1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# CHAPTER 44 : INDUSTRIAL APPLICATIONS OF ELECTRIC MOTORS "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## EXAMPLE 44.1 , PAGE NO :- 1769"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Total annual cost in group drive = RS. 11000.0\n",
"Total annual cost in individual drive = RS. 11400.0\n",
"Hence,Individual drive is costlier than group drive.\n"
]
}
],
"source": [
"'''A motor costing Rs. 10,000 is used for group drive in a certain installation.How will its total annual cost compare with\n",
"the case where four individuals motors each costing Rs. 4000 were used? With group drive,the energy consumption is\n",
"50MWh whereas it is 45MWh for individual drive.The cost of electric energy is 20 paise/kWh.Assume depriciation,\n",
"maintenance and other fixed charges at 10% in the case of group drive and 15 percent in the case of individual drive.'''\n",
"\n",
"\n",
"#Group drive\n",
"cost_g = 10000.0 #Rs (Capital cost)\n",
"other_g = 0.1*cost_g #Rs (Annual depriciation,maintenance and other charges)\n",
"enrgy_g = 50.0*1000*20/100.0 #Rs (Annual cost of energy)\n",
"total_g = enrgy_g + other_g #Rs (total annual cost)\n",
"\n",
"#Individual drive\n",
"cost_i = 4*4000.0 #Rs (Capital cost)\n",
"other_i = 0.15*cost_i #Rs (Annual depriciation,maintenance and other charges)\n",
"enrgy_i = 45.0*1000*20/100.0 #Rs (Annual cost of energy)\n",
"total_i = enrgy_i + other_i #Rs (total annual cost)\n",
"print \"Total annual cost in group drive = RS.\",total_g\n",
"print \"Total annual cost in individual drive = RS.\",total_i\n",
"print \"Hence,Individual drive is costlier than group drive.\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## EXAMPLE 44.2 , PAGE NO :- 1775 "
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Additional resistance = 5.7 ohm.\n",
"Initial braking Torque = 955.41 N-m.\n",
"Torque at 360 rpm = 766.53 N-m.\n"
]
}
],
"source": [
"'''A 40-kW,440-V,d.c shunt motor is braked by plugging.Calculate(i)the value of resistance that must be placed in series with the\n",
"armature circuit to limit the initial braking current to 150A (ii)the braking torque and(iii)the torque when motor speed falls\n",
"to 360 rpm. Armature resistance Ra = 0.1 ohm,ful-load Ia=100A,full-load speed=600 rpm.'''\n",
"\n",
"V = 440.0 #V (applied voltage)\n",
"Ib = 150.0 #A (initial braking current)\n",
"Ra = 0.1 #ohm (armature resistance)\n",
"Ia = 100.0 #A (armature current)\n",
"N1 = 600.0 #rpm (full load speed)\n",
"N2 = 360.0 #rpm (decreased speed)\n",
"Eb = V - Ia*Ra #V (back emf)\n",
"#Voltage across the armature at the start of braking\n",
"V2 = V + Eb #V\n",
"#(i)Since initial braking current is limited to 150A,total armature circuit resistance required is\n",
"Rt = V2/Ib #ohm\n",
"#Therefore additional resistance R is\n",
"R = Rt - Ra #ohm\n",
"#(ii)For a shunt motor,Torque(Tb) is propotional to Ia\n",
"Tb = 40*1000/(2*3.14*600/60) #N/m\n",
"# .'. Initial braking torque/full-load torque = initial braking current/full-load current\n",
"\n",
"T_ini = Tb*(Ib/Ia) #N/m\n",
"#(iii)The decrease in Eb is directly propotional to decrease in motor speed\n",
"Eb_360 = Eb*(N2/N1) #V\n",
"Ia_360 = (V+Eb_360)/Rt #A\n",
"Tb_360 = Tb*(Ia_360/Ia) #N-m\n",
"\n",
"print \"Additional resistance = \",R,\"ohm.\"\n",
"print \"Initial braking Torque = \",round(T_ini,2),\"N-m.\"\n",
"print \"Torque at 360 rpm = \",round(Tb_360,2),\"N-m.\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## EXAMPLE 44.3 , PAGE NO :- 1776"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Plugging torque = 131.92 N-m.\n"
]
}
],
"source": [
"'''A 30-kW,400-V,3-phase,4 pole,50-Hz induction motor has full-load slip of 5%.If the ratio of standstill reactance to resistance\n",
"per motor phase is 4 ,estimating the plugging torque at full speed.'''\n",
"\n",
"Power = 30.0 #kW (power consumed)\n",
"f = 50.0 #Hz (frequency)\n",
"P = 4 # (pole)\n",
"s1 = 0.05 # (slip)\n",
"Ns = 120*f/P #rpm (Synchronus speed)\n",
"Nf = Ns*(1-s1) #rpm (Full-load speed)\n",
"Tf = Power*1000/(2*3.14*Nf/60) #N-m (Full-load torque)\n",
"R1_X1 = 4.0 \n",
"\n",
"# As T is propotional to (s*R2*E2^2)/(R2^2 + s^2*X2^2) i.e (T2/T1) = (s2/s1)*(1+s1^2(X2/R2)^2/1+s2^2(X2/R2)^2)\n",
"s2 = 2-s1\n",
"Tp = (s2/s1)*(1 +(R1_X1)*(R1_X1)*s1*s1)/(1 +(R1_X1)*(R1_X1)*s2*s2)*Tf\n",
"print \"Plugging torque = \",round(Tp,2),\"N-m.\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## EXAMPLE 44.4 , PAGE NO :- 1780"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Hence,energy returned to supply lines = 43.43 kWh.\n"
]
}
],
"source": [
"'''A 500 tonne electric trains travel down a descending gradient of 1 in 80 for 90 seconds during which period its speed is\n",
"reduced from 100 km/h to 60 km/h by regenerative braking.Compute the energy returned to the lines of kWh if tractive\n",
"resistance = 50N/t;allowance for rotational inertia = 10%;overall efficiency of the system = 75%.'''\n",
"\n",
"\n",
"G = 1/80.0*100 # (percent gradient)\n",
"M = 500.0 #tonne (electric train)\n",
"Me_M = 1.1 # (ratio of rotational mass to stationary mass)\n",
"V1 = 100.0 #km/h (initial speed)\n",
"V2 = 60.0 #km/h (decreased speed)\n",
"t = 90.0 #s (braking period)\n",
"r = 50.0 #N/t (tractive resistance)\n",
"eff = 0.75 # (efficiency)\n",
"d = (V1+V2)/2*t/3600\n",
"#Hence,energy returned to supply line is\n",
"enrgy = 0.75*(0.01072*(Me_M)*(V1*V1 - V2*V2) + d*(27.25*G - 0.2778*r)) #Wh/tonne\n",
"enrgy = enrgy*500/1000.0 #kWh\n",
"print \"Hence,energy returned to supply lines =\",round(enrgy,2),\"kWh.\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## EXAMPLE 44.5 , PAGE NO :- 1780"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Power returned to line = 509.0 kW.\n"
]
}
],
"source": [
"'''A 350-t electric train has its speed reduced by regenerative braking from 60 to 40km/h over a distance of 2km along down gradient\n",
"of 1.5%.Calculate (i)electrical energy and (ii)average power returned to the line.Assume specific train resistance = 50 N/t;rotational\n",
"inertia effect = 10% ; conversion efficency of the system = 75%.'''\n",
"\n",
"\n",
"M = 350.0 #tonne (Mass of train)\n",
"eff = 0.75 # (efficiency)\n",
"V1 = 60.0 #km/h (initial speed)\n",
"V2 = 40.0 #km/h (final speed)\n",
"Me = 1.1*M # (rotational mass )\n",
"G = 1.5 # (percent gradient)\n",
"d = 2.0 #km (distance)\n",
"r = 50.0 #N/t (train resistance)\n",
"\n",
"#Energy returned to line is\n",
"enrgy = eff*(0.01072*Me/M*(V1*V1 - V2*V2) + d*(27.25*G - 0.2778*r)) #Wh/t\n",
"enrgy = enrgy*M/1000 #kWh\n",
"\n",
"#(ii)\n",
"\n",
"speed = (V1+V2)/2 #km/h (Average speed)\n",
"time = d/speed #h (time taken)\n",
"\n",
"power = enrgy/time #kW (power returned)\n",
"\n",
"print \"Power returned to line =\",round(power),\"kW.\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## EXAMPLE 44.6 , PAGE NO :- 1780"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Power fed to line = 424.38 kW.\n"
]
}
],
"source": [
"'''If in Example 44.5,regenerative braking is applied in such a way that train speed on down gradient remains constant\n",
"at 60 km/h,what would be the power fed into the line?'''\n",
"\n",
"\n",
"M = 350.0 #tonne (Mass of train)\n",
"G = 1.5 # (percent gradient)\n",
"r = 50.0 #N/t (train resistance)\n",
"V = 60.0 #km/h (speed)\n",
"eff = 0.75\n",
"#In down-gradient motors act as generators .Force generated\n",
"Ft = 98*M*G - M*r #N\n",
"#Power that can be recuperated is\n",
"P = Ft*(1000.0/3600)*V #W\n",
"#Power actually sent to line\n",
"P = eff*P/1000 #kW\n",
"print \"Power fed to line = \",round(P,2),\"kW.\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## EXAMPLE 44.7 , PAGE NO :- 1780 "
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Power fed = 650.0 kW.\n"
]
}
],
"source": [
"'''A train weighing 500 tonne is going down a gradient of 20 in 1000.It is desired to maintain train speed at 40 km/h by regenerative\n",
"braking.Calculate the power fed into the line.Tractive resistance is 40 N/t and allow rotational inertia of 10% and efficiency\n",
"of conversion of 75%.'''\n",
"\n",
"M = 500.0 #tonne (Mass of train)\n",
"G = 20/1000.0*100 # (percent gradient)\n",
"r = 40.0 #N/t (Tractive resistance)\n",
"V = 40.0 #km/h (speed)\n",
"eff = 0.75 # (efficiency) \n",
"#Tractive Force when motors are driven as generators is\n",
"Ft = 98*M*G - M*r #N\n",
"#Power that can be drawn is\n",
"P = 0.2778*Ft*V #W\n",
"#Power actually fed\n",
"P = eff*P/1000 #kW\n",
"print \"Power fed = \",round(P,0),\"kW.\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## EXAMPLE 44.8 , PAGE NO :- 1781"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Additional resistance = 1.94 ohm.\n",
"Initial braking torque = 1042.27 N-m.\n",
"Braking torque at 200rpm = 719.84 N-m.\n"
]
}
],
"source": [
"'''A 250V d.c shunt motor,taking an armature current of 150 A and running at 550 r.p.m is braked by reversing the connections to the\n",
"armature and inserting additional resistance in series with it.Calculate:\n",
"(a)the value of series resistance required to limit the initial current to 240A.\n",
"(b)the initial value of braking torque.\n",
"(c)the value of braking torque when the speed has fallen to 200 r.p.m.\n",
"The armature resistance is 0.09 ohm.Neglect winding friction and iron losses.'''\n",
"\n",
"V = 250.0 #V (applied voltage)\n",
"Ia = 150.0 #A (armature current)\n",
"Ib = 240.0 #A (initial braking current)\n",
"N = 550.0 #rpm (speed)\n",
"N2 = 200.0 #rpm (decreased speed) \n",
"Ra = 0.09 #ohm \n",
"#Induced emf at full-load\n",
"Eb = V - Ia*Ra #V\n",
"#Voltage across the armature at braking\n",
"Vb = V + Eb #V\n",
"#Resistance to limit the current to 240A\n",
"Rt = Vb/240 #ohm\n",
"#Resistance to be added in the circuit\n",
"R = Rt - Ra #ohm\n",
"\n",
"#(ii)\n",
"Tf = V*Ia/(2*3.14*N/60) #N-m (Full load torque)\n",
"# Initial braking torque/full-load torque = initial braking current/full-load current\n",
"\n",
"T_ini = Tf*(Ib/Ia) #N-m (initial braking torque)\n",
"\n",
"Eb_200 = Eb*N2/N #V (Back emf at 200 rpm)\n",
"Ia_200 = (V + Eb_200)/Rt #A (Current drawn at 200 rpm)\n",
"Tb_200 = Tf*Ia_200/Ia #N-m\n",
"\n",
"print \"Additional resistance = \",round(R,2),\"ohm.\"\n",
"print \"Initial braking torque = \",round(T_ini,2),\"N-m.\"\n",
"print \"Braking torque at 200rpm = \",round(Tb_200,2),\"N-m.\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## EXAMPLE 44.9 , PAGE NO :- 1781"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Starting torque Ts = 0.25 *Tfl.\n"
]
}
],
"source": [
"'''A 400V 3-phase squirrel cage induction motor has a full load slip of 4%.A stand-still impedance of 1.54 ohm and the full load current\n",
"equal to 30A.The maximum starting current which may be taken from line is 75A.What taping must be provided on an auto-transformer starter\n",
"to limit the current to this value and what would be the starting torque available in terms of full-load torque ?'''\n",
"\n",
"import math as m\n",
"from sympy import Eq,solve,Symbol\n",
"\n",
"#considering Transformer action V2/V1 = I1/I2 = X\n",
"V1 = 400.0/(m.sqrt(3)) #V (applied voltage)\n",
"I1 = 75.0 #A (max starting current)\n",
"Z = 1.54 #ohm (impedance)\n",
"X = Symbol('X')\n",
"I2 = I1/X #A\n",
"V2 = Z*I2 #V\n",
"eq = Eq(V1*I1,V2*I2)\n",
"X = solve(eq) \n",
"X1 = X[1] #ohm\n",
"\n",
"I2 = I1/X1 #A\n",
"sfl = 0.04 # (full-load slip)\n",
"Ifl = 30.0 #A (full-load current)\n",
"\n",
"#Ts/Tfl = X^2*(Is/Ifl)^2*sfl\n",
"\n",
"Ts_Tfl = (X1*X1)*(I2/Ifl)*(I2/Ifl)*sfl # (Ts/Tfl)\n",
"print \"Starting torque Ts = \",round(Ts_Tfl,2),\"*Tfl.\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## EXAMPLE 44.10 , PAGE NO :- 1782"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Additional resistance(constant torque) = 1.02 ohm.\n",
"Additional resistance(torque propotional to speed square) = 1.77 ohm.\n"
]
}
],
"source": [
"'''A 220V,10 HP shunt motor has field and armature resistances of 122ohm and 0.3ohm respectively.Calculate the resistance to be\n",
"inserted in the armature circuit to reduce the speed to 80% assuming motor efficiency at full load to be 80%.\n",
"(a)When torque is to remain constant.\n",
"(b)When torque is propotional to square of the speed.'''\n",
"\n",
"\n",
"V = 220.0 #V (applied voltage)\n",
"Rf = 122.0 #ohm (field resistance)\n",
"Ra = 0.3 #ohm (armature resistance)\n",
"\n",
"If = V/Rf #A (field current)\n",
"\n",
"m_out = 10*746 #W (motor output)\n",
"m_in = m_out/0.8 #W (motor input)\n",
"Il = m_in/V #A (line current)\n",
"\n",
"Ia = Il - If #A (armature current)\n",
"\n",
"Eb1 = V - Ia*Ra #V (back emf)\n",
"\n",
"#As flux is constant N2/N1 = Eb2/Eb1 and N2 = N1*0.8\n",
"\n",
"Eb2 = Eb1*0.8 #V (back emf at reduced speed)\n",
"\n",
"#(a) Torque remains constant ,hence Ia remains constant .Using Eb2 = V - Ia*R\n",
"Rt = (V-Eb2)/Ia #ohm (Total resistance required)\n",
"\n",
"#Therefore, additional resistance is\n",
"R = Rt - Ra #ohm\n",
"print \"Additional resistance(constant torque) = \",round(R,2),\"ohm.\"\n",
"\n",
"#(b) As (T2/T1) = (N2/N1)^2 and (T2/T1) = (Ia2/Ia1)\n",
"\n",
"T2_T1 = (0.8)*(0.8) # (T2/T1)\n",
"\n",
"Ia2 = Ia*T2_T1 #A (Changed armature current)\n",
"\n",
"#(b) Using Eb2 = V - Ia*R\n",
"Rt = (V-Eb2)/Ia2 #ohm (Total resistance required)\n",
"\n",
"\n",
"#Therefore, additional resistance is\n",
"R = Rt - Ra #ohm\n",
"print \"Additional resistance(torque propotional to speed square) = \",round(R,2),\"ohm.\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## EXAMPLE 44.11 , PAGE NO :- 1783"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Initial braking torque = 713.33 N-m.\n",
"Electric braking torque at 1/2 speed = 539.96 N-m.\n"
]
}
],
"source": [
"'''A 37.5 HP, 220V DC shunt motor with a full load speed of 535 rpm is to be braked by plugging.Estimate the value of resistance \n",
"which should be placed in series with it to limit the initial braking current to 200 A.What would be the initial value of the\n",
"electric braking torque and the value when the speed had fallen to half its full load value?Armature resistance of motor is \n",
"0.086 ohm and full load armature current is 140A.'''\n",
"\n",
"V = 220.0 #V (applied voltage)\n",
"Ia = 140.0 #A (full-load armature current)\n",
"Ra = 0.086 #ohm (armature resistance)\n",
"Ib = 200.0 #A (braking current)\n",
"P = 37.5*746 #W (Power)\n",
"N = 535.0 #rpm (Speed)\n",
"Eb = V - Ia*Ra #V (Back emf)\n",
"#Total voltage during braking\n",
"Vb = Eb + V #V\n",
"\n",
"#Total resistance required is (using R = V/I)\n",
"Rt = Vb/Ib #ohm\n",
"Rt = round(Rt,2) #ohm\n",
"#Therefore,additional resistance required is\n",
"R = Rt - Ra #ohm\n",
"#We know that P = Torque*w where w is\n",
"w = 2*3.1416*N/60 #rad/s (angular velocity)\n",
"Tfl = P/w #N-m (full-load torque)\n",
"#As torque is propotional to I\n",
"#(Initial braking torque/Initial braking current) = (Full load torque/Full load current)\n",
"T_ini = Tfl*(Ib/Ia) #N-m (Initial braking torque)\n",
"\n",
"#As speed is propotional to back emf\n",
"Eb_2 = Eb/2 #V (Back emf at 1/2 speed)\n",
"Ib_2 = (V+Eb_2)/Rt #A (initial braking current at 1/2 speed)\n",
"\n",
"T_ini2 = Tfl*(Ib_2/Ia) #N-m (Initial braking torque at 1/2 speed)\n",
"print \"Initial braking torque = \",round(T_ini,2),\"N-m.\"\n",
"print \"Electric braking torque at 1/2 speed = \",round(T_ini2,2),\"N-m.\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## EXAMPLE 44.12 , PAGE NO :- 1783"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Speed when torque is constant is = 600.61 rpm.\n",
"Speed when torque is propotional to speed square = 546.14 rpm.\n"
]
}
],
"source": [
"'''A 500V series motor having armature and field resistances of 0.2 and 0.3 ohm runs at 500 rpm when taking 70A.Assumimg unsaturated\n",
"field find out its speed when field diverter of 0.648 ohm is used for following load whose torque\n",
"(a) remains constant\n",
"(b) varies as square of speed '''\n",
"\n",
"\n",
"from sympy import Eq,solve,Symbol\n",
"V = 500.0 #V (applied voltage)\n",
"Ra = 0.2 #ohm (armature resistance)\n",
"Rf = 0.3 #ohm (field resistance)\n",
"N1 = 500.0 #rpm (speed)\n",
"Ia = 70.0 #A (armature current)\n",
"Rd = 0.684 #ohm (diverter resistance)\n",
"Eb1 = V - Ia*(Ra + Rf) #V (Back emf)\n",
"\n",
"#(a)Let Ia2 be armature current when diverter is used\n",
"\n",
"Ia2 = Symbol('Ia2')\n",
"\n",
"#Now If2 (field current when diverter is used) is\n",
"If2 = Ia2*Rd/(Rf+Rd)\n",
"\n",
"#As Torque is constant Ia1*(Flux1) = Ia2*(Flux2) Also,Ia1=If1 is propotional to (flux1)\n",
"eq = Eq(Ia*Ia/If2-Ia2,0)\n",
"Ia2 = solve(eq) \n",
"Ia_2 = Ia2[1] #A (Armature current when diverter is used)\n",
"\n",
"If2 = Ia_2*Rd/(Rf+Rd) #A (field current when diverter is used)\n",
"\n",
"#Resistance of field with diverter\n",
"Rfd = Rf*Rd/(Rf+Rd) #ohm\n",
"#Total resistance\n",
"Rt = Rfd + Ra #ohm\n",
"\n",
"Eb2 = V - Ia_2*Rt #V (Back emf when diverter is used)\n",
"\n",
"#Now, (N1/N2) = (Eb1*flux1/Eb2*flux2) and flux is propotional to If\n",
"N2 = (Eb2/Eb1)*N1*(Ia/If2) #rpm\n",
"print \"Speed when torque is constant is = \",round(N2,2),\"rpm.\"\n",
"####################################################################################\n",
"\n",
"#(B)Let Ia22 be armature current when diverter is used\n",
"#Now, (N1/N2)^2 = T1/T2 As (T1/T2) = Ia1*Ia1/(Ia2*If2)\n",
"\n",
"Ia22 = Symbol('Ia22')\n",
"#Now If2 (field current when diverter is used) is\n",
"If2 = Ia22*Rd/(Rf+Rd)\n",
"\n",
"N1_N2a = Ia*Ia/(Ia22*If2) #N1_N2a -> (N1/N2)^2\n",
"#Also, N1/N2 = Eb1*flux2/(Eb2*flux1)\n",
"N1_N2b = Eb1*If2/((V - Ia22*Rt)*Ia) #N1_N2b -> (N1/N2)\n",
"\n",
"eq = Eq(N1_N2a,N1_N2b*N1_N2b)\n",
"Ia22 = solve(eq)\n",
"Ia_22 = Ia22[1] #A (Armature current when diverter is used)\n",
"\n",
"If2 = Ia_22*Rd/(Rf+Rd)\n",
"N1_N2b = Eb1*If2/((V - Ia_22*Rt)*Ia) \n",
"#Using equation of N1_N2b = N1/N2\n",
"N2 = N1/N1_N2b #rpm\n",
"\n",
"print \"Speed when torque is propotional to speed square = \",round(N2,2),\"rpm.\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"## EXAMPLE 44.13 , PAGE NO :- 1784 "
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Additonal resistance required is = 5.9 ohm.\n"
]
}
],
"source": [
"'''A 200V series motor runs at 1000 rpm and takes 20A . Armature and field resistance is 0.4 ohm.Calculate the\n",
"resistance to be inserted in series so as to reduce the speed to 800 rpm,assuming torque to vary as cube of the\n",
"speed and unsaturated field.'''\n",
"\n",
"from sympy import Eq,Symbol,solve\n",
"\n",
"V = 200.0 #V (applied voltage)\n",
"N1 = 1000.0 #rpm (speed 1)\n",
"Raf = 0.4 #ohm (armature and field resistance)\n",
"N2 = 800.0 #rpm (speed 2)\n",
"Ia1 = 20.0 #A (armature current)\n",
"\n",
"\n",
"#Given, T1/T2 = (N1/N2)^3\n",
"\n",
"T1_T2a = (N1/N2)*(N1/N2)*(N1/N2) # (Ratio T1/T2)\n",
"\n",
"#Also T1/T2 = Ia1*flux1/Ia2*flux2 and Ia is propotional to flux\n",
"#Let Ia2 be armature current when speed is 800 rpm.\n",
"\n",
"Ia2 = Symbol('Ia2')\n",
"T1_T2b = Ia1*Ia1/(Ia2*Ia2)\n",
"eq = Eq(T1_T2a,T1_T2b)\n",
"Ia2 = solve(eq)\n",
"Ia_2 = Ia2[1] #A (armature current 2)\n",
"\n",
"Eb1 = V - Ia1*Raf #V (Back emf 1)\n",
"\n",
"#As Eb1/Eb2 = N1*I1/(N2*I2).Therefore Back emf 2 is\n",
"Eb2 = Eb1*(N2/N1)*(Ia_2/Ia1) #V (Back emf 2)\n",
"\n",
"#Also Eb2 = V - Ia2*Rt .Therefore total resistance required is\n",
"Rt = (V - Eb2)/Ia_2 #ohm\n",
"#Therefore,additional resistance required is\n",
"R = Rt - Raf #ohm\n",
"print \"Additonal resistance required is = \",round(R,2),\"ohm.\""
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"## EXAMPLE 44.14 , PAGE NO :- 1785"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Speed at which torque is 75% of initial value = 242.79 rpm.\n"
]
}
],
"source": [
"'''A 220V,500 rpm DC shunt motor with an armature resistance of 0.08 ohm and full load armature current of 150A is to be braked by \n",
"plugging.Estimate the value of resistance which is to be placed in series with the armature to limit initial braking current to\n",
"200A.What would be the speed at which the electric braking torque is 75% of its initial value.'''\n",
"\n",
"from sympy import Eq,solve,Symbol\n",
"\n",
"V = 220.0 #V (applied voltage)\n",
"N1 = 500.0 #rpm (speed 1)\n",
"Ra = 0.08 #ohm (armature resistance)\n",
"Ia = 150.0 #A (armature current)\n",
"Ib = 200.0 #A (initial braking current)\n",
"\n",
"\n",
"Eb1 = V - Ia*Ra #V (Back emf) \n",
"#Voltage across armature when braking starts\n",
"Vb = V + Eb1 #V\n",
"\n",
"#Resistance in armature circuit\n",
"Rt = Vb/Ib #ohm \n",
"#Additional resistance required\n",
"R = Rt - Ra #ohm \n",
"#Since field flux is constant therefore 75% torque is produced when armature current is 75% of Ib.\n",
"#As (Eb1/Eb2) = (N1/N2)\n",
"N2 = Symbol('N2') #rpm\n",
"Eb2 = Eb1*(N2/N1) #V\n",
"\n",
"#Voltage across armature when braking starts is V1=V2 =>\n",
"V1 = (0.75*Ib)*Rt #V\n",
"V2 = V + Eb2 #V\n",
"eq = Eq(V1,V2)\n",
"N2 = solve(eq) #rpm\n",
"N_2 = N2[0] #rpm\n",
"print \"Speed at which torque is 75% of initial value =\",round(N_2,2),\"rpm.\""
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"## EXAMPLE 44.15 , PAGE NO :- 1785"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Speed of motor with the shunted armature connection = 986.07 rpm.\n",
"Series motor can't be started on no-load.\n"
]
}
],
"source": [
"'''A D.C series motor operating at 250V D.C mains and draws 25A and runs at 1200 rpm Ra = 0.1 ohm and Rs = 0.3 ohm.A resistance of\n",
"25 ohm is placed in parallel with the armature of motor.Determine:\n",
"(i)The speed of motor with the shunted armature connection,if the magnetic circuit remains unsaturated and the load torque remains\n",
"constant.\n",
"(ii)No load speed of motor.'''\n",
"\n",
"from sympy import Eq,Symbol,solve\n",
"\n",
"V = 250.0 #V (applied voltage)\n",
"Ia = 25.0 #A (armature current)\n",
"N1 = 1200.0 #rpm (speed)\n",
"Ra = 0.1 #ohm (armature resistance)\n",
"Rse = 0.3 #ohm (series field resistance)\n",
"Rd = 25.0 #ohm (diverter resistance)\n",
"\n",
"#Let I2 flow from series winding , Ia2 be new armature current and Id be diverter current\n",
"\n",
"I2 = Symbol('I2')\n",
"Vd = V - Rse*I2 #V (Voltage across diverter)\n",
"Id = Vd/Rd #A (V=IR) \n",
"Ia2 = I2 - Id #A (new armature current)\n",
"\n",
"#AS T is constant, (flux1)*Ia1 = (flux2)*Ia2\n",
"\n",
"eq = Eq(Ia*Ia,(I2)*Ia2) # As, flux1/flux2 = Ia/I2\n",
"I2 = solve(eq)\n",
"I_2 = I2[1] #A (current through series winding)\n",
"\n",
"Ia2 = Ia*Ia/I_2 #A\n",
"Eb1 = V - Ia*(Ra+Rse) #V (Back emf 1) \n",
"\n",
"Eb2 = V - I_2*Rse - Ia2*Ra #V (Back emf 2)\n",
"\n",
"#N2/N1 = Eb2*flux1/Eb1*flux2\n",
"N2 = N1*(Eb2/Eb1)*(Ia/I_2) #rpm\n",
"print \"Speed of motor with the shunted armature connection =\",round(N2,2),\"rpm.\"\n",
"print \"Series motor can't be started on no-load.\""
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"## EXAMPLE 44.16 , PAGE NO :- 1786"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Additional Resistance required in (i) is = 0.8 ohm.\n",
"Additional Resistance required in (ii) is = 1.27 ohm.\n"
]
}
],
"source": [
"'''A 4 pole,50 Hz,slip ring Induction Motor has rotor resistance and stand still reactance referred to stator of 0.2 ohm and 1 ohm\n",
"per phase respectively.At full load,it runs at 1440 rpm.Determine the value of resistance to be inserted in rotor in ohm/phase to\n",
"operate at a speed of 1200 rpm,if:\n",
"(i)Load torque remains constant (ii)Load torque varies as square of the speed\n",
"Neglect stator resistance and leakage reactance.'''\n",
"\n",
"from sympy import Eq,solve,Symbol\n",
"\n",
"p = 4.0 # poles\n",
"f = 50.0 #Hz (frequency)\n",
"R2 = 0.2 #ohm (rotor resistance)\n",
"X2 = 1.0 #ohm (stand still reactance)\n",
"N1 = 1440.0 #rpm (speed)\n",
"N2 = 1200.0 #rpm (new speed)\n",
"\n",
"Ns = 120*f/p #rpm (synchronus speed)\n",
"s1 = (Ns-N1)/Ns #rpm (slip 1)\n",
"s2 = (Ns-N2)/Ns #rpm (slip 2)\n",
"\n",
"#(i)Load torque is constant i.e (T1 = T2)\n",
"#T is propotional to (s/R2) , (T1/T2) = (s1/S2)*(R2/Rt).Therefore, new resistance required is \n",
"\n",
"Rt = (s2/s1)*R2 #ohm (total resistance)\n",
"r = Rt - R2 #ohm (additional resistance)\n",
"\n",
"print \"Additional Resistance required in (i) is =\",round(r,2),\"ohm.\"\n",
"\n",
"#(ii) Load torque varies as square of speed (i.e T1/T2 = (N1/N2)^2 )\n",
"T1_T2a = (N1/N2)*(N1/N2) #(T1/T2)\n",
"\n",
"Rt = Symbol('Rt')\n",
"T1_T2b = (s1*R2/(R2*R2 + (s1*X2)*(s1*X2)))/(s2*Rt/(Rt*Rt + (s2*X2)*(s2*X2)))\n",
"eq = Eq(T1_T2a,T1_T2b)\n",
"Rt = solve(eq)\n",
"R_t = Rt[1] #ohm (total resistance)\n",
"\n",
"r = R_t - R2 #ohm (additional resistance)\n",
"print \"Additional Resistance required in (ii) is =\",round(r,2),\"ohm.\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|