "Pcdc = 2.5                #Maximum collector dissipation of each transistor (in watt)\n",
    "\n",
    "#Calculation\n",
    "\n",
    "PT = 2 * Pcdc            #Total power dissipation of two transistors (in watt)\n",
    "Pindc = PT / (1 - no )   #dc input power (in watt)\n",
    "Poac = no * Pindc        #ac output power (in watt)     \n",
    "\n",
    "#Result\n",
    "\n",
    "print \"The d.c. input power is \",Pindc,\" W.\\nThe a.c. output power is \",Poac,\" W.\""
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}