summaryrefslogtreecommitdiff
path: root/A_TEXTBOOK_OF_ELECTRICAL_TECHNOLOGY_(VOL-III)_by_B.L.Thareja/chapter47.ipynb
blob: c29e8c0a0721216a7c5b1c9c1b3148f3df9ce290 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# CHAPTER 47 : ELECTRIC HEATING\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## EXAMPLE 47.1 , PAGE NO :- 1841"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Length of wire = 16.07 m.\n",
      "Diameter of wire = 2.72 mm.\n"
     ]
    }
   ],
   "source": [
    "'''A resistance oven employing nichrome wire is to be operated from 220 V single-phase supply and is to be rated at 16 kW.\n",
    "If the temperature of the element is to be limited to 1,170°C and average temperature of the charge is 500°C, find the\n",
    "diameter and length of the element wire.\n",
    "Radiating efficiency = 0.57, Emmissivity=0.9, Specific resistance of nichrome=(109e–8)ohm-m.'''\n",
    "\n",
    "\n",
    "P = 16000.0         #W     (output power)\n",
    "V = 220.0           #V     (applied voltage)\n",
    "rho = 109.0e-8      #ohm-m (resistivity)\n",
    "e = 0.9             #      (Emmisivity)\n",
    "K = 0.57            #      (Radiating efficiency)\n",
    "T1 = 1170.0 + 273.0 #K     (Temp of hot body)\n",
    "T2 = 500.0 + 273.0  #K     (Temp of cold body)\n",
    "\n",
    "#Now , l/d^2 = pi*V^2/4*rho*P = a .Therefore a is\n",
    "a = 3.14*(V**2)/(4*rho*P)        # (a = l/d^2) ------ 1\n",
    " \n",
    "#Using Stefan's law of radiation \n",
    "H = 5.72*e*K*((T1/100)**4-(T2/100)**4)    #W/m^2\n",
    "\n",
    "#Total heat dissipated = electrical power input\n",
    "# (pi*d)*l*H = P . Therefore ,let b = l*d. So,\n",
    "b = P/(H*3.14)\n",
    "b2 = b**2      #(b2 = l^2*d^2)------------------------ 2\n",
    "\n",
    "#Multiplying 1 and 2.\n",
    "l3 = a*b2    # ( = l^3)\n",
    "l = l3**(1/3.0)    #m   (length)\n",
    "d = b/l*1000            #mm   (diameter)\n",
    "\n",
    "print \"Length of wire =\",round(l,2),\"m.\"\n",
    "print \"Diameter of wire =\",round(d,2),\"mm.\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## EXAMPLE 47.2 , PAGE NO :- 1841"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Width of strip = 7.4 mm.\n"
     ]
    }
   ],
   "source": [
    "'''A 30-kW, 3-phase, 400-V resistance oven is to employ nickel-chrome strip 0.254 mm thick for the three star-connected heating\n",
    "elements.If the wire temperature is to be 1,100°C and that of the charge to be 700°C, estimate a suitable width for the strip.\n",
    "Assume emissivity = 0.9 and radiating efficiency to be 0.5 and resistivity of the strip material is 101.6e-8 ohm- m.What would be\n",
    "the temperature of the wire if the charge were cold ?'''\n",
    "\n",
    "import math as m\n",
    "\n",
    "P = 30.0*1000 *(1/3.0)     #W      (Power/phase)\n",
    "V = 400.0/m.sqrt(3)        #V      (Phase voltage)\n",
    "rho = 101.6e-8             #ohm-m  (resistivity)\n",
    "e = 0.9                    #       (emmisivity)\n",
    "K = 0.5                    #       (radiating efficiency)\n",
    "t = 0.254e-3               #m      (thickness of strip)\n",
    "T1 = 1100.0 + 273          #K      (Temp. of hot wire)\n",
    "T2 = 700.0 + 273           #K      (Temp. of charge)   \n",
    "R = V*V/P     #ohm       (Resistance  =>    P = V^2/R)\n",
    "\n",
    "# R = rho*l/(w*t)   l/w = R*t/rho = a.Therefore a is\n",
    "a = R*t/rho      #(=l/w)------------------------------------ 1\n",
    "\n",
    "#Using stefan's law\n",
    "H = 5.72*e*K*((T1/100)**4-(T2/100)**4)    #W/m^2\n",
    "\n",
    "#Surface area of strip = 2*w*l .\n",
    "#Total Heat dissipated = electrical power => wl*2H = P . Let b = wl\n",
    "b = P/(2*H)   #(=wl)----------------------------------------- 2\n",
    "\n",
    "#Dividing 1 by 2\n",
    "w2 = b/a      #(=w*w)\n",
    "w = m.sqrt(w2)*1000    #mm     (width)\n",
    "print \"Width of strip =\",round(w,2),\"mm.\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## EXAMPLE 47.3 , PAGE NO :- 1842"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Loading in kW =  13.51 kW.\n",
      "Efficency of Tank = 87.41 %\n"
     ]
    }
   ],
   "source": [
    "'''A cubic water tank has surface area of 6.0 m^2 and is filled to 90% capacity six times daily. The water is heated from 20°C \n",
    "to 65°C.The losses per square metre of tank surface per 1°C temperature difference are 6.3 W. Find the loading in kW and the\n",
    "efficiency of the tank.Assume specific heat of water = 4,200 J/kg/°C and one kWh = 3.6 MJ.'''\n",
    "\n",
    "import math as m\n",
    "sa = 6.0           #m^2      (surface area)\n",
    "T2 = 65.0          #*C       (final temp)\n",
    "T1 = 20.0          #*C       (initial temp)\n",
    "loss = 6.3         #W/*C/m^2 (loss per square metre per 1*C)\n",
    "s = 4200.0         #J/Kg/*C  (Specific heat)\n",
    "\n",
    "#Now, sa = 6*l^2\n",
    "l = m.sqrt(sa/6)   #m\n",
    "\n",
    "#Volume = l^3\n",
    "V = l**3           #m^3\n",
    "\n",
    "#Volume of water to be heated daily is\n",
    "V2 = 6*V*0.9       #m^3\n",
    "\n",
    "#Since 1m^3 = 1000 kg  =>   mass of water to be heated is\n",
    "mass = V2*1000.0   #kg\n",
    "\n",
    "#Heat required to raise temp =\n",
    "H = mass*s*(T2-T1)  #MJ\n",
    "H = H/(3.6*10e+5)           #kWh\n",
    "\n",
    "#Daily loss from surface\n",
    "L = 6*loss*(T2-T1)*(24.0/1000)    #kWh\n",
    "\n",
    "#Total energy required\n",
    "Tot = L + H        #kWh    \n",
    "#(i) Loading in KW is\n",
    "load = Tot/24      #kW\n",
    "\n",
    "#(ii)Efficiency of tank is\n",
    "eff = (H/Tot)*100.0    #     (% efficency)\n",
    "print \"Loading in kW = \",round(load,2),\"kW.\"\n",
    "print \"Efficency of Tank =\",round(eff,2),\"%\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## EXAMPLE 47.4 , PAGE NO :- 1844"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Power factor = 0.9487\n",
      "Power drawn from supply = 900.0 kW.\n",
      "Time required for melting steel = 40.0 minutes. and  46.0 seconds.\n"
     ]
    }
   ],
   "source": [
    "'''A 4-phase electric arc furnace has the following data :\n",
    "Current drawn = 5000 A ; Arc voltage = 50 V\n",
    "Resistance of transformer referred to secondary = 0.002 ohm\n",
    "Resistance of transformer referred to secondary = 0.004 ohm\n",
    "(i) Calculate the power factor and kW drawn from the supply.\n",
    "(ii) If the overall efficiency of the furnace is 65%, find the time required to melt 2 tonnes of steel if\n",
    "latent heat of steel = 8.89 kcal/kg, specific heat of steel = 0.12, melting point of steel = 1370°C and\n",
    "initial temperature of steel = 20°C.'''\n",
    "\n",
    "import math as m\n",
    "\n",
    "I = 5000.0        #A       (current drawn)\n",
    "V = 50.0          #V       (Arc Voltage) \n",
    "Rs = 0.002        #ohm     (transformer resistance on secondary)\n",
    "Xs = 0.004        #ohm     (transformer reactance on secondary)\n",
    "T2 = 1370.0       #*C      (final temp)\n",
    "T1 = 20.0         #*C      (initial temp)\n",
    "\n",
    "# Voltage drop due to resistance =\n",
    "Vr = I*Rs         #V\n",
    "\n",
    "# Voltage drop due to reactance =\n",
    "Vx = I*Xs         #V\n",
    "\n",
    "#Total Voltage is (Using vector sum)\n",
    "V_tot = m.sqrt((V+Vr)**2 + Vx**2)       #V\n",
    "\n",
    "#(i) Supply power factor is\n",
    "pf = (V+Vr)/V_tot\n",
    "\n",
    "#Total Power drawn =>  P = 3*VI*(power factor)\n",
    "P = 3*V_tot*I*pf/1000        #kW\n",
    "\n",
    "print \"Power factor =\",round(pf,4)\n",
    "print \"Power drawn from supply =\",round(P,2),\"kW.\"\n",
    "#Energy required to melt 2 tonnes of steel\n",
    "m = 2000.0     #kg\n",
    "s = 0.12       #           (specific heat of steel)\n",
    "L = 8.89       #kcal/kg    (latent heat of steel)\n",
    "\n",
    "enrgy = m*s*(T2-T1) + m*L      #kcal\n",
    "enrgy = enrgy/860.0            #kWh\n",
    "\n",
    "#Utilised power\n",
    "P = 0.65*P               #kW\n",
    "\n",
    "#Time required for melting steel\n",
    "Time = enrgy/P           #hr\n",
    "Time = Time*60           #min\n",
    "Sec = (round(Time,2) - round(Time,-1) )*60  #sec\n",
    "\n",
    "print \"Time required for melting steel =\",round(Time,-1),\"minutes. and \",round(Sec),\"seconds.\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## EXAMPLE 47.5 , PAGE  NO :- 1845"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "#Total KVA taken from supply line = 2145.63 KVA .\n"
     ]
    }
   ],
   "source": [
    "'''If a 3-phase arc furnace is to melt 10 tonne steel in 2 hours, estimate the average input to the furnace if overall\n",
    "efficiency is 50%. If the current input is 9,000 A with the above kW input and the resistance and reactance of furnace leads\n",
    "(including transformer) are 0.003 ohm and 0.005 ohm respectively, estimate the arc voltage and total kVA taken from the supply\n",
    "Specific heat of steel = 444 J /kg/°C ,Latent heat of fusion of steel = 37.25 kJ/kg , Melting point of steel = 1,370 °C.'''\n",
    "\n",
    "from sympy import Symbol,solve,Eq,sqrt\n",
    "import math as m\n",
    "\n",
    "mass = 10000.0        #kg       (mass in kg)\n",
    "t = 2.0               #hr       (time taken to melt)\n",
    "eff = 50.0            #%        (overall efficiency)\n",
    "I = 9000.0            #A        (current input)\n",
    "Rs = 0.003            #ohm      (secondary resistance)\n",
    "Xs = 0.005            #ohm      (secondary reactance)\n",
    "s = 444.0             #J/kg/*C  (specific heat of steel)\n",
    "L = 37250             #J/kg    (latent heat of fusion)\n",
    "T2 = 1370.0           #*C       (final temp)\n",
    "T1 = 20.0             #*C       (initial temp)\n",
    "\n",
    "#Energy required to melt 10 tonnes of steel\n",
    "\n",
    "enrgy = mass*s*(T2-T1) + mass*L   #J\n",
    "enrgy = enrgy/(1000*3600)     #kWh\n",
    "\n",
    "#Avg output power = energy/time\n",
    "P = enrgy/t        #kW\n",
    "#Avg input power =\n",
    "Pin = P/eff*100\n",
    "\n",
    "#Voltage drop due to resistance\n",
    "Vr = I*Rs          #V\n",
    "#Voltage drop due to reactance\n",
    "Vx = I*Xs          #V\n",
    "\n",
    "#Now,Let Va is arc drop voltage\n",
    "Va = Symbol('Va')    #V\n",
    "Vt = sqrt((Va+Vr)**2 + Vx**2)  \n",
    "pf = (Va+Vr)/Vt     \n",
    "#Total power input  = 3*(Vt*It*pf)\n",
    "\n",
    "eq = Eq(Pin*1000,3*Vt*I*pf)\n",
    "Va = solve(eq)     #V\n",
    "\n",
    "Va1 = Va[0]\n",
    "Vt = sqrt((Va1+Vr)**2 + Vx**2)\n",
    "\n",
    "#Total KVA taken from supply line =\n",
    "power = 3*Vt*I/1000\n",
    "\n",
    "print \"#Total KVA taken from supply line =\",round(power,2),\"KVA .\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": true
   },
   "source": [
    "## EXAMPLE 47.6 , PAGE NO :- 1850"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Efficiency of induction furnace =  59.35 %.\n"
     ]
    }
   ],
   "source": [
    "'''Determine the efficiency of a high-frequency induction furnace which takes 10 minutes to melt 2 kg of a aluminium initially \n",
    "at a temperature of 20°C. The power drawn by the furnace is 5 kW, specific heat of aluminium = 0.212, melting point of \n",
    "aluminium = 660° C and latent heat of fusion of aluminium. = 77 kcal/kg.'''\n",
    "\n",
    "m = 2.0     #kg                (mass of alluminium)\n",
    "L = 77.0    #kcal/kg           (Latent heat of fusion)\n",
    "T2 = 660.0  #*C              (final temp)\n",
    "T1 = 20.0   #*C              (initial temp)\n",
    "s = 0.212   #                (specific heat of alluminium)\n",
    "Pin = 5.0   #kW              (input power)\n",
    "#Heat required to melt alluminium\n",
    "H1 = m*L     #kcal\n",
    "#Heat required to raise the temperature\n",
    "H2 = m*s*(T2 - T1)   #kcal\n",
    "#Total heat\n",
    "heat_tot = H1 + H2   #kcal\n",
    "#Heat required per hour\n",
    "enrgy = heat_tot/(10.0/60)  #kcal\n",
    "#Power delivered to alluminium\n",
    "Power = enrgy/860     #kW\n",
    "\n",
    "eff = Power/Pin*100   #(% efficiency)\n",
    "\n",
    "print \"Efficiency of induction furnace = \",round(eff,2),\"%.\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## EXAMPLE 47.7 , PAGE NO :- 1850"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Power absorbed = 577.0 kW.\n",
      "power factor = 0.83\n"
     ]
    }
   ],
   "source": [
    "'''A low-frequency induction furnace has a secondary voltage of 20V and takes 600 kW at 0.6 p.f. when the hearth is full. If the\n",
    "secondary voltage is kept constant, determine the power absorbed and the p.f. when the hearth is half-full. Assume that the\n",
    "resistance of the secondary circuit is doubled but the reactance remains the same.'''\n",
    "\n",
    "import math as m\n",
    "\n",
    "V = 20.0      #V   (secondary voltage)\n",
    "P = 600*1000  #W   (Input Power)\n",
    "pf = 0.6      #    (power factor)\n",
    "\n",
    "#Inital secondary current using P = VI*pf\n",
    "I = P/(V*pf)  #A   (secondary current)\n",
    "\n",
    "#Now, pf = cosQ , .'. sinQ = sqrt(1-pf^2)\n",
    "Vr = V*pf              #V   (Voltage across resistance)\n",
    "Vx = V*m.sqrt(1-pf**2) #V   (Voltage across reactance)\n",
    "\n",
    "#As, Vr = I*R and Vx = I*X\n",
    "\n",
    "R = Vr/I    #ohm\n",
    "X = Vx/I    #ohm\n",
    "\n",
    "#When hearth is half-full\n",
    "R2 = 2*R\n",
    "X2 = X\n",
    "pf = R2/m.sqrt(R2**2 + X2**2)  #(new power factor)\n",
    "\n",
    "Vr = V*pf      #V   (Voltage across resistance)\n",
    "#As, Vr = I*R\n",
    "I = Vr/R2       #A\n",
    "\n",
    "power = V*I*pf/1000       #kW\n",
    "\n",
    "print \"Power absorbed =\",round(power),\"kW.\"\n",
    "print \"power factor =\",round(pf,2)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## EXAMPLE 47.8 , PAGE NO :- 1851"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Total furnace input = 119.37 kWh .\n"
     ]
    }
   ],
   "source": [
    "'''Estimate the energy required to melt 0.5 tonne of brass in a single-phase induction furnace. If the melt is to be carried out\n",
    "in 0.5 hour, what must be the average power input to the furnace?\n",
    "Specific heat of brass = 0.094\n",
    "Latent heat of fusion of brass = 39 kilocal/kg\n",
    "Melting point of brass = 920°C\n",
    "Furnace efficiency = 60.2%\n",
    "The temperature of the cold charge may be taken as 20°C.'''\n",
    "\n",
    "m = 0.5*1000      #kg    (mass of brass)\n",
    "s = 0.094    #      (specific heat)\n",
    "T2 = 920.0   #*C    (final temp)\n",
    "T1 = 20.0    #*C    (initial temp)\n",
    "L = 39.0     #kcal/kg(Latent heat of fusion)\n",
    "eff = 60.2   #       (% efficiency)\n",
    "\n",
    "#Total amount of heat req to melt 0.5 kg brass\n",
    "H = m*L + m*s*(T2-T1)    #kcal\n",
    "H = H/860    #kWh\n",
    "H_tot = H/(eff)*100    #kWh   (input energy required)\n",
    "\n",
    "print \"Total furnace input =\",round(H_tot,2),\"kWh .\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## EXAMPLE 47.9 , PAGE NO :- 1851"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "height for maximum heat =  0.75 *H.\n"
     ]
    }
   ],
   "source": [
    "'''A low-frequency induction furnace whose secondary voltage is maintained constant at 10 V, takes 400 kW at 0.6 p.f. when the\n",
    "hearth is full.Assuming the resistance of the secondary circuit to vary inversely as the height of the charge and reactance to \n",
    "remain constant,find the height upto which the hearth should be filled to obtain maximum heat.'''\n",
    "\n",
    "\n",
    "import math as m\n",
    "V2 = 10.0    #V       (secondary voltage)\n",
    "P = 400.0*1000 #kW    (power)\n",
    "pf = 0.6       #      (power factor)\n",
    "\n",
    "\n",
    "#Secondary current is (Using P = VI*cosQ)\n",
    "I = P/(V2*pf)    #A\n",
    "\n",
    "#Impedance of secondary circuit is\n",
    "Z = V2/I        #ohm\n",
    "#Now, R = Z*cosQ    X = Z*sinQ\n",
    "R = Z*pf                    #ohm   (resistance)\n",
    "X = Z*m.sqrt(1-pf**2)       #ohm   (reactance)\n",
    "\n",
    "#Let height of charge be 'x' times of the full hearth h = x*H\n",
    "#Resistance varies inersely as height .Therefore,\n",
    "# R' = R/x\n",
    "\n",
    "#Now ,for max heat resistance should be equal to reactance.Therefore,\n",
    "x = R/X\n",
    "\n",
    "print \"height for maximum heat = \",round(x,2),\"*H.\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## EXAMPLE 47.10 , PAGE NO :- 1853"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Voltage = 798.04 V.\n"
     ]
    }
   ],
   "source": [
    "'''A slab of insulating material 150 cm^2 in area and 1 cm thick is to be heated by dielectric heating. The power required is \n",
    "400 W at 30 MHz.Material has relative permittivity of 5 and p.f. of 0.05. Determine the necessary voltage. Absolute\n",
    "permittivity = 8.854e - 12 F/m.'''\n",
    "\n",
    "import math as m\n",
    "\n",
    "P = 400.0    #W         (power)\n",
    "f = 30.0e+6  #Hz        (frequency)\n",
    "A = 150.0e-4 #m^2       (area)\n",
    "d = 1.0e-2   #m         (thickness)\n",
    "er = 5.0     #          (relative permitivity)\n",
    "e0 = 8.89e-12#F/m       (absolute permitivity)\n",
    "pf = 0.05    #          (power factor) \n",
    "#Capacitance\n",
    "C = (A/d)*(er*e0)     #F\n",
    "\n",
    "#Now,   P = (2*pi*f)*(C*V^2)*pf .Therefore V is\n",
    "V = m.sqrt(P/(2*3.14*f*C*pf))    #V\n",
    "print \"Voltage =\",round(V,2),\"V.\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## EXAMPLE 47.11 , PAGE NO :- 1853"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Voltage =  846.45 V.\n",
      "Current through material = 9.45 A.\n",
      "Frequency =  58.49 MHz.\n"
     ]
    }
   ],
   "source": [
    "'''An insulating material 2 cm thick and 200 cm^2 in area is to be heated by dielectric heating. The material has relative \n",
    "permitivity of 5 and power factor of 0.05.Power required is 400 W and frequency of 40 MHz is to be used. Determine the necessary\n",
    "voltage and the current that will flow through the material.If the voltage were to be limited to 700 V, what will be the \n",
    "frequency to get the same loss? '''\n",
    "\n",
    "import math as m\n",
    "\n",
    "d = 2.0e-2      #m      (Thickness)\n",
    "A = 200e-4      #m^2    (Area)\n",
    "er = 5          #       (relative permitivity)\n",
    "pf = 0.05       #       (power factor)\n",
    "f = 40.0e+6     #Hz     (frequency)\n",
    "P = 400.0       #W      (power)\n",
    "e0 = 8.89e-12   #       (absolute permitivity)\n",
    "\n",
    "C = (A/d)*(e0*er)   #F   (Capacitance)\n",
    "\n",
    "#Now,  P = 2*pi*f*C*V^2*pf\n",
    "V = m.sqrt(P/(2*3.14*f*C*pf))     #V\n",
    "\n",
    "#Also, P = VI*cosQ .Therefore,current through material\n",
    "I = P/(V*pf)           #A\n",
    "\n",
    "#Heat produced is propotional to V^2*f.  (V2/V1)^2 = (f1/f2)\n",
    "f2 = f*(V/700)**2   #Hz\n",
    "f2 = f2/(10e+5)     #MHz \n",
    "\n",
    "print \"Voltage = \",round(V,2),\"V.\"\n",
    "print \"Current through material =\",round(I,2),\"A.\"\n",
    "print \"Frequency = \",round(f2,2),\"MHz.\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## EXAMPLE 47.12 , PAGE NO :- 1853"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Power input = 750.0 W .\n"
     ]
    }
   ],
   "source": [
    "'''A plywood board of 0.5*0.25*0.02 metre is to be heated from 25 to 125°C in 10 minutes by dielectric heating employing a\n",
    "frequency of 30 MHz. Determine the power required in this heating process. Assume specific heat of wood 1500/J/kg/°C; \n",
    "weight of wood 600 kg/m3 and efficiency of process 50%.'''\n",
    "\n",
    "\n",
    "Vol = 0.5*0.25*0.02    #m^3      (Volume of plywood to be heated)\n",
    "f = 30.0e+6            #Hz       (frequency)\n",
    "t = 10.0               #minutes  (time)\n",
    "T2 = 125.0             #*C       (final temperature)\n",
    "T1 = 25.0              #*C       (initial temperature)\n",
    "s = 1500.0             #J/kg/*C  (specific heat of wood)\n",
    "den = 600.0            #kg/m^3   (weight of wood)\n",
    "eff = 50.0             #%         (efficiency of process)\n",
    "\n",
    "wt = den*Vol          #kg   (weight of plywood)\n",
    "#Heat required to raise the temp is\n",
    "H = wt*s*(T2-T1)     #J\n",
    "H = H/3600           #Wh\n",
    "\n",
    "#As  P = H/t .Therfore power required for heating\n",
    "P = H/(10.0/60)      #W\n",
    "\n",
    "#As efficiency is 50%\n",
    "Pin = P/eff*100      #W\n",
    "\n",
    "print \"Power input =\",round(Pin,2),\"W .\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}