1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
|
{
"metadata": {
"name": "",
"signature": "sha256:265535ddaffc0266824860d662b8052593e36ca515dd70e32c070b51cf842e7d"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter18-Semiconductors"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2-pg539"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"##Example 18.2\n",
"##calculation of probability\n",
"\n",
"##given values\n",
"T=300.;##temp in K\n",
"kT=.026;##temperture equivalent at room temp in eV\n",
"Eg=5.6;##forbidden gap in eV\n",
"\n",
"##calculation\n",
"f=1./(1.+math.e**(Eg/(2.*kT)));\n",
"\n",
"print'%s %.3e %s'%('probability of an e being thermally promoted to conduction band is',f,'');\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"probability of an e being thermally promoted to conduction band is 1.698e-47 \n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex3-pg540"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"##Example 18.3\n",
"##calculation of fraction of e in CB\n",
"\n",
"##given values\n",
"T=300.;##temp in K\n",
"kT=.026;##temperture equivalent at room temp in eV\n",
"Eg1=.72;##forbidden gap of germanium in eV\n",
"Eg2=1.1;##forbidden gap of silicon in eV\n",
"Eg3=5.6;##forbidden gap of diamond in eV\n",
"\n",
"##calculation\n",
"f1=math.e**(-Eg1/(2.*kT));\n",
"print'%s %.6f %s'%('fraction of e in conduction band of germanium is',f1,'');\n",
"f2=math.e**(-Eg2/(2.*kT));\n",
"print'%s %.3e %s'%('fraction of e in conduction band of silicon is',f2,'');\n",
"f3=math.e**(-Eg3/(2*kT));\n",
"print'%s %.3e %s'%('fraction of e in conduction band of diamond is',f3,'');\n",
"print'abpove results shows that larger the band gap and the smaller electrons that can go under into the conduction band'"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"fraction of e in conduction band of germanium is 0.000001 \n",
"fraction of e in conduction band of silicon is 6.501e-10 \n",
"fraction of e in conduction band of diamond is 1.698e-47 \n",
"abpove results shows that larger the band gap and the smaller electrons that can go under into the conduction band\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex4-pg540"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"##Example 18.4\n",
"##calculation of fractionional change in no of e\n",
"\n",
"##given values\n",
"T1=300.;##temp in K\n",
"T2=310.;##temp in K\n",
"Eg=1.1;##forbidden gap of silicon in eV\n",
"k=8.6*10**-5.;##boltzmann's constant in eV/K\n",
"\n",
"##calculation\n",
"n1=(10**21.7)*(T1**(3/2.))*10**(-2500.*Eg/T1);##no of conduction e at T1\n",
"n2=(10**21.7)*(T2**(3/2.))*10**(-2500.*Eg/T2);##no of conduction e at T2\n",
"x=n2/n1;\n",
"print'%s %.1f %s'%('fractional change in no of e is',x,'');\n",
"print 'in book he just worte ans but he didnt calculated final ans but here is i calculated'"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"fractional change in no of e is 2.1 \n",
"in book he just worte ans but he didnt calculated final ans but here is i calculated\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex5-pg541"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"##Example 18.5\n",
"##calculation of resistivity\n",
"\n",
"##given values\n",
"e=1.6*10**-19;\n",
"ni=2.5*10**19;##intrinsic density of carriers per m**3\n",
"ue=.39;##mobility of e \n",
"uh=.19;##mobility of hole\n",
"\n",
"\n",
"##calculation\n",
"c=e*ni*(ue+uh);##conductivity\n",
"r=1/c;##resistivity\n",
"print'%s %.2f %s'%('resistivity in ohm m is',r,'');"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"resistivity in ohm m is 0.43 \n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex6-pg548"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"##Example 18.6\n",
"##calculation of conductivity of intrinsic and doped semiconductors\n",
"\n",
"##given values\n",
"h=4.52*10**24;##no of holes per m**3\n",
"e=1.25*10**14;##no of electrons per m**3\n",
"ue=.38;##e mobility\n",
"uh=.18;##hole mobility\n",
"q=1.6*10**-19;##charge of e in C\n",
"##calculation\n",
"ni=math.sqrt(h*e);##intrinsic concentration\n",
"ci=q*ni*(ue+uh);\n",
"print'%s %.2f %s'%('conductivity of semiconductor(in S/m) is',ci,'');\n",
"cp=q*h*uh;\n",
"print'%s %.2f %s'%('conductivity of doped semiconductor (in S/m) is',cp,'');"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"conductivity of semiconductor(in S/m) is 2.13 \n",
"conductivity of doped semiconductor (in S/m) is 130176.00 \n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex7-pg548"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"##Example 18.7\n",
"##calculation of hole concentration\n",
"\n",
"##given values\n",
"ni=2.4*10**19.;##carrier concentration per m**3\n",
"N=4*10**28.;##concentration of ge atoms per m**3\n",
"\n",
"##calculation\n",
"ND=N/10**6.;##donor cocntrtn\n",
"n=ND;##no of electrones\n",
"\n",
"p=ni**2./n;\n",
"print'%s %.3e %s'%('concentartion of holes per m^3 is',p,'');"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"concentartion of holes per m^3 is 1.440e+16 \n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex8-pg558"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"##Example 18.8\n",
"##calculation of Hall voltage\n",
"\n",
"##given values\n",
"ND=10**21.;##donor density per m**3\n",
"B=.5;##magnetic field in T\n",
"J=500.;##current density in A/m**2\n",
"w=3*10**-3.;##width in m\n",
"e=1.6*10**-19.;##charge in C\n",
"\n",
"##calculation\n",
"\n",
"\n",
"V=B*J*w/(ND*e);##in volts\n",
"print'%s %.2f %s'%('Hall voltage in mv is',V*10**3,'');"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Hall voltage in mv is 4.69 \n"
]
}
],
"prompt_number": 14
}
],
"metadata": {}
}
]
}
|