summaryrefslogtreecommitdiff
path: root/A_Textbook_Of_Chemical_Engineering_Thermodynamics/ch7.ipynb
blob: 9c3402d5dcd2d2db7cda1b5d725e2900b13be415 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
{
 "metadata": {
  "name": "",
  "signature": "sha256:a4d472eaa4dbf60f111758e6e0fce7c88354811184ce66088736c4ac7a13ff8b"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 7 : Properties of Solutions"
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 7.2"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "V = 0.1; \t\t\t#volume of mixture required (m**3)\n",
      "Ve = 0.03; \t\t\t#volume of alcohol\n",
      "Vw = 0.07; \t\t\t#volume of water\n",
      "de = 789.; \t\t\t#density of ethanol (kg/m**3)\n",
      "dw = 997.; \t\t\t#density of water (kg/m**3)\n",
      "pe = 53.6*10**-6; \t\t\t#partial molar volume of ethanol (m**3/mol)\n",
      "pw = 18.*10**-6; \t\t\t#partial molar volume of water (m**3/mol)\n",
      "Me = 46.; \t\t\t#molecular wt of ethanol\n",
      "Mw = 18.; \t\t\t#molecular wt of water\n",
      "\n",
      "# Calculations\n",
      "#To find the volume of mixture\n",
      "ne = (Ve*de*10**3)/Me; \t\t\t#number of moles of ethanol\n",
      "nw = (Vw*dw*10**3)/Mw; \t\t\t#number of moles of water\n",
      "xe = ne/(ne+nw) \t\t\t#mole fraction of ethanol\n",
      "xw = 1-ne; \t\t\t#mole fraction of water\n",
      "act_V = (ne*pe)+(nw*pw)\n",
      "\n",
      "# Results\n",
      "if (V==act_V) :\n",
      "    print 'It is possible to prepare the required solution'\n",
      "else:\n",
      "    Ve_act = (Ve/act_V)*V;\n",
      "    Vw_act = (Vw/act_V)*V;\n",
      "    print ' For the given volumes of ethanol and water, it is not possible to prepare 0.1 cubic m of mixture'\n",
      "    print ' Required volume of ethanol is %f cubic m'%Ve_act\n",
      "    print ' Required volume of water is %f cubic m'%Vw_act\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " For the given volumes of ethanol and water, it is not possible to prepare 0.1 cubic m of mixture\n",
        " Required volume of ethanol is 0.030810 cubic m\n",
        " Required volume of water is 0.071890 cubic m\n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 7.3"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "V = 2.; \t\t\t#volume of desired solution (m**3)\n",
      "x1 = 0.3; \t\t\t#moles fraction of methanol\n",
      "x2 = 0.7; \t\t\t#moles fraction of water\n",
      "V1 = 38.632*10**-6; \t\t\t#partial molar volume of methanol (m**3/mol)\n",
      "V2 = 17.765*10**-6; \t\t\t#partial molar volume of water (m**3/mol)\n",
      "mol_V1 = 40.727*10**-6; \t\t#molar volume of ethanol (m**3/mol)\n",
      "mol_V2 = 18.068*10**-6; \t\t#molar volume of water (m**3/mol)\n",
      "\n",
      "# Calculations\n",
      "#To find the required volume of methanol and water\n",
      "V_mol = (x1*V1)+(x2*V2); \t\t\t#molar volume of desired solution\n",
      "n = V/V_mol; \t\t\t            #no. of moles in the desired solution\n",
      "n1 = x1*n; \t\t\t#moles of methanol\n",
      "n2 = x2*n; \t\t\t#moles of water\n",
      "V_m = n1*mol_V1;\n",
      "V_w = n2*mol_V2;\n",
      "\n",
      "# Results\n",
      "print 'Volume of methanol to be taken is %f cubic m'%V_m\n",
      "print ' Volume of water to be taken is %f cubic m'%V_w\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Volume of methanol to be taken is 1.017111 cubic m\n",
        " Volume of water to be taken is 1.052866 cubic m\n"
       ]
      }
     ],
     "prompt_number": 17
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 7.4"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "V1_w = 0.816*10**-3; \t\t\t#partial molar volume of water in 96% alcohol solution\n",
      "V1_e = 1.273*10**-3; \t\t\t#partial molar volume of ethanol in 96% alcohol solution\n",
      "V2_w = 0.953*10**-3; \t\t\t#partial molar volume of water in 56% alcohol solution\n",
      "V2_e = 1.243*10**-3; \t\t\t#partial molar volume of ethanol in 56% alcohol solution\n",
      "d = 0.997*10**3; \t\t\t    #density of water (kg/m**3)\n",
      "\n",
      "\n",
      "# Calculations\n",
      "#To calculate the volume of water to be added and volume of dilute alcohol solution\n",
      "#Basis: \n",
      "V = 2*10**-3; \t\t\t                    #volume of alcohol solution (m**3)\n",
      "V_sp = (0.96*V1_e)+(0.04*V1_w); \t\t\t#volume of 1 kg of laboratory alcohol\n",
      "m_e = V/V_sp; \t\t\t                    #mass of 2*10**-3 m**3 alcohol \n",
      "\n",
      "#(a).\n",
      "#Let mass of water added be m kg\n",
      "#Taking an alcohol balance\n",
      "m = (m_e*0.96)/0.56 - m_e;\n",
      "v = m/d;\n",
      "\n",
      "# Results\n",
      "print ' (a).'\n",
      "print ' Mass of water added is %f kg'%m\n",
      "print ' Volume of water added is %4.3e cubic m'%v\n",
      "\n",
      "#(b)\n",
      "m_sol = m_e + m; \t\t\t                #mass of alcohol solution obtained\n",
      "sp_vol = (0.56*V2_e)+(0.44*V2_w); \t\t\t#specific volume of 56% alcohol\n",
      "V_dil = sp_vol*m_sol; \t\t\t            #volume of dilute alcohol solution\n",
      "print ' (b)'\n",
      "print ' Volume of dilute alcohol solution is %5.4e cubic m'%V_dil\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " (a).\n",
        " Mass of water added is 1.138558 kg\n",
        " Volume of water added is 1.142e-03 cubic m\n",
        " (b)\n",
        " Volume of dilute alcohol solution is 3.0479e-03 cubic m\n"
       ]
      }
     ],
     "prompt_number": 18
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 7.6"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "x1= .3\n",
      "x2 = .7\n",
      "\n",
      "# Calculations and Results\n",
      "H = 400.*x1 + 600*x2 + x1*x2*(40*x1+20*x2)\n",
      "H1 = 420.-60+40;\n",
      "#Using eq. 7.28 (Page no. 264)\n",
      "#H = H2_bar as x2 = 1\n",
      "H2 = 600.;\n",
      "print ' (b).'\n",
      "print ' Pure state enthalpies are:'\n",
      "print ' H1 = %i J/mol'%H1\n",
      "print ' H2 = %i J/mol'%H2\n",
      "\n",
      "\t\t\t#(c).\n",
      "\t\t\t#H1_inf = H1_bar as x1 = 0, so from eq. 7.27\n",
      "H1_inf = 420.;\n",
      "\t\t\t#H2_inf = H2_bar as x2 = 0. so from eq 7.28\n",
      "H2_inf = 640.;\n",
      "print ' (c).'\n",
      "print ' At infinite dilution:'\n",
      "print ' H1 = %i J/mol'%H1_inf\n",
      "print ' H2 = %i J/mol'%H2_inf\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " (b).\n",
        " Pure state enthalpies are:\n",
        " H1 = 400 J/mol\n",
        " H2 = 600 J/mol\n",
        " (c).\n",
        " At infinite dilution:\n",
        " H1 = 420 J/mol\n",
        " H2 = 640 J/mol\n"
       ]
      }
     ],
     "prompt_number": 19
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 7.7"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "def V(m):\n",
      "    y = 1.003*10**-3 + 0.1662*10**-4*m + 0.177*10**-5*m**1.5 + 0.12*10**-6*m**2\n",
      "    return y\n",
      "\n",
      "# Variables\n",
      "m = 0.1; \t\t\t#molality of solution (mol/kg)\n",
      "\n",
      "# Calculations\n",
      "#To calculate the partial molar volume of the components\n",
      "#Differentiating Eq. 7.29 with reference to m, we get\n",
      "V1_bar = 0.1662*10**-4 + 0.177*1.5*10**-5*m**0.5 + 0.12*2*10**-6*m;\n",
      "V_sol = V(m) \t\t\t#volume of aqueous soluttion\n",
      "n1 = m;\n",
      "n2 = 1000./18;\n",
      "V2_bar = (V_sol - n1*V1_bar)/n2;\n",
      "\n",
      "# Results\n",
      "print 'Partial molar volume of water = %4.3e cubic m/mol'%V2_bar\n",
      "print ' Partial molar volume of NaCl = %4.3e cubic m/mol'%V1_bar\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Partial molar volume of water = 1.805e-05 cubic m/mol\n",
        " Partial molar volume of NaCl = 1.748e-05 cubic m/mol\n"
       ]
      }
     ],
     "prompt_number": 20
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 7.10"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "K = 4.4*10**4; \t\t\t#Henry's law constant (bar)\n",
      "pp = 0.25; \t\t\t    #partial pressure of oxygen in bar\n",
      "M_O2 = 32.; \t\t\t#molecular wt of oxygen\n",
      "M_water = 18.; \t\t\t#molecular wt of water\n",
      "\n",
      "# Calculations and Results\n",
      "#To estimate the solubility of oxygen in water at 298 K\n",
      "#Using eq. 7.72 (Page no. 275)\n",
      "x_O2 = pp/K; \t\t\t#mole fraction of O2\n",
      "print 'Solubility of oxygen is %5.4e moles per mole of water'%x_O2\n",
      "\n",
      "#In mass units\n",
      "sol_O2 = (x_O2*M_O2)/M_water;\n",
      "print ' Solubility of oxygen in mass units is %4.3e kg oxygen per kg water'%sol_O2\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Solubility of oxygen is 5.6818e-06 moles per mole of water\n",
        " Solubility of oxygen in mass units is 1.010e-05 kg oxygen per kg water\n"
       ]
      }
     ],
     "prompt_number": 21
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 7.11"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "%pylab inline\t\t\t\n",
      "    \n",
      "from numpy import *\n",
      "from matplotlib.pyplot import *\n",
      "import numpy\n",
      "\n",
      "# Variables\n",
      "xb = array([0, 0.2, 0.4, 0.6, 0.8, 1.0])\n",
      "pa_bar = [0.457 ,0.355, 0.243, 0.134, 0.049, 0];\n",
      "pb_bar = [0,0.046, 0.108, 0.187, 0.288, 0.386];\n",
      "\n",
      "\n",
      "#To confirm mixture conforms to Raoult's Law and to determine Henry's law constant\n",
      "xa = 1 - xb\n",
      "plot(xa,pa_bar)\n",
      "plot(xa,pb_bar)\n",
      "\n",
      "# Calculations and Results\n",
      "#For Henry's law plotting\n",
      "x = [0,0.2, 0.4 ,0.6 ,0.8 ,1.0];\n",
      "#Form the partial presures plot of component A and B\n",
      "yh1 = [0,0,0,0,0,0]\n",
      "yh1[0] = 0; \n",
      "yh1[1] = 0.049; \t\t\t#For component A\n",
      "for i in range(2,6):\n",
      "    yh1[i] = yh1[i-1]+(x[i]-x[i-1])*((yh1[1]-yh1[0])/(x[1]-x[0]))\n",
      "\n",
      "yh_2 = [0,0,0,0,0,0]\n",
      "yh_2[5] = 0; \n",
      "yh_2[4] = 0.046; \t\t\t#For component B\n",
      "i = 3;\n",
      "while (i>=0):\n",
      "    yh_2[i] = yh_2[i+1] + (x[i]-x[i+1])*((yh_2[5]-yh_2[4])/(x[5]-x[4]))\n",
      "    i = i-1;\n",
      "\n",
      "plot(x,yh1)\n",
      "plot(x,yh_2)\n",
      "\t\t\t#legend(\"Partial pressure \",\" \",\"Raoults law\",\" \",\"Henrys Law\"\n",
      "show()\n",
      "#(a)\n",
      "print 'From the graph it can be inferred that, in the region where Raoults law is obeyed by A, the Henrys law is obeyed by B, and vice versa'\n",
      "\n",
      "#(b)\n",
      "#Slope of Henry's law\n",
      "print ' For component A, Ka = %f bar'%yh1[5]\n",
      "print ' For component B, Kb = %f bar'%yh_2[0]\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Populating the interactive namespace from numpy and matplotlib\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEACAYAAACnJV25AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlclPX6//EXiIqKsooLGO6aCIqiqbngkrtgglnnHLM8\nFsEvW06raaUdsyzLry0qmaZHSyswwY0slRQ1FzCJTM0lA3eGTZBlmLl/f9wKmoqAM3MPw/V8PHx8\n5TjOXN36ffPxuj/39bFTFEVBCCGEzbDXugAhhBCmJcEuhBA2RoJdCCFsjAS7EELYGAl2IYSwMRLs\nQghhY+4Y7PHx8fj5+dGpUyfmzp17068nJCTg7OxMQEAAAQEBzJ492yyFCiGEqBiH8n6xqKiIiIgI\nEhMTadKkCb1792bo0KEEBATc8LoBAwYQFxdn1kKFEEJUTLkr9r179+Lr64uXlxcODg5MmDCBjRs3\n3vQ6ecZJCCGsR7nBnp6eTosWLUq/9vb2Jj09/YbX2NnZsWfPHvz8/Bg8eDCHDh0yT6VCCCEqpNxW\njJ2d3R3foHv37qSnp+Po6MiWLVsYO3Ysp06dMlmBQgghKqfcYPf29iYtLa3067S0tBtW8ABOTk6l\nPx86dCh16tTh/PnzNG3a9IbXtW3blhMnTpiiZiGEqDHatGnD8ePHK/eblHIUFBQoPj4+Snp6ulJc\nXKwEBgYqSUlJN7zm0qVLpT8/cOCA4uXlpRgMhpve6w4fVaO8+eabWpdgNeRalJFrUUauRZmqZGe5\nK3ZHR0cWLVrEsGHDMBqNTJw4kW7duhEVFQVAeHg4q1ev5rPPPgOgTp06fPXVV9jby/Z4IYTQSrnB\nDjBixAhGjBhxw/8WHh5e+vOpU6cydepU01cmhBCiSmRprYGgoCCtS7Aaci3KyLUoI9fi7thd7eGY\n/4Ps7GS/uxBCVFJVslNW7EIIYWMk2IUQwsZIsAshhI2RYBdCCBsjwS6EEDZGgl0IIWyMBLsQQtgY\nCXYhhLAxEuxCCGFjJNiFEMLGSLALIYSNkWAXQggbI8EuhBBWSKeDRx+t2u+VYBdCCCuzcSP4+4O7\ne9V+v4ztFUIIK5GbC88/D9u3wxdfwIABMrZXCCGqrW3b1FV67dpw6JAa6lV1x6PxhBBCmE9+Prz6\nKqxbB0uWwPDhd/+esmIXQgiN7N4NAQGQnQ0pKaYJdZAVuxBCWFxREbz5JqxYAZ9+CuPGmfb9JdiF\nEMKCkpPVbYzt26u9dE9P03+GtGKEEMIC9Hp46y213TJtGsTEmCfUQVbsQghhdocPq6v0xo3h4EHw\n8jLv58mKXQghzMRggHnz1K2L4eGwaZP5Qx1kxS6EEGZx/Dg89hg4OMC+fdCqleU+W1bsQghhQooC\nixZB794QFqY+eGTJUAdZsQshhMmkpcG//w05ObBzJ3TsqE0dsmIXQoi7pCjqnvTu3SEoCHbt0i7U\nQVbsQghxV86fV2+M/vkn/PADdOmidUWyYhdCiCr79lvo2hX8/GD/fusIdZAVuxBCVJpOB08/re5J\nj42F++7TuqIbyYpdCCEq4dohGM2aqcFubaEOsmIXQogKuf4QjK++urt56eYmK3YhhLiDa4dgODjc\n/SEYliArdiGEuA1zHIJhCXdcscfHx+Pn50enTp2YO3fubV+3f/9+HBwcWLt2rUkLFEIILZjrEAxL\nKHfFXlRUREREBImJiTRp0oTevXszdOhQAgICbnidwWDglVdeYfjw4XJgtRCiWjP3IRiWUO6Kfe/e\nvfj6+uLl5YWDgwMTJkxg48aNN73u448/JiwsjMaNG5utUCGEMLfkZPXp0WPH1F56dQx1uEOwp6en\n06JFi9Kvvb29SU9Pv+E1Z86cITY2loiICADs7OzMUKYQQpiPJQ/BsIRyWzEVCennnnuOd999Fzs7\nOxRFKbcVM3PmzNKfBwUFERQUVOFChRDCHCx9CMadJCQkkJCQcFfvYaeUk8Q7d+5k7ty5bNiwAYD3\n33+f4uJipk+fXvqa1q1bl4Z5RkYG9evXZ8mSJQQHB9/4QVeDXwghrIHBAPPnw9y5MGcOTJkC1thw\nqEp2lrti79GjB6mpqZw5cwZPT0+++eYboqKibnjNyZMnS3/++OOPM2bMmJtCXQghrImWh2BYQrk9\ndkdHRxYtWsSwYcPo0qUL48aNo1u3bkRFRd0U8EIIYe2s4RAMSyi3FWPSD5JWjBBCQ9cfgrFihbbz\n0iujKtkpIwWEEDbN2g7BsASLjhQ4mXWS1q6tLfmRQogazBoPwbAEi67Yey7pyYKfF2AwGiz5sUKI\nGshaD8GwBIv22I9mHGVK3BRKjCUsDV7KvY3vtcRHCyFqkOsPwVixwjrnpVeG1ffY27u3J+GxBP7l\n/y/6fdGPOTvnoDfoLVmCEMKGXTsEo2lT6z0EwxI02xVzOvs0T254kkv5l1gWsoyuTbtaogwhhA26\ndgjGtm3wxRfqTVJbYfUr9uv5uPgQ/894pvacytCVQ5mxbQZFJUValSOEqKauPwQjJcW2Qr2qrGIf\n+7nL54jcFMkx3TGWBi+ll3cvS5QkhKjGqushGJVVrVbs12vWsBlrH1rLmwPe5MGvH+Q/3/+HK/or\nWpclhLBS1fkQDEuwimAH9bvSQ74P8WvEr1zMv4jfIj+2n9qudVlCCCtSVKSu0kND4d13YeVKcHXV\nuirrYxWtmFvZcGwDERsjGNVuFO898B6N6jYyY3VCCGuXnKyO123fHhYvrt7z0iuj2rZibmV0+9Gk\nRqRiVIx0XtiZTX9s0rokIYQGbO0QDEuw2hX79bae3MoT65+g7z19mT9sPu713U1cnRDCGl1/CMbn\nn2t/CIYWbGrFfr3BrQfza8SvuNVzw2+RH9GHo7UuSQhhRgYDzJsHAwaos142baqZoV5V1WLFfr3d\nabuZHDsZX09fPh35KU2dmpqgOiGEtThxQj0Eo1Yt9WEjW5yXXhk2u2K/Xp8WffjlqV/o4N6BLou7\n8L9D/5M570LYiNWroVcvGDfOdg/BsIRqt2K/XvK5ZCbHTqZZw2ZEjY7iHud7TPr+QgjLKCiAZ5+F\nhAT45ht1KqNQ1YgV+/W6NevG/if207dFX7p/1p1F+xdhVIxalyWEqIQjR9RhXXl5kJQkoW4K1XrF\nfr3Dlw4zOXYyjg6OfB78OW3d2prts4QQprFyJfznPzBnDkyZAnZ2WldkfaqSnTYT7AAGo4EFexcw\nZ+ccpvWdxnO9nqOWfS2zfqYQovKuXFFnpu/erbZe/P21rsh61fhgv+Z45nGeWP8EBfoClgYvxdfT\n1yKfK4S4s8OH4aGH1FkvixaBk5PWFVm3Gtdjv522bm3Z+uhWHu/6OEErgvjvT/+VAz2EsALLl6t7\n0//zH/jf/yTUzcUmV+zXS8tJ46mNT5Gem86y4GV0b97d4jUIUdPl50NkpHr26Lffgq/8I7rCZMV+\nCy2cW7DhkQ282PtFRn41kmk/TqOwpFDrsoSoMVJTITAQ7O3VYJdQNz+bD3ZQv+NN7DKRQ08d4o/M\nP+i6uCu7/tqldVlC2DRFgaVLYeBAddTuF19AgwZaV1Uz2Hwr5lZiDscwdfNUxncaz9uD38apjjT6\nhDCly5chIgJ++UXd9dKpk9YVVV/Siqmg0E6hpEamkl2Ujf8if348+aPWJQlhMw4dUlsvjo6wb5+E\nuhZq5Ir9epv/2Ez4hnCGthnKvKHzcHF00bokIaolRVHPHp0+Hf7v/+Cf/9S6ItsgK/YqGNFuBKmR\nqdS2r03nhZ1Zf3S91iUJUe3k5sI//gGffgqJiRLqWqvxK/brJfyZwJS4KfT06smC4Qto3KCx1iUJ\nYfUOHlQfOBo8GObPh3r1tK7ItsiK/S4FtQwiJSKFZk7N8Fvkx9epX1v9NyMhtKIosHAhDBsG//2v\neg6phLp1kBX7bexN38vkuMm0c2vHwlELad6wudYlCWE1cnLUoV0nTsDXX0O7dlpXZLtkxW5C93nf\nR/KTyfh5+tF1cVeWHVxWrb4xCWEuBw5At27qgdK7d0uoWyNZsVfAofOHmBw3Gfd67nw25jNaurTU\nuiQhLE5R4OOPYfZs9Sbp+PFaV1QzyIrdTLo07cLeKXsZ1GoQgZ8F8sm+T+RAD1GjZGdDaKg6uGvP\nHgl1a3fHYI+Pj8fPz49OnToxd+7cm349NjYWf39/unTpgp+fH/Hx8WYpVGsO9g682vdVEicnsjp1\nNQOWD+CY7pjWZQlhdvv2qa0Xb2/YtQvatNG6InFHSjkKCwuVli1bKunp6Yper1cCAwOV5OTkG16T\nl5dX+vOUlBTlnnvuueV73eGjqpUSQ4my4OcFivtcd2Vu4lxFb9BrXZIQJmc0KsqHHypK48aKEhOj\ndTU1V1Wys9wV+969e/H19cXLywsHBwcmTJjAxo0bb3hNg+um+uTl5dGsWTNzfP+xKrXsa/HMfc+w\n74l9bDmxhd5Le/PrhV+1LksIk8nMhLFjYfVq2LsXxo3TuiJRGeUGe3p6Oi1atCj92tvbm/T09Jte\nt27dOu69915GjBjBRx99ZPoqrVRr19b8MPEHwruHM+h/g5iZMJNiQ7HWZQlxV/bsUVsvbdqoT5G2\naqV1RaKyyg12uwqeLDt27Fh+//131q9fz8SJE01SWHVhZ2fHlG5T+CX8F5LPJdP9s+7sP7Nf67KE\nqDSjEd5/X12pf/QRfPgh1KmjdVWiKhzK+0Vvb2/S0tJKv05LS7thBf93/fr1o6SkhAsXLtCkSZOb\nfn3mzJmlPw8KCiIoKKjyFVspr0ZexD4cy5rUNYxZPYaJ/hN5a+Bb1Kstj+IJ65eRAY89BjqderPU\nx0frimquhIQEEhIS7uo9yt3HXlhYSMeOHdm1axeenp706dOHqKgounXrVvqaP//8k5YtWwKQnJxM\nSEgIf/31102r/eq8j72yLuZf5JnNz5B8LpmlwUvp59NP65KEuK3ERHWA14QJMGcO1K6tdUXielXJ\nznJX7I6OjixatIhhw4ZhNBqZOHEi3bp1IyoqCoDw8HDWrFnDl19+CUC9evVYs2ZNhVs4tsqzgSdr\nwtaw7sg6Ho55mAc7Psg7g9+hYd2GWpcmRCmjEd57Tx2xu3QpjBqldUXCVOTJUzPLKsjihS0vsO3U\nNj4b8xlD2wzVuiQhuHQJHn1UPelo9Woop8MqNCZPnloh13quLAtZxmdjPuPJ9U/yeOzjZBVkaV2W\nqMF27FB3vXTtCtu3S6jbIgl2CxnaZii/RvxKg9oN8Fvkx6Y/NmldkqhhjEZ4+221l75kCbzzjvTT\nbZW0YjSw/dR2JsdNZlDLQXw47EOcHZ21LknYuAsXYOJEKCqCr74CLy+tKxIVJa2YamJgq4GkPJVC\n7Vq18V/szw8nftC6JGHDtm+H7t3hvvtg61YJ9ZpAVuwa23JiC1PipjCy3Ujef+B92TkjTMZgUEfs\nRkXBihXwwANaVySqQlbs1dC13rveoMd/sT/bT23XuiRhA86fh6FDISEBkpIk1GsaCXYr4OzozNKQ\npXw68lMmfjeRqZumkl+cr3VZopraulXd9dKvH/z4I9SAuXzibyTYrcjIdiP5NeJXcopy6LK4C4l/\nJWpdkqhGDAZ44w11f/qqVTBzJtSqpXVVQgvSY7dSsUdiidgYwcOdH+btQW/LzBlRrrNn1bEADg5q\nqDdtqnVFwlSkx25DQjqGkBKRwrm8cwREBfBz+s9alySs1Pffq7teBg9Wfy6hLmTFXg18+9u3TN08\nlce6PsbMoJk4OjhqXZKwAiUlauvlf/+DL7+EAQO0rkiYQ1WyU4K9mriYf5GIjREcyTjCirErCGwe\nqHVJQkPp6fDII1C/PqxcCZ6eWlckzEVaMTbMs4En0eOjmdFvBqO+GsXr216X05pqqM2bITAQRo5U\nfy6hLv5OVuzV0LnL5wjfEM7pnNOsGLuCrk27al2SsAC9HmbMUEcCfPWVup1R2D5pxdQgiqKwMmUl\nL255kad7Ps20vtOoXUsmOtmqv/5SWy/OzmpP3cND64qEpUgrpgaxs7Pj0S6PkhyezJ70PfRa2ovU\ni6lalyXMYP166NEDQkJgwwYJdXFnsmK3AYqisOzgMl7d+ir/6fUfXrr/JRzsyz0cS1QDxcUwbRpE\nR6uHYfTpo3VFQgvSiqnhTmef5t9x/+Zy8WWWhyzn3sb3al2SqKI//4SHH1ZvjH7xBbi7a12R0Iq0\nYmo4Hxcffpj4A493fZz+y/szb/c8DEaD1mWJSlq3Th2x+9BDEBsroS4qT1bsNupk1kkmx05Gb9Sz\nPGQ57dzbaV2SuIPiYnj5ZTXM16xRw13UcJcvY9eokazYhaq1a2u2TdrGBN8J9F7amwU/L8CoGLUu\nS9zGqVPQt6/agklOllCv0bKz1a1PISFVPhVFgt2G2dvZ88x9z7Dn33v45vA3DFwxkJNZJ7UuS/zN\n11+rQf7Pf8J334Grq9YVCYvLyIClS2HECPDxgbVrYfx4dZ9rFUgrpoYwGA0s2LuAdxLf4a2gtwgP\nDMfeTr6vayk/H555BnbuVFsv3bppXZGwqAsX1O/k0dGwfz8MGwahoeojxQ3LTlKTXTHijo5kHGHS\nukk0rNOQpcFL8XHx0bqkGungQfWBo9694eOPwclJ64qERZw5o67Go6MhJUUN8dBQGD5cHfxzCxLs\nokJKjCXM2z2PD/Z8wDuD3+HfAf/Gzs5O67JqBEWBjz6Ct9+G//s/dYa6sHGnT0NMjBrmR45AcLAa\n5g88AI53ntQqwS4qJfViKpPWTaJx/cZ8Hvw53o28tS7Jpl26BI8/rv7f1auhdWutKxJmc/x4WZj/\n+SeMHauG+aBBUKdOpd7K6vexGyTYrUpnz878/O+fub/F/XSL6saKX1bIN18z2boVunYFPz9ITJRQ\nt0m//w6zZ6t/0H37qiv1uXPh3DlYskRtt1Qy1KvKoit2z8RExri7E+zhwRBXV+rLgYxW45fzvzBp\n3SR8nH2IGh1Fs4ZyArIp6PVlh2GsWAFDhmhdkTAZRYFff1VX5TExkJOjrsrDwtT5DybKN6tvxRy/\ncoX1GRnE6nQkXb7MQBcXQjw8GO3ujqeFvpOJ2ys2FDN7x2yikqKYP2w+j3R+RHrvd+HkSfUGqYcH\nLF8OjRtrXZG4a4qiPmhwLcz1+rIw79kT7E3fBLH6YL/+ozL1ejbpdMTpdGzJzMS3QQOCPTwIcXen\nQ/36EigaSjqbxKR1k2jv3p7Foxfj2UBOcqis1avh2Wdh+nR1S6P8da7GjEbYt68szB0c1CAPC1P3\nqJr5D7daBfv1ioxGErKzic3IIC4jg/q1ahHi4UGwuzt9nJ2pJf9fYXFFJUXMTJjJF798wccjPma8\n73itS6oW8vJg6lTYvVvdmx4QoHVFokoMBvUP8VqYOzuXrcz9/Cz6nbraBvv1FEUhOS+PuIwMYjMy\nOFNczCg3N0I8PBjq5kYD6ctb1M/pP/PYusfo2rQrn4z8BI/6Mgz8dpKT1dZL376wYIHsTa92Skpg\nxw41zNeuhaZN1SAPDYV7tZuUahPB/nenCwuJy8ggTqdjb24u/Z2dCfbwYIy7O83q1jVDpeLvCvQF\nzNg2g9Wpq1k4aiFjO47VuiSrYjSqQf7OO+oe9Ycf1roiUWHFxbBtm7oqX7cOWrYsC/O2bbWuDrDR\nYL9etl5PfGYmsTod8ZmZtK9Xr7Rl49uggfTlzSzxr0Qej32cXt69WDB8AW713LQuSXMXL8Jjj0FW\nlnoOaatWWlck7qiwEH74QQ3z9euhQwc1zMeNU4Pdyth8sF+v2GhkR3Y2cTodsRkZONjZld587evs\njIMZ7k4LyC/O57WtrxHzewxRo6MY1X6U1iVp5ocf1FB/7DGYORNqy5Gz1uvKFYiPV8N80ybw91fD\n/MEHwdu6H8yrUcF+PUVRSMnPL735eqqwkJHu7gS7uzPczY2GDnJMnKkl/JnA5NjJBLUMYv6w+Tg7\nOmtdksXo9TBjBnz5pbo/fdAgrSsSt5SXBxs3qmH+/ffqwbFhYepToE2bal1dhZntydP4+Hj8/Pzo\n1KkTc+fOvenXV65cib+/P35+fgQGBpKUlFSpIu6WnZ0dXZyceKNlSw4EBnIoMJA+jRqx9Nw5mu/Z\nw/BDh1h05gzphYUWrcuWBbUMIiUihbq16uK3yI8tJ7ZoXZJFnDgB998Phw/DL79IqFudnBxYtUoN\nby8v9QGCYcPUP7gff4SnnqpWoV5lyh0UFhYqLVu2VNLT0xW9Xq8EBgYqycnJN7xm7969Sm5urqIo\nirJ582ala9euN71PBT7KLHL0euWbCxeUfx0+rLjt3Kl0379fmXXqlPLL5cuK0WjUpCZbs+X4FuWe\n+fcoT8Y9qeQW5mpdjtmsWqUoHh6K8tFHiiJ/dayITqcoy5YpysiRitKokaIEByvKihWKkpmpdWUm\nUZXsvGMrZseOHbz33nts2LABgHnz5lFYWMiMGTNu+frLly/Tpk0bLl68eMP/bg1DwPRGI7tycoi9\n2pc3KgrBV2++DnBxobb05asspzCHF7e8yI+nfmRp8FIGtbKdpezly/D00+ozKqtXq6NAhMYuXlR3\nsURHw9696qTE0FAYNQoaNdK6OpOqSnbesfmcnp5OixYtSr/29vYmISHhtq+PiooiJCSkUkVYSm17\ne4JcXQlydeXDNm34LT+fOJ2O6adOcayggOFuboRc7cu7yJ2wSnF2dGZJ8BI2/7GZSesmEdIhhHeH\nvItTneq9mTspSd2+GBQEBw5AgwZaV1SDnT1bdjDFwYPqaUNPPqn+b/IHc4M7BntlthAmJCSwbNky\ndu3adVdFWYKdnR2dnZzo7OTEaz4+nCsqYr1Ox6oLF3jy2DHua9SI4KsDy3wqMDNZqEa0G0HKUyk8\n9/1zdF3clS9CvqCfTz+ty6o0oxHmz1eH833yCTz0kNYV1VB//VV2MMXhwzB6NDz/PAwdWqFZ5jXV\nHYPd29ubtLS00q/T0tJuWMFfk5KSwpQpU4iPj8f1Noc2zpw5s/TnQUFBBAUFVb5iM2lWty5PNm/O\nk82bk1dSwg9ZWcRmZPDW6dN41amj7pf38KCbk5Psl78D13qurBi7grijcTwc8zAPdXqItwe/Tf3a\ntz4hxtpcuKBuYczOVtsvVri12badPFn2KP+JE+qhztOnw+DBFht7q6WEhIRyuyIVcccee2FhIR07\ndmTXrl14enrSp08foqKi6HbdAY1//fUXgwYNYtWqVfTq1evWH2QFPfaqKDEa2ZObS+zVqZSFRmPp\nSj7IxYW60pcvl+6Kjqmbp5J0LonlIcvp3aK31iWVa8sWNdQnT4Y335S96RZz9GhZmJ85o+4vDwuD\nAQNq/B+C2faxb968mZdeegmj0cjEiROZNm0aUVFRAISHhzNlyhS+++477rnnHgBq167Nvn377ro4\na6MoCkeuXCFOpyMuI4Pf8vMZenWOzQg3N9xq+F/A8sQcjuHpzU/zqP+jzBo4C0cH6/pndHGxuihc\ns0bdmz5woNYV2ThFgd9+U8M8Olp9dHfcODXM+/Y12SxzW1BjH1DSyoXiYjZe3WGzPTub7g0bEnJ1\nNd+6Xj2ty7M6F/MvErkxksOXDrNi7Ap6ePXQuiRAPcXskUegWTNYtkydny7MQFHUzf/XwrywsGxi\nYq9eZpllbgsk2DV0xWDgx6ws4jIyWK/T4VmnTmnIBzZsiL305QH1Xz3f/PYNz8Y/y5RuU3i9/+vU\nddBumNuqVeq9uDffhP/3/2Ruuskpinqj4tr5n/b2ZWEeGCgXvAIk2K2EQVHYd11fPqekhDHu7oR4\neDDIxQVH+Wcm5/POE7kxkuRzycwMmslE/4nUsrfcdbl8WQ3yAwfU9ou/v8U+2vYZjeos85gY9Uf9\n+jB+vBroXbpImFeSBLuVOnblSuno4UN5eQx2dSXEw4NRbm541IC7/OVJ/CuR17a+RsaVDP478L+M\nu3ec2XcdHTigtl4GDlS3NMoWaBMoKYGdO9VV+Xffqf2sa+NvO3WSML8LEuzVQEZxMRszM4nNyGBr\nVhZdnJxKRw+3q189tgOamqIofH/ie17b+hq17GsxZ9AchrQeYvKANxrhww/hvffg00/VRaS4C3o9\nbN+uhvm6ddCiRVmYt2+vdXU2Q4K9mik0GNianV26mnd1cCD4asumZ6NGNe5IQKNiJPpwNK9vfx2v\nhl7MGTyHXt633j5bWefPw6RJ6sC/r74CHx+TvG3NU1SkDtOKjlZnmbdtWxbmMozeLCTYqzGjonDg\n8mV19LBOx8XiYsZcvfk6xNWV+jWoL19iLGHFLyuY9dMsujXrxuxBs+ns2bnK7xcfr+5LnzIF3nhD\nPYtYVEJBgTr2NjpaHYPbuXPZwRS3eFhRmJYEuw05UVDA+qs3X5MuX2agiwshHh6MdnfHs4b05QtL\nClm0fxHv7nqXoW2GMitoFq1dW1f49xcXw2uvwddfw8qV6rwXUUF5ebB5sxrm8fHqDpbQUPXBoWbN\ntK6uRpFgt1GZej2bdDridDq2ZGbi26BB6WlRHerXt/kRB7lFuczfM5+P933MBN8JzOg/g2YNyw+X\nP/5Qb5B6e8PSpeDubqFiq7PcXNiwQQ3zrVuhd281zMeOhcaNta6uxpJgrwGKjEYSsrNLT4uqX6tW\n6c3XPs7ONt2Xz7iSwTs732H5oeU82e1JXr7/ZVzr3TiXSFHU1fkLL8CsWRARIRsyypWZCXFx6rbE\nn35SH+EPDYXgYHCTM22tgQR7DaMoCsl5ecRlZBCbkcGZ4mJGXR1xMNTNjQY22pdPz03nrZ/e4rsj\n3/F8r+d59r5naVCnAbm5EBmpTnRdswb8/LSu1EpdulQ2y3zPHhgyRO2ZjxoFzjXniMPqQoK9hjtd\nWFi6w2Zvbi79nZ0J9vBgjLs7zepq93SnuRzTHeON7W/w0+mf+Nc901k7/QkeGFSXDz9Un4kR1zl3\nrmyWeVISDB+uhvmIEeBUvWfm2zoJdlEqW68nPjOTWJ2O+MxM2terV9qy8W3QwGb68kYjPP/eQRYf\nm45L2995b+RM/uX/L4s+xWq10tLKZpmnpqor8rAw9QxQmWVUbUiwi1sqNhrZkZ1N3NWBZQ52dqU3\nX/s6O+OmC7MjAAAd0klEQVRQTYcvnTsHjz6qzpL68ks4rexk2tZpZBVmMXvgbMZ2HGsz38Aq7NSp\nsrksf/yh9srDwtR2iw3+q60mkGAXd6QoCin5+aU3X08VFjLS3Z3gq0cCNqwmm7w3b1b3poeHw4wZ\nZXvTFUVh8/HNvLb1Neo61GXOoDkMbj1Y22LN7dixslnmaWnqLpawMHVmgoySrvYk2EWlpRcWsv7q\nSn53bi73OzuXHiTiZYUrvKIimDZNzbGVK9VNHLdiVIx889s3vL79dXycfZgzeA49vXpatlhzURT1\nmLhrYX7pUtks83795AksGyPBLu5KbkkJ32dmEqfTsUmno5Wjo9qy8fDA3wr68seOqQdLt2wJn39e\nsd14eoOe5b8s560dbxHYPJDZA2fj6+lr9lpNTlHg0KGyMM/LKxt/26ePzDK3YRLswmT0RiO7cnKI\nvbqaNyoKwVdvvg5wcaG2BYNEUWDFCnjpJfjvf9X2S2W/xxToC1i4fyHv7X6P4W2HMytoFi1dWpql\nXpNRFHUU5bUwNxrL5rL06CFhXkNIsAuzUBSF3/LzS2++HisoYLibGyHu7oxwd8fZjP/0z8lRHzJK\nSVH3pneu+sgYQH2K9cM9H/LJvk94pPMjTO8/naZOTU1TrCkYjfDzz2Vh7uhYFuYBAfK0VQ0kwS4s\n4lxRUWlffmdODvc1akSIuztjPDzwcTTdWaZ796pjAYYNgw8+MO3e9Ev5l3gn8R1WHFpBePdwXr7/\nZVwcXUz3AZVhMEBiohrma9eCq6sa5mFh4OsrYV7DSbALi8srKWHL1SMBN2Zm4l23buno4QAnpyr1\n5Y1GdWb6/PmweLE6d8pc0nLSmPXTLGKPxvJC7xeY2nMqDepY4OQNvR4SEtRV+XffQfPmZSvzjh3N\n//mi2pBgF5oqMRrZc92RgIVGY+kOmyAXF+pWoCd87hxMnKhOZly1Cu65xwKFA0czjvL69tdJ/CuR\n6f2m80T3J6hTy8RTNIuL1VnmMTEQGwutW5eFeZs2pv0sYTMk2IXVUBSFI1euEKfTEZeRwW/5+Qy9\nOsdmhJsbbrfYX71xozoz/amnYPp0bXbtJZ9LZvq26RzNOMqsoFn8w+8fd/cUa0EBbNmihvmGDeox\ncaGh6vZEOe1DVIAEu7BaF4qL2XA15LdnZ9O9YUNCrrZsmtvX45VX1I7EqlXqVmyt7Ti9g2lbp5FT\nmMPbg94muENwxdtK+fk3zjIPCCibZe7lZd7Chc2RYBfVwhWDgR+zstSWzUUd+el18DnjzsePeDDY\nqyH2VnKzUFEUNv6xkenbplPPoR5zBs9hUKtBt35xbq76T47oaLXdct99ZbPMmzSxbOHCpkiwi2rD\nYIAlS2DGmwqT38vFrq86lTKnpIQxV1fyg1xccLSC0cNGxcjXqV/z+vbXaeXaijmD5tDDqwdkZann\nfkZHqzdC+/VTe+bBwXKyhzAZCXZRLWzdCv/5jzr6e9EidUffNceuXCkdPXwoL48hrq4Ee3gwys0N\nD42PBNQb9Hy1/SN+XTKbfxyrS5cT+dQaNFgN89GjwUWj7ZLCpkmwC6t27Bi8+CL89pu6nXHcuPK3\naF8qLmZTZiaxGRlszcqii5NT6ejhdpYcuH7hQtks8/37MQwZzMYu9XjW7nuC/Mfw5oA3rf8pVlFt\nSbALq5SZCW+9pd4YfeUVeOaZyk+QLTQY2JqdXbqad3VwKN0vf1+jRqbvy585UzbL/NAhGDlSXZkP\nH176pFROYQ4f7PmAT/d/yj/9/sn0ftNp4iT9dGFaEuzCquj1aqtl9mz1PuKsWeDpeffva1QUDly+\nrI4e1um4VFzM6Kv75Ye4ulK/qn3506fLZpkfOaL2ykND4YEH1Ef7b+Ni/kXm7JzDypSVRARG8GKf\nF7V7ilXYHAl2YRUURd0g8uKL6gNGH3549zNeynOioID1Vx+KSrp8mYEuLoR4eDDa3R3PO/Xljx8v\nm8vy55/qLpbQUBg0CCrZ0z+dfZq3fnqL9cfW82KfF3m659PUry1n9Im7I8EuNPfrr+qN0bQ0db7L\nyJGWHXWSqdezSacjTqdjS2Ymvg0alJ4W1bHB1VEBv/9eFubnz5fNMu/f3yRPRR3JOMLr219nd9pu\nZvSbwb+7/dv0T7GKGkOCXWjm4kV4/XX1HuPrr6tPj2p9eE+R0UhCdrbasjl3jgZ5eQTv2UPwnj30\n6dyZWtdmmZtpS2XS2SRe2/YaxzOPMytoFo90fkTOYhWVJsEuLK6wEBYsgPffV2e8vPGGOpxQc4oC\nycmlK3NFryd58mTigoKIdXTkTHExo66OOBjq5kYDM+6XT/gzgWlbp5FXnMfbg95mTPsxmh9aIqoP\nCXZhMYqidjJefhn8/NRgb99e46KMRnXWb0yM+sPBoWz8bbduN/SEThcWlu6w2ZubS39nZ4I9PBjj\n7k4zMxwJqCgKG45tYPq26TjVcWLO4DkEtQwy+ecI2yPBLiziwAG1j56To94YHazlWdEGA+zeXdYz\nd3Yum5jo51ehBn+2Xk98ZiaxOh3xmZm0r1ePkKtHAnaqX9+kq2uD0cCa1DW8kfAGbd3aMmfQHLo3\n726y9xe2R4JdmNWZM/Daa+qwwv/+Fx5/3Gzt6fKVlMBPP6lBvnYtNG1aFub33ntXb11sNLIjO5vY\nqwPLHOzsSh+K6uvsjIOJjqMrNhSzNHkps3fOprd3b2YPmk1HD5nDLm5Wley849/S+Ph4/Pz86NSp\nE3Pnzr3p148cOULv3r1xdHTkgw8+qNSHi+ohP1/dg+7vrw4nPHZMHa9r0VAvLlYnJT7xBDRrBq++\nqo69TUyEX36BGTPuOtQB6tjbM8TNjY/btePPXr2I8fXFxcGBF06coMnu3Uz8/XeiL17kcknJ3X1O\nrTpE9Ijgj6l/0NOrJ/2/6M/4b8ez7dQ2WQCJu1buir2oqIiOHTuSmJhIkyZN6N27N5999hkBAQGl\nr7l06RKnT59m3bp1uLq68sILL9z6g2TFXu0YjfDll+oq/f774d13oWVLCxZQWAg//KC2WTZsgA4d\n1JX5uHEWLkSVXlhYOl9+d24u9zs7lx4k4nWXffnLRZdZlbKKT/d/ikExEBEYwaNdHpUHnYTpWzE7\nduzgvffeY8OGDQDMmzePwsJCZsyYcdNrZ82ahZOTkwS7jdi1C55/Xm1Rz5+v7gq0iCtX1JV5dLQ6\n07xLl7KDKaxolnluSQnfZ2YSp9OxSaejlaOj2rLx8MC/QYMq9+UVRSHxr0QWHlhI/PF4xncaT0Rg\nBAHNAu78m4VNqkp2lvs0Rnp6Oi1atCj92tvbm4SEhCoVJ6qHU6fUeS579sA778A//gEmaivfXl5e\n2SzzLVugZ081zD/8UO2fW6FGDg6M9/RkvKcneqORxJwc4nQ6HkxNxago6kNRHh70d3amdiUuoJ2d\nHf18+tHPpx8X8i6w9OBSQtaE4NXIi8jASMb7jsfRwXQHhgvbVG6wm3qv7cyZM0t/HhQURFBQkEnf\nX1Rdbi7MmaPOSH/2WVi+vHTWlXnk5JTNMt++Xe31hIaqw2U8PMz4waZX296ega6uDHR15cM2bfgt\nP59YnY7XTp7kj4IChru5Eezuzgh3d5wr8WRrE6cmvNbvNV6+/2U2/bGJhfsX8sKWF3i86+OEB4bT\n2rW1Gf+rhFYSEhLuegFd7t8yb29v0tLSSr9OS0u7YQVfWdcHu7AOBgMsXQpvvgnDhkFKihk7Hjod\nxMWpYb5zJwwcqIb58uU2M8vczs6Ozk5OdHZyYrqPD2eLitig07HywgWePHaM+xo1IsTdnTEeHviU\nM1jseg72DgR3CCa4QzDHM4+z+MBi7vv8Pno070Fkj0hGtB0hT7TakL8vemfNmlXp9yi3x15YWEjH\njh3ZtWsXnp6e9OnTh6ioKLp163bTa2fOnEnDhg2lx16NbN2q9tFdXNQ+endzbKe+eFGdMxAToz48\n9MAD6g3QUaOgYUMzfKD1yispYUtWFnEZGWzMzMS7bt3S0cMBTk6V+hdygb6Ab377hoUHFnIh7wJP\nBT7F5IDJeDYwwfhMYVXMso998+bNvPTSSxiNRiZOnMi0adOIiooCIDw8nPPnz9OjRw9yc3Oxt7en\nYcOGHD58GCcnp7suTphHZQ+8qLSzZ9X95TExcPAgjBhRNsv82iCuGq7EaGRPbq567qtOR6HRWLrD\nJsjFhbqV6MsfOHuARfsXEfN7DKPajyIyMJI+LfrI2AIbIQ8oiXKZ4sCL2/rrr7JH+Q8fVo+KCwuD\noUPLnWUu1J0wR65cIU6nIzYjg8P5+Qy9OsdmpJsbrhWcppZVkMWKQytYuH8h9WrXIzIwkn/6/xOn\nOk53/s3Cakmwi1sy14EXnDhRdjDFyZMQEqKG+eDBlZ5lLspcKC5mw9X98tuzswls2LC0ZdOqXr07\n/n6jYmTbqW0s3L+QhD8T+IffP4gIjMDX0/eOv1dYHwl2cQOzHHhx5EhZmJ89Cw8+qIb5gAHaz+m1\nQVcMBn7MyiI2I4MNOh2edeoQcrVlE9iw4R2PBEzPTWdJ0hKWJC+hvXt7IntEMrbjWJkPX41IsItS\nJjvwQlEgNbUszLOy1GV/aCj07avRsJiayaAo7M3NJe5qXz6npIQxV1fyg1xccCznz0Jv0LPuyDoW\nHljIkYwjTAmYwpPdn6SFc9V3uQnLkGAXpjnwQlHUm57XwrywsGzIVq9eFnhiSVTEsStXSkcPH8rL\nY4irK8EeHoxyc8OjnFbY4UuHWXxgMatSVjGg5QAiAyMZ3How9nby52qNJNhrsLs+8EJRYN++sjC3\nty8L88BAy55vJyrtUnExmzIzic3IYGtWFl2cnEqnUra7zZNmecV5fPXrVyzcv5Ar+is8FfgUj3V9\nDLd6bhauXpRHgr0GUhQ1h195pQoHXhiNZbPM165VtyJeO5jC31/CvJoqNBjYmp1dupp3dXAovfl6\nX6NGN/XlFUXh5/SfWXhgIRuObeDBjg8S2SOSwOaBGv0XiOtJsNcwBw6oDxjl5lbiwIuSEvWpz2th\n3rhxWZh36mT2moVlGRWFA5cvl/blLxUXM/rqzdchrq7U/1tf/lL+JZYdXMbipMV41PcgMjCSCZ0n\nUL+2OedLiPJIsNcQlT7wQq9X57FER8O6ddCiRVmbRfPz7IQlnSwoKF3JJ12+zEAXF4I9PBjt7o7n\ndX15g9FA/PF4Fh5YyN70vUzqMomnAp+inXs7DauvmSTYbVx+PsybBx99BOHhMG1aOU/lFxXBjz+q\nYR4XB+3alYV5q1YWrVtYp0y9ns1X+/JbMjPxbdCgtC/f8bonhE9lnSIqKYplB5cR0CyAiMAIRrcf\njYN9xQeaiaqTYLdRFT7woqBAnWUeE6NuYPfzK5tlfhfD24TtKzIaSbiuL1/f3p7gqyHfx9mZWnZ2\nFJYUEn04moX7F5KWm0Z493CmdJtCUyfrHK1sKyTYbVBi4o0HXtx//99ekJcHmzapK/Pvv1d3sISG\nqg8ONWumSc2ielMUhYN5eeocm4wMzlzry7u7M9TNjQa1avHL+V9YtH8R3xz+hmFthhERGEF/n/4y\nn8YMJNhtSLkHXuTkqEfFRUerIxr79FHDfOxY9WaoECZ0urCwdCW/NzeX/s7OhFzty9dXCvnfof+x\n8MBC7O3siQyMZGKXiTSq20jrsm2GBLsN+PuBFy++ePXAi8zMslnmO3aoj/CHhcGYMeAm+46FZWTr\n9cRnZhKr0xGfmUmHevVKWzaXLh1g0YGF/HDyByb4TiCyRyT+Tfy1Lrnak2Cvxv5+4MXbb4NXnUvq\nLpboaHXpPmRI2SxzZ2etSxY1XLHRyM6cnNKWjYOdHSEeHvSpD78e+4qlyZ/R0qUlkT0iCb03lLoO\npholWrNIsFdTP/6oznVxcYGPp5+jy4nv1DBPSlJnmIeFqTPNnWT8qrBOiqKQkp+v7pfPyOBUYSHD\n3VxpXnSKA78t4vD5A0zuOpnwwHBaurTUutxqRYK9mjl6VG21ZKWk8emgGPyPx2CXmqquyMPC1KV7\nBca0CmFt0gsLWa/TEafTsSsnh671HHDI2sfB1E/o27QjkYGRDGs7TObTVIAEezWRmQmfvnASwzcx\nPOkRQ7O8P7ALDlbDfMgQE55+IYT2cktK2HK1L79Jl0FDYz7FF7djn/kzz3QazeRuj+NRv3odYG5J\nEuxW7tT3xzj1fjTuP8XQ2iENh7Cx1JsYph7qLLPMRQ1QYjSSeLUv/+3Fs2QXXUZ/IYH+TrV4s+tY\n7vfuJVsm/0aC3cooRoUT6w+T/n/ReO2JppE+gyOdxnHPc6G0mtQfHOTJPVFzKYrC4StXWH3uL1ae\nOUG63g7nK0cJ9WzGjM5D8XFy17pEqyDBbgUUo8Kxbw9x7uNo7tkfjaMhnz/8w3CdEkrnJ/tg7yA9\nRSFu5UxhAe8fSWTNhXQu1GqCW8l5BjV05Pl299HHs43W5WlGgl0jilHh8Ir9XFocQ6vkaOxQOBkQ\nhkd4KJ0m9ZAwF6KSLhbk8sGRHay9dJ4Tdp7UNeTSo66ecB9fHmkZiH0NOuxFgt2CjCVGUpfsIfPz\nGNoeikFv78jpHmE0iQyl4yMB2NlLn1AIUyg2lPD5iT18kXaMQyVOGO0c6GiXxSPN7mFq+340qmPb\nO8ck2M3MUGzg14U7yVkWQ/vf1pJX25UzvcLwejaMtiG+EuZCWMCmM6l8ciKZxCsKlx088C45x2h3\nV17q2I/WDT21Ls/kJNjNQH9FT8pHCeT/L4Z7j3yHzrE55+8P457nQ2k9sqPW5QlRo/2WfZZ5R3cR\nn5XLeYdmuJRcIMipDs+17cGAprZx1oAEu4kU5xVz6IMfKfwyhk7HYzlfvzWX+ofR6sVQfAbV3Js4\nQlizjMLLzD+6k+gLZ/nDzoM6hit0r1PIFJ97mdiqJw725Z1GY70k2O9CQWYBKfO2oP86Bt9TG0hz\n6kTmoFDavjQO7/t9tC5PCFEJxYYSlp/cy7K0oxwsrkeJvSPt0TGhqTfPdeyPS53qc9SfBHsl5V/M\nJ2XuZpRvo/FNi+ekSwC5Q0Jp/8qDNAv00ro8IYSJ/HD2dz46cYAd+QZyHRrTvOQcI91ceLFDXzo4\nW/dBIRLsFZCbnkvq3I3Yr43m3rM/ctztPvKHh3LvtLE07txE6/KEEGZ2NOc8844msikzm7MOzWhU\ncon+DWrxTJtAHmh+r9bl3USC/TayT2WR+s56asdFc++FBI427kfh6DB8pwXj1k6ebhOipsouvsKC\noztYcy6dY7jjYCwkoE4Bk1t04PHW91G7lvZPh0uwX0d3NIPD78TiuDGa9hm7OdJ0ICVjw+j86mic\nfVwsVocQonooMRpYeWofS/86woGiuuhr1aetkkFYk+Y836EfHo63OznevGp8sF9KvcDvc77DKT6a\nNln7Oew1FCU0DL9XRtKwuTZ/KEKI6inh/DEWHN9PQl4x2Q6eNC05x3BXZ17scD++Ls0tVkeNDPZz\nB85w7N21OP8YTaucQ6T6jKTWQ2H4vzyc+h7V5863EMJ6nbh8kQ+OJLJel0m6QzMalmTQt74dT7fp\nxojmvmadSFljgj1912mOvxeD+7ZovPOP8FvrYOo8Eor/Cw/g6OJoks8QQohbyS0u4ONjO1lz7i9+\nV1yxV/R0cchnknc7nmzbhzom7svbdLCf3nqcU+9H47kzBs+CPzncfiz1/xWK/3ODqONUx4SVCiFE\nxRiNRlafTuKzP1PZV1SHoloNaa1cJLRxU17o2B/Peo3u+jNsLthPbPidtPnRNNsdg2vxeY7cOw6n\nSaH4Tx2Ag6P2d6uFEOJ6uy4eZ/4f+9h+uZBMh6Z4lpxjqLMTL3ToQ1e3FlV6T7MEe3x8PC+99BIG\ng4FJkybxyiuv3PSaZ555hq1bt1K3bl2WLl1KQEBAlYpTjAp/rP2Vsx9F470vhgb6HI75heIyJYzO\nT/ahVp3q+UiwEKLmOZ2XwQdHE4nNyCCtVlPql2TSp55CZKsuBHv7V3j0cJW6HUo5CgsLlZYtWyrp\n6emKXq9XAgMDleTk5BteEx0drYSEhCiKoijJyclKly5dbvlet/soo8GoHF55QNne61XlZO12Slot\nH2V79xeUX5fsUQx6Q3nlVVvbt2/XugSrIdeijFyLMrZ2LS4XFyhzf/tR8f9hiVLr+28Vh/ivlYAf\nlijzD29XCkqKy/29d4jpWyr3W8bevXvx9fXFy8sLBwcHJkyYwMaNG294zaZNm5g4cSIAAQEBlJSU\nkJ6eXu43E2OJkdTPfyYh8EXS67am3uSHAShcthqv4lMEHZhH5ym9bPaAioSEBK1LsBpyLcrItShj\na9fCqbYjL3cazKEhUygeMo4vO7TBxcGB6afTqL89ntbff84LyXGcvZJtks8rt1Gdnp5OixZlfSFv\nb++bLvitXpOeno63t/dN73fok51kfx5N+19jcKztDD1DKVgdS7txfrSUWeZCiBrA3t6eh1p256GW\n3QHYn/EnHx7LY8XFDD7M3I1HyXmGNKrHC+37EOhRtQGE5QZ7RfdmKn/r/9zu9zm+NBWlTyj5322h\nbXAn2lawSCGEsFU9PFqy2qMlAOn5WXx4dAfrLl2i5y8p1CvZUbU3La9Ps2PHDmXUqFGlX7/33nvK\n7Nmzb3jN5MmTlW+//bb0a19fXyU9Pf2m92rTpo0CyA/5IT/kh/yoxI82bdpUusde7oq9R48epKam\ncubMGTw9Pfnmm2+Iioq64TUjR45k1apVhIWFkZycTK1atfDyunnk7fHjx8v7KCGEECZSbrA7Ojqy\naNEihg0bhtFoZOLEiXTr1q003MPDwwkNDWX79u34+vpSt25dvvjiC4sULoQQ4tYs9oCSEEIIyzD5\nfsL4+Hj8/Pzo1KkTc+fOveVrnnnmGXx9fenWrRsHDx40dQlW407XYuXKlfj7++Pn50dgYCBJSUka\nVGl+Ffk7AbB//34cHBxYu3atBauzrIpci4SEBHr27EnXrl0ZMGCAhSu0nDtdi/PnzzN48GB8fX3p\n0KHDTW1gWzJ58mSaNGmCn5/fbV9TqdysdFe+HKZ8oKm6q8i12Lt3r5Kbm6soiqJs3rxZ6dq1qxal\nmlVFroOiKEpJSYkycOBAZdSoUUp0dLQGlZpfRa7FuXPnFF9fX+XChQuKoiiKTqfTolSzq8i1mD59\nuvLqq68qiqIoly5dUlxcXJTCwkItyjW7HTt2KMnJyUrnzp1v+euVzU2TrtjN9UBTdVSRa9GzZ08a\nNlTnxN9///2cOXNGi1LNqiLXAeDjjz8mLCyMxo0ba1ClZVTkWqxZs4YJEybg6ekJgJubmxalml1F\nrkWLFi3Izc0FIDc3l8aNG1O3bl0tyjW7fv364erqettfr2xumjTYb/ewUmVfYwsq+98ZFRVFSEiI\nJUqzqIpchzNnzhAbG0tERARQ8ecnqpuKXIujR49y9uxZevfujb+/P59//rmly7SIilyLJ554gt9+\n+43mzZvTpUsXFixYYOkyrUZl88SkIxJN/UBTdVaZ/6aEhASWLVvGrl27zFiRNipyHZ577jnefffd\n0mFHf//7YSsqci0MBgOpqals27aNK1eu0KtXL3r37o2vr68FKrScilyLOXPm0LVrVxISEjhx4gQP\nPPAAhw4dKv1Xbk1Tmdw06Yrd29ubtLS00q/T0tJu+C5zq9fcbvxAdVeRawGQkpLClClTiIuLK/ef\nYtVVRa5DUlISDz/8MK1atSImJobIyEji4uIsXarZVeRa3HPPPQwdOpR69erh7u7OgAEDSElJsXSp\nZleRa5GYmMj48eMBaNOmDa1ateL333+3aJ3WotK5acobAAUFBYqPj4+Snp6uFBcXK4GBgUpSUtJN\nNwHGjh2rKIqiJCUlKf7+/qYswWpU5FqcPn1aadOmjbJnzx6NqjS/ilyH6z322GNKTEyMBSu0nIpc\ni+TkZGXw4MFKSUmJkp+fr3Tq1Ek5ePCgRhWbT0WuRWRkpDJz5kxFURTl/PnzStOmTUtvKtuiU6dO\nlXvztDK5adJWjDzQVKYi1+Ktt94iKyurtLdcu3Zt9u3bp2XZJleR61BTVORaBAQEMHz4cPz9/dHr\n9UyZMoWuXbtqXLnpVeRavPHGG/zrX/+iU6dOGAwGZs+eXXpT2dY88sgj/PTTT2RkZNCiRQtmzZqF\nXq8Hqpab8oCSEELYGNsceC6EEDWYBLsQQtgYCXYhhLAxEuxCCGFjJNiFEMLGSLALIYSNkWAXQggb\nI8EuhBA25v8DAAQCZcrB/UMAAAAASUVORK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x2769cd0>"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "From the graph it can be inferred that, in the region where Raoults law is obeyed by A, the Henrys law is obeyed by B, and vice versa\n",
        " For component A, Ka = 0.245000 bar\n",
        " For component B, Kb = 0.230000 bar\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 7.12"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from numpy import array\n",
      "\n",
      "\n",
      "# Variables\n",
      "xa = array([0, 0.2, 0.4, 0.6, 0.8, 1.0]);\n",
      "Pa_bar = [0 ,0.049, 0.134, 0.243, 0.355, 0.457];\n",
      "Pb_bar = [0.386 ,0.288, 0.187, 0.108, 0.046, 0];\n",
      "\n",
      "# Calculations and Results\n",
      "#To calculate activity and activity coeffecient of chloroform\n",
      "xb = 1-xa;\n",
      "Pbo = 0.386; \t\t\t#vapour pressure of pure chloroform\n",
      "#(a). Based on standard state as per Lewis-Randall rule\n",
      "\n",
      "print 'Based on Lewis Randall Rule'\n",
      "print '   Activity          Activity coeffecient'\n",
      "a = [0,0,0,0,0,0]\n",
      "ac = [0,0,0,0,0,0]\n",
      "for i in range(6):\n",
      "    a[i] = Pb_bar[i]/Pbo;\n",
      "    print '    %f'%a[i],\n",
      "    if(xb[i]==0):\n",
      "        print '         Not defined',\n",
      "    else:\n",
      "        ac[i] = a[i]/xb[i];\n",
      "        print '          %f'%ac[i]\n",
      "\n",
      "#(b). Based on Henry's Law \n",
      "Kb = 0.217; \t\t\t#bar (From Example 7.11 Page no. 276)\n",
      "\n",
      "print '\\n\\n Based on Henrys Law'\n",
      "print '   Activity         Activity coeffecient'\n",
      "for i in range(6):\n",
      "    a[i] = Pb_bar[i]/Kb;\n",
      "    print '    %f'%a[i],\n",
      "    if(xb[i]==0):\n",
      "        print '         Not defined',\n",
      "    else:\n",
      "        ac[i] = a[i]/xb[i];\n",
      "        print '           %f'%ac[i]\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Based on Lewis Randall Rule\n",
        "   Activity          Activity coeffecient\n",
        "    1.000000           1.000000\n",
        "    0.746114           0.932642\n",
        "    0.484456           0.807427\n",
        "    0.279793           0.699482\n",
        "    0.119171           0.595855\n",
        "    0.000000          Not defined \n",
        "\n",
        " Based on Henrys Law\n",
        "   Activity         Activity coeffecient\n",
        "    1.778802            1.778802\n",
        "    1.327189            1.658986\n",
        "    0.861751            1.436252\n",
        "    0.497696            1.244240\n",
        "    0.211982            1.059908\n",
        "    0.000000          Not defined\n"
       ]
      }
     ],
     "prompt_number": 23
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 7.13"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "P = 20.; \t\t\t#pressure in bar\n",
      "\n",
      "# Calculations and Results\n",
      "def f1(x1):\n",
      "    y = (50*x1)-(80*x1**2)+(40*x1**3)\n",
      "    return y\n",
      "\n",
      "#To determine fugacity fugacity coeffecient Henry's Law constant and activity coeffecient\n",
      "\n",
      "#(a)\n",
      "#Fugacity of component in solution becomes fugacity of pure component when mole fraction approaches 1 i.e. \n",
      "x1 = 1.;\n",
      "f1_pure = f1(x1);\n",
      "print '(a). Fugacity f1 of pure component 1 is %i bar'%f1_pure\n",
      "\n",
      "#(b)\n",
      "phi = f1_pure/P;\n",
      "print ' (b). Fugacity coeffecient is %f'%phi\n",
      "\n",
      "#(c)\n",
      "#Henry's Law constant is lim (f1/x1)and x1 tends to 0 \n",
      "x1 = 0;\n",
      "K1 = 50 - (80*x1) + (40*x1**2);\n",
      "print ' (c). Henrys Law constant is %i bar'%K1\n",
      "\n",
      "#(d)\n",
      "print ' (d). This subpart is theoretical and does not involve any numerical computation'\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a). Fugacity f1 of pure component 1 is 10 bar\n",
        " (b). Fugacity coeffecient is 0.500000\n",
        " (c). Henrys Law constant is 50 bar\n",
        " (d). This subpart is theoretical and does not involve any numerical computation\n"
       ]
      }
     ],
     "prompt_number": 24
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 7.17"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "H1_pure = 400.; \t\t\t#enthalpy of pure liquid 1 at 298 K and 1 bar (J/mol)\n",
      "H2_pure = 600.; \t\t\t#enthalpy of pure liquid 2 (J/mol)\n",
      "x1 = 0.;\n",
      "\n",
      "# Calculations\n",
      "delH1_inf = 20*((1-x1)**2)*(2*x1+1);\n",
      "H1_inf = H1_pure + delH1_inf; \t\t\t#(J/mol)\n",
      "\n",
      "#For infinite dilution of 2, x1 = 1 and delH2_inf = H2_bar\n",
      "x1 = 1.;\n",
      "delH2_inf = 40.*x1**3;\n",
      "H2_inf = delH2_inf + H2_pure; \t\t\t#(J/mol)\n",
      "\n",
      "# Results\n",
      "print 'Enthalpy at infinite dilution for component 1 is %i J/mol'%H1_inf\n",
      "print ' Enthalpy at infinite dilution for component 2 is %i J/mol'%H2_inf\n",
      "\n",
      " \n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Enthalpy at infinite dilution for component 1 is 420 J/mol\n",
        " Enthalpy at infinite dilution for component 2 is 640 J/mol\n"
       ]
      }
     ],
     "prompt_number": 25
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 7.19 "
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "# Variables\n",
      "R = 8.314; \t\t\t#ideal gas constant\n",
      "n1 = 100.; \t\t\t#moles of nitrogen\n",
      "n2 = 100.; \t\t\t#moles of oxygen\n",
      "\n",
      "# Calculations\n",
      "#To determine the change in entropy of the contents of the vessel\n",
      "x1 = n1/(n1+n2);\n",
      "x2 = n2/(n1+n2);\n",
      "import math\n",
      "\n",
      "#Using eq. 7.122 (Page no. 292)\n",
      "S = -R*(x1*math.log (x1) + x2*math.log (x2));\n",
      "S_tot = S*(n1+n2);\n",
      "\n",
      "# Results\n",
      "print 'Change in entropy of components are %f J/K'%S_tot\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Change in entropy of components are 1152.565132 J/K\n"
       ]
      }
     ],
     "prompt_number": 26
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 7.20"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "Hf = -408.610; \t\t\t#heat of formation (kJ)\n",
      "#For reaction 2\n",
      "#LiCl + 12H2O --> LiCl(12H2O)\n",
      "H_sol = -33.614; \t\t\t#heat of solution (kJ)\n",
      "\n",
      "#To determine heat of formation of LiCl in 12 moles of water\n",
      "#Adding reaction 1 and 2% we get\n",
      "\n",
      "# Calculations\n",
      "#Li + 1/2Cl2 + 12H2O --> LiCl(12H2O)\n",
      "H_form = Hf+H_sol;\n",
      "\n",
      "# Results\n",
      "print 'Heat of formation of LiCl in 12 moles of water is %f kJ'%H_form\n",
      "\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Heat of formation of LiCl in 12 moles of water is -442.224000 kJ\n"
       ]
      }
     ],
     "prompt_number": 27
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 7.21"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "R = 8.314; \t\t\t#ideal gas constant\n",
      "n1 = 3.; \t\t\t#moles of hydrogen\n",
      "n2 = 1.; \t\t\t#moles of nitrogen\n",
      "T = 298.; \t\t\t#temperature in K\n",
      "P1 = 1.; \t\t\t#pressure of hydrogen in bar\n",
      "P2 = 3.; \t\t\t#pressure of nitrogen in bar\n",
      "import math\n",
      "\n",
      "# Calculations\n",
      "#To calculate the free energy of mixing\n",
      "V1 = (n1*R*T)/(P1*10**5); \t\t\t#volume occupied by hydrogen\n",
      "V2 = (n2*R*T)/(P2*10**5); \t\t\t#volume occupied by nitrogen\n",
      "V = V1+V2; \t\t\t#total volume occupied\n",
      "P = ((n1+n2)*R*T)/(V*10**5); \t\t\t#final pressure attained by mixture (bar)\n",
      "G1 = R*T*(n1*math.log(P/P1) + n2*math.log(P/P2));\n",
      "\n",
      "#For step 2, using eq. 7.121 (Page no. 292)\n",
      "x1 = n1/(n1+n2);\n",
      "x2 = n2/(n1+n2);\n",
      "G2 = (n1+n2)*R*T*(x1*math.log (x1) + x2*math.log (x2));\n",
      "G = G1+G2; \t\t\t#free energy in J\n",
      "\n",
      "# Results\n",
      "print 'The free energy of mixing when partition is removed is %f kJ'%(G/1000)\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The free energy of mixing when partition is removed is -6.487935 kJ\n"
       ]
      }
     ],
     "prompt_number": 28
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 7.22"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "C_water = 4.18*10**3; \t\t\t#heat capacity of water (J/kg K)\n",
      "C_ethanol = 2.58*10**3; \t\t#heat capacity of ethanol (J/kg K)\n",
      "G1 = -758.; \t\t\t#heat of mixing 20 mol percent ethanol water at 298 K(J/mol)\n",
      "G2 = -415.; \t\t\t#heat of mixing 20 mol percent ethanol water at 323 K (J/mol)\n",
      "n_wat = 0.8; \t\t\t#moles of water\n",
      "n_eth = 0.2; \t\t\t#moles of ethanol\n",
      "T1 = 323.; \t\t\t#initial temperature in K\n",
      "T2 = 298.; \t\t\t#final temperature in K\n",
      "\n",
      "# Calculations\n",
      "#Step 1: Water is cooled from 323 K t0 298 K\n",
      "H1 = n_wat*18*C_water*(T2-T1)/1000; \t\t\t#(J)\n",
      "\n",
      "#Step 2: Ethanol is cooled from 323 to 298 K\n",
      "H2 = n_eth*46*C_ethanol*(T2-T1)/1000; \t\t\t#(J)\n",
      "\n",
      "#Step 3: 0.8 mol water and 0.2 mol ethanol are mixed at 298 K\n",
      "H3 = G1; \t\t\t#(J)\n",
      "\n",
      "#Step 4: \n",
      "H = G2;\n",
      "Cpm = (H-H1-H2-H3)/(T1-T2);\n",
      "\n",
      "# Results\n",
      "print 'Mean heat capacity of solution is %f J/mol K'%Cpm\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Mean heat capacity of solution is 97.648000 J/mol K\n"
       ]
      }
     ],
     "prompt_number": 29
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 7.23"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "To = 298.; \t\t\t#initial temperature (K)\n",
      "Cpm = 97.65; \t\t\t#Mean heat capacity of solution (J/mol K)\n",
      "Hs = -758.; \t\t\t#heat of mixing (J/mol)\n",
      "H = 0.;\n",
      "\n",
      "# Calculations\n",
      "T = (H-Hs)/Cpm + To;\n",
      "\n",
      "# Results\n",
      "print 'The final temperature attained by the mixing is %f K'%T\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The final temperature attained by the mixing is 305.762417 K\n"
       ]
      }
     ],
     "prompt_number": 30
    }
   ],
   "metadata": {}
  }
 ]
}