summaryrefslogtreecommitdiff
path: root/A_Textbook_of_Applied_Electronics_by_R_S_Sedha/Chapter4_5.ipynb
blob: acfafc0acfac028758669d71759073d3e95ef7cb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
{
 "metadata": {
  "name": "",
  "signature": "sha256:9a0a38a1ad49042ffadb423caa0f240dc4106abfcf6ac9eb25cdb67cab101f0b"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 4 , DC Resistive Circuits "
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.1 , Page Number 53"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variables\n",
      "\n",
      "R1 = 220                  #Resistance (in ohm)\n",
      "R2 = 470                  #Resistance (in ohm)\n",
      "R3 = 560                  #Resistance (in ohm)\n",
      "R4 = 910                  #Resistance (in ohm)\n",
      "\n",
      "#Calculation\n",
      "\n",
      "R = R1 + R2 + R3 + R4     #Net Resistance (in ohm)\n",
      "\n",
      "#Result\n",
      "\n",
      "print \"Total resistance of circuit is \",R,\" ohm.\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Total resistance of circuit is  2160  ohm.\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.2 , Page Number 53"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variables\n",
      "\n",
      "R1 = 4                  #Resistance (in kilo-ohm)\n",
      "R2 = 6                  #Resistance (in kilo-ohm)\n",
      "R3 = 2                  #Resistance (in kilo-ohm)\n",
      "\n",
      "#Calculation\n",
      "\n",
      "R = R1 + R2 + R3        #Equivalent Resistance(in kilo-ohm)\n",
      "\n",
      "#Result\n",
      "\n",
      "print \"Equivalent Resistance is \",R,\" kilo-ohm.\" "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Equivalent Resistance is  12  kilo-ohm.\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.3 , Page Number 54"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variables\n",
      "\n",
      "R1 = 250                  #Resistance (in ohm)\n",
      "R3 = 375                  #Resistance (in ohm)\n",
      "I = 50 * 10**-3           #Current (in Ampere)\n",
      "V = 40                    #Voltage (in volts)\n",
      "\n",
      "#Calculation\n",
      "\n",
      "R = V/I                   #Equivalent Resistance (in ohm)\n",
      "R2 = R - (R1 + R3)        #Resistance R2 (in ohm)\n",
      "\n",
      "#Result\n",
      "\n",
      "print \"The Total Resistance is \",R,\" ohm.\\nThe value of R2 is \",R2,\" ohm.\" "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Total Resistance is  800.0  ohm.\n",
        "The value of R2 is  175.0  ohm.\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.4 , Page Number 55"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variables\n",
      "\n",
      "I = 250 * 10**-3            #Current (in Ampere)\n",
      "R = 1.5 * 10**3             #Resistance (in ohm)\n",
      "\n",
      "#Calculation\n",
      "\n",
      "Vs = I * R                  #Source voltage (in volts)\n",
      "I1 = 0.75 * I               #New current (in Ampere)\n",
      "R1 = Vs / I1                #New Resistance (in ohm)\n",
      "R2 = R1 - R                 #Resistance to be added (in ohm)\n",
      "\n",
      "#Result\n",
      "\n",
      "print R2,\" ohm Resistance must be added in order to accomplish the reduction in current.\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "500.0  ohm Resistance must be added in order to accomplish the reduction in current.\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.5 , Page Number 55"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variables\n",
      "\n",
      "R1 = 2.2                  #Resistance (in kilo-ohm)\n",
      "R2 = 1                    #Resistance (in kilo-ohm)\n",
      "R3 = 3.3                  #Resistance (in kilo-ohm)\n",
      "V2 = 6                    #Voltage drop across R2 (in volts)\n",
      "\n",
      "#Calculation\n",
      "\n",
      "I = V2 / R2               #Current in the circuit (in milli-Ampere) \n",
      "V1 = R1 * I               #Voltage drop across R1 (in volts)\n",
      "V3 = R3 * I               #Voltage drop across R3 (in volts)\n",
      "\n",
      "#Result\n",
      "print \"The voltage drop across R1 is \",V1,\"V and the voltage drop across R3 is \",V3,\" V.\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The voltage drop across R1 is  13.2 V and the voltage drop across R3 is  19.8  V.\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.6 , Page Number 57"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variables\n",
      "\n",
      "V = 30.0                        #Source voltage (in volts)\n",
      "R1 = 20.0                       #Resistance (in kilo-ohm)\n",
      "R2 = 10.0                       #Resistance (in kilo-ohm)\n",
      "R3 = 70.0                       #Resistance (in kilo-ohm)\n",
      "VD = 0.0                        #Voltage at D (in volts)\n",
      "\n",
      "#Calculation\n",
      "\n",
      "R = R1 + R2 + R3                #Equivalent Resistance (in kilo-ohm)\n",
      "V1 = (R1 / R) * V               #Voltage drop across R1 (in volts)\n",
      "V2 = (R2 / R) * V               #Voltage drop across R2 (in volts)\n",
      "V3 = (R3 / R) * V               #Voltage drop across R3 (in volts)\n",
      "VC = V3 + VD                    #Voltage at node C (in volts) \n",
      "VB = V2 + VC                    #Voltage at node B (in volts)\n",
      "VA = V1 + VB                    #Voltage at node A (in volts)\n",
      "\n",
      "#Result\n",
      "\n",
      "print \"The Voltage drop across R1 is \",V1,\" V.\\nThe Voltage drop across R2 is \",V2,\" V.\\nThe Voltage drop across R3 is \",V3,\" V.\"\n",
      "print \"Voltage at node A is \",VA,\" V.\\nVoltage at node B is \",VB,\" V.\\nVoltage at node is \",VC,\" V.\" "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Voltage drop across R1 is  6.0  V.\n",
        "The Voltage drop across R2 is  3.0  V.\n",
        "The Voltage drop across R3 is  21.0  V.\n",
        "Voltage at node A is  30.0  V.\n",
        "Voltage at node B is  24.0  V.\n",
        "Voltage at node is  21.0  V.\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.7 , Page Number 58"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variables\n",
      "\n",
      "R2 = 100              #Resistance R2 (in ohm)\n",
      "I = 0.3               #Current (in Ampere)\n",
      "VT = 120              #Voltage (in volts)\n",
      "\n",
      "#Calculation\n",
      "\n",
      "RT = VT / I           #Total Resistance (in ohm)\n",
      "R1 = RT - R2          #Resistance R1 (in ohm)\n",
      "P1 = I**2 * R1        #Power dissipated by R1 (in watt)\n",
      "P2 = I**2 * R2        #Power dissipated by R2 (in watt)\n",
      "\n",
      "#Result\n",
      "\n",
      "print \"The power dissipated by R1 is \",P1,\" W.\\nThe power dissipated by R2 is \",P2,\" W.\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The power dissipated by R1 is  27.0  W.\n",
        "The power dissipated by R2 is  9.0  W.\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.8 , Page Number 60"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variables\n",
      "\n",
      "V = 6                 #Voltage (in volts)\n",
      "R1 = 1                #Resistance (in ohm)\n",
      "R2 = 2                #Resistance (in ohm)\n",
      "R3 = 3                #Resistance (in ohm)\n",
      "\n",
      "#Case (a):\n",
      "\n",
      "#Calculation\n",
      "\n",
      "RT = R1 + R2 + R3     #Equivalent Resistance (in ohm)\n",
      "I = V / RT            #Current (in Ampere)\n",
      "P = I**2 * RT         #Power dissipated (in watt)\n",
      "\n",
      "#Result\n",
      "\n",
      "print \"Power dissipated in the entire circuit is\",P,\" W.\"\n",
      "\n",
      "#Case (b):\n",
      "\n",
      "#Calculation\n",
      "\n",
      "RT = R1 + R2          #Equivalent Resistance (in ohm)\n",
      "I = V / RT            #Current (in Ampere)\n",
      "P = I**2 * RT         #Power dissipated (in watt)\n",
      "\n",
      "#Result\n",
      "\n",
      "print \"Power dissipated in the circuit when R2 is shortened is\",P,\" W.\"\n",
      "\n",
      "#Case (c):\n",
      "\n",
      "#Calculation\n",
      "\n",
      "R = R1                #Resistance (in ohm)\n",
      "I = V / R             #Current (in Ampere)\n",
      "P = I**2 * R          #Power dissipated (in watt)\n",
      "\n",
      "print \"Power dissipated in the circuit when R3 and R2 is shortened is\",P,\" W.\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Power dissipated in the entire circuit is 6  W.\n",
        "Power dissipated in the circuit when R2 is shortened is 12  W.\n",
        "Power dissipated in the circuit when R3 and R2 is shortened is 36  W.\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.9 , Page Number 61"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variables\n",
      "\n",
      "V = 10.0                 #Voltage (in volts)\n",
      "R1 = 10**6               #Resistance (in ohm)\n",
      "R2 = 10 * 10**3          #Resistance (in ohm)\n",
      "\n",
      "#Case (a):\n",
      "\n",
      "#Calculation\n",
      "\n",
      "RT = R1 + R2             #Total Resistance (in ohm)\n",
      "I = V / RT               #Current (in Ampere)\n",
      "\n",
      "#Result\n",
      "\n",
      "print \"Current through the circuit is \",I,\" A.\"\n",
      "\n",
      "#Case (b):\n",
      "\n",
      "#Calculation\n",
      "\n",
      "RT = R1                  #Total Resistance (in ohm)\n",
      "I = V / RT               #Current (in Ampere)\n",
      "\n",
      "#Result\n",
      "\n",
      "print \"Current through circuit when R2 is shortened is \",I,\" A.\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Current through the circuit is  9.90099009901e-06  A.\n",
        "Current through circuit when R2 is shortened is  1e-05  A.\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.10 , Page Number 62"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variables\n",
      "\n",
      "IT = 750              #Current (in milli-Ampere)\n",
      "I1 = 200              #Current (in milli-Ampere)\n",
      "I3 = 150              #Current (in milli-Ampere)\n",
      "\n",
      "#Calculation\n",
      "\n",
      "I2 = IT - (I1 + I3)   #Current through R2 (in milli-Ampere)\n",
      "\n",
      "#Result\n",
      "\n",
      "print \"Current drawn by R2 branch is \",I2,\" mA.\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Current drawn by R2 branch is  400  mA.\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.11 , Page Number 63"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variables\n",
      "\n",
      "V = 12.0                       #Voltage (in volts)\n",
      "R1 = 4.0                       #Resistance (in ohm)\n",
      "R2 = 6.0                       #Resistance (in ohm)\n",
      "R3 = 12.0                      #Resistance (in ohm)\n",
      "\n",
      "#Calculation\n",
      "\n",
      "Req = 1/(1/R1 + 1/R2 + 1/R3)   #Equivalent resistance (in ohm)  \n",
      "I1 = V/R1\n",
      "I2 = V/R2\n",
      "I3 = V/R3\n",
      "\n",
      "#Result\n",
      "\n",
      "print \"The Equivalent Resistance is \",Req,\" ohm.\\nThe Current through R1 , R2 , R3 are \",I1,\" A, \",I2,\" A, \",I3,\" A.\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Equivalent Resistance is  2.0  ohm.\n",
        "The Current through R1 , R2 , R3 are  3.0  A,  2.0  A,  1.0  A.\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.12 , Page Number 64"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variables\n",
      "\n",
      "R1 = R2 = 10              #Resistances (in kilo-ohm) \n",
      "\n",
      "#Calculation\n",
      "\n",
      "Req = R1*R2 / (R1 + R2)   #Equivalent Resistance (in kilo-ohm)  \n",
      "\n",
      "#Result\n",
      "\n",
      "print \"The equivalent resistance is \",Req,\" kilo-ohm.\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The equivalent resistance is  5  kilo-ohm.\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.13 , Page Number 65"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variables\n",
      "\n",
      "R1 = 4.0                     #Resistance (in ohm)\n",
      "R2 = 12.0                    #Resistance (in ohm)\n",
      "V = 6.0                      #Voltage (in volts)\n",
      "\n",
      "#Calculation\n",
      "\n",
      "Req = R1*R2/(R1 + R2)        #Equivalent Resistance (in ohm)\n",
      "IT = V / Req                 #Total Current (in Ampere)\n",
      "I1 = R2 / (R1 + R2) * IT     #Current through R1     \n",
      "I2 = R1 / (R1 + R2) * IT     #Current through R2\n",
      "\n",
      "#Result\n",
      "\n",
      "print \"Current through R1 is \",I1,\" A and current through R2 is \",I2,\" A.\" "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Current through R1 is  1.5  A and current through R2 is  0.5  A.\n"
       ]
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.14 , Page Number 66"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variables\n",
      "\n",
      "PR1 = 1.0/8             #1/8 watt resistor (in watt)\n",
      "PR2 = 1.0/4             #1/4 watt resistor (in watt)\n",
      "PR3 = 1.0/2             #1/2 watt resistor (in watt)\n",
      "RT = 2400.0             #total resistance  (in ohm)\n",
      "\n",
      "#Calculation\n",
      "\n",
      "PT = PR1 + PR2 + PR3    #Total power dissipated (in watt)\n",
      "I = (PT/RT)**0.5        #Current (in Ampere)\n",
      "Vs = I * RT             #Applied voltage (in volts)\n",
      "R1 = PR1 / I**2         #R1 resistor (in ohm) \n",
      "R2 = PR2 / I**2         #R2 resistor (in ohm)\n",
      "R3 = PR3 / I**2         #R3 resistor (in ohm) \n",
      "\n",
      "#Result\n",
      "\n",
      "print \"Current in the circuit is \",round(I,3),\" A.\\nApplied Voltage is \",round(Vs,3),\" V.\\nValue of R1 is \",round(R1,3),\" ohm.\\nValue of R2 is \",round(R2,3),\" ohm.\\nValue of R3 is \",round(R3,3),\" ohm.\"\n",
      "\n",
      "#Slight variations due to higher precision."
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Current in the circuit is  0.019  A.\n",
        "Applied Voltage is  45.826  V.\n",
        "Value of R1 is  342.857  ohm.\n",
        "Value of R2 is  685.714  ohm.\n",
        "Value of R3 is  1371.429  ohm.\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.15 , Page Number 68"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variables\n",
      "\n",
      "V = 6.0                                 #Applied voltage (in volts)\n",
      "R0 = 0.2                                #Resistance (in ohm) \n",
      "R1 = 2.0                                #Resistance (in ohm)\n",
      "R2 = 3.0                                #Resistance (in ohm)\n",
      "R3 = 6.0                                #Resistance (in ohm)\n",
      "\n",
      "#Calculation\n",
      "\n",
      "Req = 1 / (1/R1 + 1/R2 + 1/R3)          #Equivalent Resistance (in ohm) \n",
      "R = R0 + Req                            #Total Resistance (in ohm)\n",
      "I = V/R                                 #Current (in Ampere) \n",
      "V0 = I * R0                             #Voltage drop across R0 (in volts)\n",
      "Veq = V - V0                            #Voltage drop across Req (in volts)\n",
      "I1 = Veq / R1                           #Current through R1 (in Ampere)\n",
      "I2 = Veq / R2                           #Current through R2 (in Ampere) \n",
      "I3 = Veq / R3                           #Current through R3 (in Ampere)\n",
      "P = V * I                               #Power supplied by the voltage source (in volts)\n",
      "I0 = V/R0                               #Current in case of 'Short' across DE (in Ampere)\n",
      "P0 = V * I0                             #Power dissipated in case of 'Short' (in watt)\n",
      "\n",
      "#Result\n",
      "\n",
      "print \"Total Resistance is \",R,\" ohm.\"\n",
      "print \"Branch Currents :\\nThrough R1 = \",I1,\" A.\\nThrough R2 = \",round(I2,3),\" A.\\nThrough R3 = \",round(I3,3),\" A.\"\n",
      "print \"Current supplied by voltage source is \",I,\" A.\"\n",
      "print \"Power supplied by the voltage source is \",P,\" W.\"\n",
      "print \"Current supplied in case of 'Short' across DE is \",I0,\" A.\"\n",
      "print \"Power supplied in case of 'Short' acorss DE is \",P0,\" A.\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Total Resistance is  1.2  ohm.\n",
        "Branch Currents :\n",
        "Through R1 =  2.5  A.\n",
        "Through R2 =  1.667  A.\n",
        "Through R3 =  0.833  A.\n",
        "Current supplied by voltage source is  5.0  A.\n",
        "Power supplied by the voltage source is  30.0  W.\n",
        "Current supplied in case of 'Short' across DE is  30.0  A.\n",
        "Power supplied in case of 'Short' acorss DE is  180.0  A.\n"
       ]
      }
     ],
     "prompt_number": 15
    }
   ],
   "metadata": {}
  }
 ]
}