summaryrefslogtreecommitdiff
path: root/A_Textbook_of_Applied_Electronics_by_R_S_Sedha/chapter24_5.ipynb
blob: 8d4d7f9914e82f78a60f7f5c25ad74451ee2511c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
{
 "metadata": {
  "name": "",
  "signature": "sha256:8d83d12da307337593a7cd775da037b9954c818c998b8e588f2f7e2538d508ce"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 24 , Singly-Stage BJT Amplifiers"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 24.1 , Page Number 590"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variables\n",
      "\n",
      "VCC = 10.0                        #Source voltage (in volts)\n",
      "RC = 10.0                         #Collector resistance (in kilo-ohm)\n",
      "RB = 1.0 * 10**3                  #Base resistance (in kilo-ohm)\n",
      "beta = 100.0                      #Common emitter current gain \n",
      "VBE = 0.7                         #Emitter-to-Base Voltage (in volts)\n",
      "\n",
      "#Calculation\n",
      "\n",
      "IB = (VCC - VBE) / RB             #Base current (in milli-Ampere)\n",
      "IC = beta * IB                    #Collector current (in milli-Ampere)\n",
      "IE = IC                           #Emitter current (in milli-Ampere)\n",
      "r1e = 25.0 / IE * 10**-3          #a.c resistance of emitter diode (in kilo-ohm)\n",
      "R1 = beta * r1e                   #Input resistance looking directly into the base (in kilo-ohm)\n",
      "Ris = RB * R1/(RB + R1)           #Stage input resistance (in kilo-ohm)\n",
      "Ro = RC                           #Output resistance (in kilo-ohm)\n",
      "Av = RC / r1e                     #Voltage gain\n",
      "    \n",
      "#Result\n",
      "\n",
      "print \"Input resistance looking into the base is \",round(R1,2),\" kilo-ohm.\\nInput resistance of the stage is \",round(Ris,3),\" kilo-ohm.\\nOutput resistance is \",Ro,\" kilo-ohm.\\nVoltage gain is \",Av,\".\"\n",
      "\n",
      "#Correction to be done in the book for the formula of Ris in the question."
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Input resistance looking into the base is  2.69  kilo-ohm.\n",
        "Input resistance of the stage is  2.681  kilo-ohm.\n",
        "Output resistance is  10.0  kilo-ohm.\n",
        "Voltage gain is  372.0 .\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 24.2 , Page Number 591"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variables\n",
      "\n",
      "Ri = 2.5                         #Input resistance (in kilo-ohm)\n",
      "Av = 200.0                       #Voltage gain\n",
      "Vs = 5.0 * 10**-3                #Input signal voltage (in volts)\n",
      "beta = 50.0                      #Common emitter current gain\n",
      "\n",
      "#Calculation\n",
      "\n",
      "IB = Vs / Ri                     #Base current (in milli-Ampere)   \n",
      "IC = beta * IB                   #Collector current (in milli-Ampere)\n",
      "Ai = beta                        #Current gain\n",
      "Ap = Ai * Av                     #Power gain\n",
      "Gp = 10 * math.log10(Ap)              #dB power gain (in decibel)\n",
      "\n",
      "#Result\n",
      "\n",
      "print \"The base current is \",IB,\" mA.\\nThe collector current is \",IC,\" mA.\\nThe power gain is \",Ap,\".\\nThe dB power gain is \",Gp,\" dB.\"\n",
      "\n",
      "#Wrong unit of IB. IB is in micro Ampere but in book it is given in milli-Ampere in solution.\n",
      "#Also wrong unit in IC."
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The base current is  0.002  mA.\n",
        "The collector current is  0.1  mA.\n",
        "The power gain is  10000.0 .\n",
        "The dB power gain is  40.0  dB.\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 24.3 , Page Number 593"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variables\n",
      "\n",
      "VCC = 20.0                       #Source voltage (in volts)\n",
      "RC = 5.0                         #Collector resistance (in kilo-ohm)\n",
      "RE = 1.0                         #Emitter resistance (in kilo-ohm)\n",
      "RB = 100.0                       #Base resistance (in kilo-ohm)\n",
      "beta = 150.0                     #Common emitter current gain\n",
      "\n",
      "#Calculation\n",
      "\n",
      "IC = VCC / (RE + RB/beta)        #Collector current (in milli-Ampere)\n",
      "IE = IC                          #Emitter current (in milli-Ampere)\n",
      "r1e = 25.0 / IE * 10**-3         #a.c. resistance of emitter diode (in kilo-ohm)\n",
      "Ri = beta * (r1e + RE)           #Input resistance looking directly into the base (in kilo-ohm)\n",
      "Ris = RB * Ri / (RB + Ri)        #Input resistance of the stage (in kilo-ohm)\n",
      "Av = RC / RE                     #Voltage gain \n",
      "Gp = 10 * math.log10(Av)              #dB power gain (in decibel)\n",
      "\n",
      "#Result\n",
      "\n",
      "print \"Input resistance looking into the base is \",round(Ri),\" kilo-ohm.\\nInput resistance of the stage is \",round(Ris),\" kilo-ohm.\\nVoltage gain is \",Av,\".\\ndB voltage gain is \",round(Gp),\" dB.\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Input resistance looking into the base is  150.0  kilo-ohm.\n",
        "Input resistance of the stage is  60.0  kilo-ohm.\n",
        "Voltage gain is  5.0 .\n",
        "dB voltage gain is  7.0  dB.\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 24.4 , Page Number 595"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variables\n",
      "\n",
      "VCC = 12.0                       #Source voltage (in volts)\n",
      "RC = 10.0 * 10**3                #Collector resistance (in ohm)\n",
      "RE = 1.0 * 10**3                 #Emitter resistance (in ohm)\n",
      "RB = 500.0 * 10**3               #Base resistance (in ohm)\n",
      "beta = 50.0                      #Common emitter current gain\n",
      "\n",
      "#Calculation\n",
      "\n",
      "IC = VCC / (RE + RB/beta)        #Collector current (in Ampere)\n",
      "IE = IC                          #Emitter current (in Ampere)\n",
      "r1e = 25.0 / IE * 10**-3         #a.c. resistance of emitter diode (in ohm)\n",
      "Ri = beta * (r1e)                #Input resistance looking directly into the base (in ohm)\n",
      "Ris = RB * Ri / (RB + Ri)        #Input resistance of the stage (in ohm)\n",
      "Av = RC / r1e                    #Voltage gain \n",
      "AV1 = RC / RE                    #New voltage gain  \n",
      "\n",
      "#Result\n",
      "\n",
      "print \"Input resistance looking into the base is \",round(Ri),\" ohm.\\nInput resistance of the stage is \",round(Ris,1),\" kilo-ohm.\\nVoltage gain is \",round(Av,2),\".\\nNew Voltage gain is \",AV1,\".\"\n",
      "\n",
      "#Slight variations in answers due to high precision."
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Input resistance looking into the base is  1146.0  ohm.\n",
        "Input resistance of the stage is  1143.2  kilo-ohm.\n",
        "Voltage gain is  436.36 .\n",
        "New Voltage gain is  10.0 .\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 24.5 , Page Number 597"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variables\n",
      "\n",
      "VCC = 30.0                        #Source voltage (in volts)\n",
      "RC = 10.0                         #Collector resistance (in kilo-ohm)\n",
      "RE = 8.2                          #Emitter resistance (in kilo-ohm)\n",
      "RL = 3.3                          #Load resistance (in kilo-ohm)\n",
      "beta = 200.0                      #Common emitter current gain\n",
      "VBE = 0.7                         #Emitter-to-Base Voltage (in volts)\n",
      "R1 = 47.0                         #Resistance (in kilo-ohm)   \n",
      "R2 = 15.0                         #Resistance (in kilo-ohm)\n",
      "Vs = 5.0                          #a.c voltage (in milli-volts)\n",
      "\n",
      "#Calculation\n",
      "\n",
      "Vth = VCC * R2 / (R1 + R2)        #Thevenin's voltage (in volts)\n",
      "Rth = R1 * R2 / (R1 + R2)         #Thevenin's equivalent voltage (in volts)\n",
      "IE = (Vth - VBE)/(RE + Rth/beta)  #Emitter current (in milli-Ampere)\n",
      "r1e = 25.0 / IE                   #a.c. resistance of emitter diode (in ohm)     \n",
      "rL = RC * RL/(RC + RL)            #a.c load seen by the amplifier (in kilo-ohm)     \n",
      "Av = rL * 10**3 / r1e             #Voltage gain\n",
      "vo = Av * Vs                      #Output voltage (in volts)\n",
      "Ri = beta * r1e * 10**-3          #Input resistance looking directly into the base (in ohm)  \n",
      "Ris = Rth * Ri / (Rth + Ri)       #input resistance of the stage (in ohm)\n",
      "\n",
      "#Result\n",
      "\n",
      "print \"a.c output voltage is \",round(vo,2),\" mV.\\nInput impedance for the circuit is \",round(Ris),\" kilo-ohm.\"\n",
      "\n",
      "#Slight variation in value of vo due to higher precision. "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "a.c output voltage is  394.14  mV.\n",
        "Input impedance for the circuit is  4.0  kilo-ohm.\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 24.6 , Page Number 599"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variables\n",
      "\n",
      "VCC = 10.0                            #Source voltage (in volts)\n",
      "RC = 5.0                              #Collector resistance (in kilo-ohm)\n",
      "RE = 1.0                              #Emitter resistance (in kilo-ohm)\n",
      "beta = 50.0                           #Common emitter current gain\n",
      "VBE = 0.7                             #Emitter-to-Base Voltage (in volts)\n",
      "R1 = 50.0                             #Resistance (in kilo-ohm)   \n",
      "R2 = 10.0                             #Resistance (in kilo-ohm)\n",
      "Vs = 10.0                             #a.c voltage (in milli-volts)\n",
      "RS = 600.0 * 10**-3                   #Source resistance (in kilo-ohm)  \n",
      "\n",
      "#Calculation\n",
      "\n",
      "Vth = VCC * R2 / (R1 + R2)            #Thevenin's voltage (in volts)\n",
      "Rth = R1 * R2 / (R1 + R2)             #Thevenin's equivalent voltage (in volts)\n",
      "IE = (Vth - VBE)/(RE + Rth/beta)      #Emitter current (in milli-Ampere)\n",
      "r1e = 25.0 / IE * 10**-3              #a.c. resistance of emitter diode (in kilo-hm)     \n",
      "Ris = Rth * beta*r1e/(Rth + beta*r1e) #input resistance of the stage (in ohm)\n",
      "rL = RC * R1/(RC + R1)                #a.c load seen by the amplifier (in kilo-ohm)     \n",
      "Av = rL / r1e                         #Voltage gain\n",
      "vin = Vs * Ris / (Ris + RS)           #input voltage (in milli-volts)    \n",
      "vo = Av * vin                         #Output voltage (in milli-volts)\n",
      "Avs = Av * vin / Vs                   #Overall voltage gain \n",
      "\n",
      "#Result\n",
      "\n",
      "print \"The output voltage is \",round(vo * 10**-3,3),\" V.\\nThe overall voltage gain is \",round(Avs,2),\".\"\n",
      "\n",
      "#Slight variation due to higher precision."
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The output voltage is  1.025  V.\n",
        "The overall voltage gain is  102.5 .\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 24.7 , Page Number 601"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variables\n",
      "\n",
      "VCC = 12.0                            #Source voltage (in volts)\n",
      "RC = 4.0                              #Collector resistance (in kilo-ohm)\n",
      "RE = 3.3                              #Emitter resistance (in kilo-ohm)\n",
      "beta = 120.0                          #Common emitter current gain\n",
      "VBE = 0.7                             #Emitter-to-Base Voltage (in volts)\n",
      "R1 = 60.0                             #Resistance (in kilo-ohm)   \n",
      "R2 = 30.0                             #Resistance (in kilo-ohm)\n",
      "\n",
      "#Calculation\n",
      "\n",
      "Vth = VCC * R2 / (R1 + R2)            #Thevenin's voltage (in volts)\n",
      "Rth = R1 * R2 / (R1 + R2)             #Thevenin's equivalent voltage (in volts)\n",
      "IE = (Vth - VBE)/(RE + Rth/beta)      #Emitter current (in milli-Ampere)\n",
      "r1e = 25.0 / IE * 10**-3              #a.c. resistance of emitter diode (in kilo-hm)\n",
      "rL = RC                               #Load resistance (in kilo-ohm)\n",
      "Av = RC / r1e                         #Voltage gain\n",
      "\n",
      "#Result\n",
      "\n",
      "print \"The voltage gain is \",round(Av,1),\".\"\n",
      "\n",
      "#Slight variation due to higher precision."
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The voltage gain is  152.3 .\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 24.8 , Page Number 601"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variables\n",
      "\n",
      "VCC = -18.0                           #Source voltage (in volts)\n",
      "RC = 4.3                              #Collector resistance (in kilo-ohm)\n",
      "RE = 1.0                              #Emitter resistance (in kilo-ohm)\n",
      "beta = 200.0                          #Common emitter current gain\n",
      "VBE = -0.7                            #Emitter-to-Base Voltage (in volts)\n",
      "R1 = 39.0                             #Resistance (in kilo-ohm)   \n",
      "R2 = 8.2                              #Resistance (in kilo-ohm)\n",
      "RL = 3.0                              #Load resistance (in kilo-ohm)\n",
      "\n",
      "#Calculation\n",
      "\n",
      "Vth = VCC * R2 / (R1 + R2)            #Thevenin's voltage (in volts)\n",
      "Rth = R1 * R2 / (R1 + R2)             #Thevenin's equivalent voltage (in volts)\n",
      "IC = (Vth - VBE)/(RE + Rth/beta)      #Collector current (in milli-Ampere)\n",
      "IE = -IC                              #Emitter current (in milli-Amper) \n",
      "r1e = 30.0/IE * 10**-3                #a.ac resistance (in kilo-ohm)\n",
      "Ris = Rth * beta*r1e/(Rth + beta*r1e) #input resistance of the stage (in ohm)\n",
      "rL = RC * RL / (RC + RL)              #a.c. load resistance (in kilo-ohm)     \n",
      "Av = rL / r1e                         #Voltage gain \n",
      "\n",
      "#Result\n",
      "\n",
      "print \"Voltage gain is \",round(Av,1),\".\"\n",
      "\n",
      "#printing mistake in book about formula for rL it is in fact rL = RC * RL /(RC + RL).\n",
      "#Slight variation due to higher precision."
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Voltage gain is  138.3 .\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 24.9 , Page Number 603"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variables\n",
      "\n",
      "VCC = 20.0                            #Source voltage (in volts)\n",
      "RC = 5.7                              #Collector resistance (in kilo-ohm)\n",
      "RE = 1.0                              #Emitter resistance (in kilo-ohm)\n",
      "beta = 100.0                          #Common emitter current gain\n",
      "VBE = 0.7                             #Emitter-to-Base Voltage (in volts)\n",
      "R1 = 100.0                            #Resistance (in kilo-ohm)   \n",
      "R2 = 10.0                             #Resistance (in kilo-ohm)\n",
      "Vs = 10.0 * 10**-3                    #a.c voltage (in volts)\n",
      "RS = 100.0 * 10**-3                   #Source resistance (in kilo-ohm)  \n",
      "\n",
      "#Calculation\n",
      "\n",
      "Vth = VCC * R2 /(R1 + R2)             #Thevenin's voltage (in volts)\n",
      "Rth = R1 * R2 / (R1 + R2)             #Thevenin's equivalent resistance (in kilo-ohm)\n",
      "IE = (Vth - VBE)/(RE + Rth/beta)      #Emitter current (in milli-Ampere)\n",
      "r1e = 25.0 / IE * 10**-3              #a.c. resistance of emitter diode (in kilo-hm)\n",
      "Ris = Rth * beta*r1e/(Rth + beta*r1e) #input resistance of the stage (in ohm)\n",
      "rL = RC                               #Load resistance (in kilo-ohm)\n",
      "Av = rL / r1e                         #Voltage gain \n",
      "vin = Vs * Ris / (Ris + RS)           #input voltage (in milli-volts)    \n",
      "vo = Av * vin                         #Output voltage (in milli-volts)\n",
      "Avs = Av * vin / Vs                   #Overall voltage gain \n",
      "\n",
      "#Result\n",
      "\n",
      "print \"Av is \",Av,\".\\nRi is \",round(Ris * 10**3,2),\" ohm.\\nVo is \",round(vo,2),\" V.\\nAvs is \",round(Avs,2),\".\"\n",
      "\n",
      "#Slight variation due to higher precision."
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Av is  233.7 .\n",
        "Ri is  1923.08  ohm.\n",
        "Vo is  2.22  V.\n",
        "Avs is  222.15 .\n"
       ]
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 24.10 , Page Number 604"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variables\n",
      "\n",
      "VCC = -18.0                           #Source voltage (in volts)\n",
      "RC = 4.3                              #Collector resistance (in kilo-ohm)\n",
      "RE = 1.0                              #Emitter resistance (in kilo-ohm)\n",
      "beta = 200.0                          #Common emitter current gain\n",
      "VBE = -0.7                            #Emitter-to-Base Voltage (in volts)\n",
      "R1 = 39.0                             #Resistance (in kilo-ohm)   \n",
      "R2 = 8.2                              #Resistance (in kilo-ohm)\n",
      "RV = 75.0 * 10**-3                    #Resistance (in kilo-ohm)\n",
      "re = 30.0 * 10**-3                    #Emitter resistance (in kilo-ohm)\n",
      "RL = 3.3                              #Load resistance (in kilo-ohm)\n",
      "\n",
      "#Calculation\n",
      "\n",
      "Vth = VCC * R2 /(R1 + R2)             #Thevenin's voltage (in volts)\n",
      "Rth = R1 * R2 / (R1 + R2)             #Thevenin's equivalent resistance (in kilo-ohm)\n",
      "IE = (Vth - VBE)/(RE + Rth/beta)      #Emitter current (in milli-Ampere)\n",
      "IC = round(IE,2)                      #Collector current (in milli-Ampere) \n",
      "VCE = VCC - IC * (RC + RE)            #Collector-to-Emitter voltage (in volts)\n",
      "r1e = 30.0/abs(IE) * 10**-3           #a.c. resistance (in kilo-ohm)\n",
      "Ris = Rth * beta*r1e/(Rth + beta*r1e) #input resistance of the stage (in ohm)\n",
      "rL = RC * RL / (RC + RL)              #Load resistance (in kilo-ohm)\n",
      "Av = rL / (r1e + RV)                  #Voltage gain \n",
      "\n",
      "#Result\n",
      "\n",
      "print \"Voltage gain Av is \",round(Av,1),\".\\nInput impedance is ,\",round(Ris,3),\" kilo-ohm.\\nVCE is \",VCE,\" V.\" \n",
      "\n",
      "#Slight variation due to higher precision."
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Voltage gain Av is  21.3 .\n",
        "Input impedance is , 1.856  kilo-ohm.\n",
        "VCE is  -5.545  V.\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 24.11 , Page Number 606"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variables\n",
      "\n",
      "VCC = 10.0                            #Source voltage (in volts)\n",
      "RC = 5.0                              #Collector resistance (in kilo-ohm)\n",
      "rE = 500 * 10**-3                     #Emitter resistance (in kilo-ohm)\n",
      "beta = 50.0                           #Common emitter current gain\n",
      "VBE = 0.7                             #Emitter-to-Base Voltage (in volts)\n",
      "R1 = 50.0                             #Resistance (in kilo-ohm)   \n",
      "R2 = 10.0                             #Resistance (in kilo-ohm)\n",
      "Vs = 100.0 * 10**-3                   #a.c voltage (in volts)\n",
      "RS = 600.0 * 10**-3                   #Source resistance (in kilo-ohm)\n",
      "RL = 50.0                             #Load resistance (in kilo-ohm)\n",
      "RE1 = 500.0 * 10**-3                  #Resistance (in kilo-ohm)    \n",
      "\n",
      "#Calculation\n",
      "\n",
      "Vth = VCC * R2 /(R1 + R2)             #Thevenin's voltage (in volts)\n",
      "Rth = R1 * R2 / (R1 + R2)             #Thevenin's equivalent resistance (in kilo-ohm)\n",
      "RE = RE1 + rE                         #Emitter total resistance (in kilo-ohm)\n",
      "IE = (Vth - VBE)/(RE + Rth/beta)      #Emitter current (in milli-Ampere)\n",
      "r1e = 25.0 / IE * 10**-3              #a.c. resistance (in kilo-ohm)      \n",
      "Ri = beta * (rE + r1e)                #Input resistance directly into the base (in kilo-ohm)\n",
      "Ris = Rth * Ri/(Rth + Ri)             #Input resistance of the stage (in kilo-ohm)\n",
      "rL = RC * RL / (RC + RL)              #a.c. load resistance (in kilo-ohm)\n",
      "Av = rL/(rE + r1e)                    #Voltage gain\n",
      "Avs = Av * Ris / (RS + Ris)           #Overall voltage gain\n",
      "Vo = Avs * Vs                         #Output voltage (in volts)\n",
      "\n",
      "#Result\n",
      "\n",
      "print \"Input resistance looking directly into the base is \",round(Ri,1),\" kilo-ohm.\\nInput resistance of the stage is \",round(Ris,2),\" kilo-ohm.\\nVoltage gain is \",round(Av,3),\" .\\nOverall voltage gain is \",round(Avs,2),\" .\\nOutput voltage is \",round(Vo,2),\"V.\"\n",
      "\n",
      "#Slight variations due to higher precision.\n",
      "#Vo in the book is not properly calculated. Calculation error in Vo. Vo value should be 0.78 V."
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Input resistance looking directly into the base is  26.5  kilo-ohm.\n",
        "Input resistance of the stage is  6.34  kilo-ohm.\n",
        "Voltage gain is  8.574  .\n",
        "Overall voltage gain is  7.83  .\n",
        "Output voltage is  0.78 V.\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 24.12 , Page Number 611"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variables\n",
      "\n",
      "VCC = 10.0                            #Source voltage (in volts)\n",
      "RC = 10.0                             #Collector resistance (in kilo-ohm)\n",
      "alpha = 0.98                          #Common base current gain\n",
      "VBE = 0.7                             #Emitter-to-Base Voltage (in volts)\n",
      "Vs = 10.0 * 10**-3                    #a.c voltage (in volts)\n",
      "RL = 5.1                              #Load resistance (in kilo-ohm)\n",
      "RE = 20.0                             #Resistance (in kilo-ohm) \n",
      "VEE = 10.0                            #Voltage (in volts)\n",
      "\n",
      "#Calculation\n",
      "\n",
      "IE = (VEE - VBE) / RE                 #Emitter current (in milli-Ampere)\n",
      "r1e = 25.0 / IE * 10**-3              #a.c. emitter resistance (in kilo-ohm)\n",
      "Ri = r1e                              #input resistance looking directly in the emitter (in kilo-ohm)\n",
      "Ris = RE * r1e / (RE + r1e)           #Input resistance of the stage (in kilo-ohm)  \n",
      "Ai = alpha                            #Current gain\n",
      "rL = RC * RL / (RC + RL)              #a.c. load resistance (in kilo-ohm)\n",
      "Av = rL / r1e                         #Voltage gain\n",
      "Ap = Av * Ai                          #Power gain\n",
      "Gp = 10 * math.log10(Ap)                   #Power gain (in decibels)\n",
      "vin = Vs                              #input voltage (in volts)\n",
      "Vo = Av * vin                         #Output voltage (in volts)  \n",
      "\n",
      "#Result\n",
      "\n",
      "print \"The input resistance looking directly into the emitter is \",round(Ri * 10**3,1),\" ohm.\\nThe input resistance of the stage is \",round(Ris * 10**3,2),\" ohm.\\nThe current gain is \",Ai,\" .\\nThe voltage gain is \",round(Av,1),\" .\\nThe power gain is \",round(Ap,2),\" .\\nThe power gain in decibels is \",round(Gp,1),\" dB.\\nThe output voltage is \",round(Vo * 10**3),\" mV.\" "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The input resistance looking directly into the emitter is  53.8  ohm.\n",
        "The input resistance of the stage is  53.62  ohm.\n",
        "The current gain is  0.98  .\n",
        "The voltage gain is  62.8  .\n",
        "The power gain is  61.56  .\n",
        "The power gain in decibels is  17.9  dB.\n",
        "The output voltage is  628.0  mV.\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 24.13 , Page Number 613"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variables\n",
      "\n",
      "Rs = 50.0                         #source resistance (in ohm)\n",
      "IE = 0.465                        #Emitter current (in milli-Ampere)\n",
      "r1e = 53.8                        #a.c. resistance (in ohm)\n",
      "Ri = 53.8                         #Input resistance (in ohm)\n",
      "Ris = 52.4                        #Input resistance of stage (in ohm)\n",
      "RL = 3.38 * 10**3                 #Load resistance (in ohm)  \n",
      "Vs = 10.0 * 10**-3                #Input a.c. voltage (in volts)\n",
      "\n",
      "#Calculation\n",
      "\n",
      "Avs = RL / (Rs + r1e)             #Overall voltage gain\n",
      "Av = RL / r1e                     #Voltage gain\n",
      "vo = Avs * Vs                     #Output a.c. voltage (in volts)\n",
      "vin = vo / Av                     #input voltage (in volts)\n",
      "\n",
      "#Result\n",
      "\n",
      "print \"Voltage gain from source to output is \",round(Avs,1),\" .\\nVoltage gain from emitter to output is \",round(Av,1),\" .\\nValue of Vin is \",round(vin * 10**3,1),\" V.\" "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Voltage gain from source to output is  32.6  .\n",
        "Voltage gain from emitter to output is  62.8  .\n",
        "Value of Vin is  5.2  V.\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 24.14 , Page Number 617"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variables\n",
      "\n",
      "VEE = 10.0                         #Voltage (in volts)\n",
      "RE = 10.0 * 10**3                  #Emitter resistance (in ohm)     \n",
      "RB = 100.0 * 10**3                 #Base resistance (in ohm)\n",
      "beta = 50.0                        #Common emitter current gain\n",
      "VBE = 0.7                          #Emitter-to-Base Voltage (in volts)\n",
      "\n",
      "#Calculation\n",
      "\n",
      "IE = (VEE - VBE)/(RE + RB/beta)    #Emitter current (in Ampere)\n",
      "r1e = 25.0 / IE * 10**-3           #a.c. resistance (in ohm)\n",
      "Ri = beta * (RE + r1e)             #Input resistance directly looking into the base (in ohm)\n",
      "Ris = RB * Ri / (RB + Ri)          #Input resistance of the stage (in ohm)\n",
      "Ro = r1e                           #Output resistance (in ohm) \n",
      "Av = RE / (r1e + RE)               #Voltage gain  \n",
      "\n",
      "#Result\n",
      "\n",
      "print \"Input resistance looking directly into the base is \",round(Ri * 10**-3,1),\" ohm.\\nInput resistance of the stage is \",round(Ris * 10**-3 ,1),\" ohm.\\nOutput resistance is \",round(Ro,1),\" ohm.\\nVoltage gain is \",round(Av,3),\" .\" "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Input resistance looking directly into the base is  501.6  ohm.\n",
        "Input resistance of the stage is  83.4  ohm.\n",
        "Output resistance is  32.3  ohm.\n",
        "Voltage gain is  0.997  .\n"
       ]
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 24.15 , Page Number 618"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variables\n",
      "\n",
      "beta = 80.0                         #Common emitter current gain\n",
      "VBE = 0.7                           #Emitter-to-Base Voltage (in volts)\n",
      "VCC = 15.0                          #Voltage (in volts)\n",
      "R1 = 20.0 * 10**3                   #Resistance (in ohm)\n",
      "R2 = 20.0 * 10**3                   #Resistance (in ohm)\n",
      "Vs = 5.0 * 10**-3                   #a.c voltage (in volts)\n",
      "RE = 8.2 * 10**3                    #Emitter resistance (in ohm)\n",
      "RL = 1.5 * 10**3                    #Load resistance (in ohm)\n",
      "RS = 2.0 * 10**3                    #Source resistance (in ohm)\n",
      "\n",
      "#Calculation\n",
      "\n",
      "Vth = VCC * R2 / (R1 + R2)          #Thevenin's voltage (in volts)\n",
      "Rth = R1 * R2 / (R1 + R2)           #Thevenin's equivalent resistance (in ohm)\n",
      "IE = (Vth - VBE)/(RE + Rth / beta)  #Emitter resistance (in ohm)\n",
      "r1e = 25.0 / IE * 10**-3            #a.c resistance of emitter diode (in ohm)\n",
      "rL = RE * RL /(RE + RL)             #a.c. load resistance (in ohm)\n",
      "Ri = beta * (rL + r1e)              #Input resistance looking directly into the base (in ohm)\n",
      "Ris = Rth * Ri / (Rth + Ri)         #Input resistance of the stage (in ohm)\n",
      "Ro = r1e + (RS*Rth)/(Rth + RS)/beta #Output resistance of the stage (in ohm)\n",
      "Vin = Vs * (Ris / (RS + Ris))       #Input voltage (in volts)\n",
      "Vo = Vin                            #Output voltage (in volts)\n",
      "\n",
      "#Result\n",
      "\n",
      "print \"Value of input resistance looking directly into the base is \",round(Ri * 10**-3),\" kilo-ohm.\\nValue of input resistance of the stage is \",round(Ris * 10**-3,1),\" kilo-ohm.\\nOutput resistance is \",round(Ro,1),\" ohm.\\nA.C. output voltage is \",round(Vo * 10**3,1),\" mV.\" "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Value of input resistance looking directly into the base is  104.0  kilo-ohm.\n",
        "Value of input resistance of the stage is  9.1  kilo-ohm.\n",
        "Output resistance is  51.4  ohm.\n",
        "A.C. output voltage is  4.1  mV.\n"
       ]
      }
     ],
     "prompt_number": 14
    }
   ],
   "metadata": {}
  }
 ]
}