1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# CHAPTER 43: ELECTRIC TRACTION"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## EXAMPLE 43.1 , PAGE NO :- 1716"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Max speed of train is = 39.2 km/h.\n"
]
}
],
"source": [
"#A suburban train runs with an average speed of 36 km/h between two stations 2 km apart.Values of acceleration\n",
"#and retardation are 1.8 km/h/s and 3.6 km/h/s.Compute the maximum speed of the train assuming trapezoidal\n",
"#speed/time curve\n",
"################################################################################################################\n",
"import math\n",
"\n",
"#Given\n",
"\n",
"Va = 36.0*5/18.0 #m/s (average speed)\n",
"alpha = 1.8*5/18.0 #m/s^2 (acc.)\n",
"beta = 3.6*5/18.0 #m/s^2 (ret.)\n",
"D = 2000.0 #m (distance )\n",
"t = D/Va #s (time)\n",
"K = (alpha + beta)/(2*alpha*beta) #(constant)\n",
"Vm = (t-math.sqrt(t*t-4*K*D))/(2*K) #m/s (max speed)\n",
"Vm = Vm*18/5.0 #km/h\n",
"print \"Max speed of train is = \",round(Vm,2),\"km/h.\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## EXAMPLE 43.2 , PAGE NO :- 1716"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The acceleration is = 1.7 km/h/s.\n"
]
}
],
"source": [
"#A train is required to run between two stations 1.5 km apart at a schedule speed of 36 km/h,the duration of stops being\n",
"#25 seconds.The braking retardation is 3 km/h/s.Assuming a trapezoidal speed/time curve,calculate the acceleration if the\n",
"#ratio of maximum speed to average speed is to be 1.25\n",
"##########################################################################################################################\n",
"\n",
"#Given\n",
"D = 1500.0 #m (distance)\n",
"Vsch = 36.0*5/18.0 #m/s (scheduled speed)\n",
"beta = 3.0*5/18.0 #km/h/s (ret.)\n",
"\n",
"time = D/Vsch #s (scheduled time)\n",
"t_stop = 25.0 #s (stopping time)\n",
"t = time-t_stop #s (actual time of run)\n",
"Va = D/t #m/s (average speed)\n",
"Vm = 1.25*Va #m/s (max speed)\n",
"\n",
"#The value of K is\n",
"K = (D/(Vm*Vm))*(Vm/Va-1)\n",
"#We know that K = 1/2*(1/alpha + 1/beta).Therefore,value of alpha is\n",
"alpha = beta/(2*K*beta-1) #m/s^2\n",
"alpha = alpha*18/5.0 #km/h/s\n",
"print \"The acceleration is =\",round(alpha,1),\"km/h/s.\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## EXAMPLE 43.3 , PAGE NO :- 1716"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Schedule speed of train is 38.7 Km/h.\n"
]
}
],
"source": [
"#Find the scheduled speed of an electric train for a run of 1.5km if the ratio of its maximum to average speed is\n",
"#1.25.It has a braking retardation of 3.6 km/h/s,acceleration of 1.8km/h/s and stop time of 21 seconds.Assume\n",
"#trapezoidal speed/time curve.\n",
"##################################################################################################################\n",
"import math\n",
"\n",
"#Given\n",
"alpha = 1.8*5/18.0 #m/s^2 (acceleration)\n",
"beta = 3.6*5/18.0 #m/s^2 (retardation)\n",
"D = 1500.0 #m (distance)\n",
"ratio = 1.25 #(Vm/Va) \n",
"t_stop = 21 #s (stopping time) \n",
"K = 0.5*(1/alpha + 1/beta)\n",
"\n",
"#Also constant K = (D/Vm^2)*(Vm/Va-1)\n",
"#Therefore Vm^2 = (D/K)*((Vm/Va)-1).\n",
"Vm = math.sqrt(D/K*(ratio-1)) #m/s (Max. speed)\n",
"Va = Vm/ratio #m/s (Avg. speed) \n",
"t = D/Va #s (travel time)\n",
"\n",
"tsch = t + t_stop #s (schedule time)\n",
"Vsch = D/tsch #m/s (scheduled speed)\n",
"Vsch = Vsch*18/5.0 #km/h\n",
"print \"Schedule speed of train is\",round(Vsch,1),\"Km/h.\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## EXAMPLE 43.4 , PAGE NO :- 1717"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Duration of acceleration = 26.7 s.\n",
"Duration of coasting = 119.3 s.\n",
"Duration of braking = 14.0 s.\n",
"Total duration = 160.0 s.\n"
]
}
],
"source": [
"#A train runs between two stations 1.6km apart at an average speed of 36 km/h.If the maximum speed is to be limited\n",
"#to 72km/h,acceleration to 2.7km/h/s,coasting retardation to 0.18 km/h/s and braking retardation to 3.2 km/h/s,compute\n",
"#the duration of acceleration,coasting and braking periods.Assume a simplified speed/time curve.\n",
"########################################################################################################################\n",
"\n",
"from sympy import Eq,Symbol, solve\n",
"#Given\n",
"D = 1600 #m (distance)\n",
"Va = 36.0*5/18.0 #m/s (avg speed)\n",
"V1 = 72.0*5/18.0 #m/s (max speed)\n",
"alpha = 2.7*5/18.0 #m/s^2 (acceleration)\n",
"beta = 3.6*5/18.0 #m/s^2 (braking retardation)\n",
"beta_c = 0.18*5/18.0 #m/s^2 (coasting retardation)\n",
"#Duration of acceleration\n",
"t1 = V1/alpha #s\n",
"\n",
"#Actual time of run\n",
"t = D/Va #s\n",
"#Let us assume V2 be the speed at start of braking.\n",
"\n",
"V2 = Symbol('V2')\n",
"t3 = V2/beta #(braking period)\n",
"t2 = (V1-V2)/beta_c #(coasting period)\n",
"\n",
"eq = Eq(t1+t2+t3,t)\n",
"V2 = solve(eq)\n",
"Ve2 = V2[0]\n",
"\n",
"#Now we know the value of V2 that is Ve2.\n",
"t3 = Ve2/beta #(braking period)\n",
"t2 = (V1-Ve2)/beta_c #(coasting period)\n",
"print \"Duration of acceleration = \",round(t1,1),\"s.\"\n",
"print \"Duration of coasting = \",round(t2,1),\"s.\"\n",
"print \"Duration of braking = \",round(t3,1),\"s.\"\n",
"print \"Total duration = \",round(t,0),\"s.\"\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## EXAMPLE 43.5 , PAGE NO :- 1724"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The limiting value of train speed = 82.0 km/h.\n"
]
}
],
"source": [
"#The peripheral speed of a railway traction motor cannot be allowed to exceed 44m/s.If gear ratio is 18/75,motor armature\n",
"#diameter 42cm and wheel diameter 91cm,calculate the limiting value of the train speed.\n",
"###########################################################################################################################\n",
"\n",
"#Given\n",
"gratio = 18/75.0 #(gear ratio)\n",
"Vmot = 44.0 #m/s (speed of traction motor)\n",
"wdia = 0.91 #m (wheel diameter)\n",
"mdia = 0.42 #m (motor armature diameter)\n",
"\n",
"#Maximum number of revolutions by armature (in 1s)\n",
"mrev = Vmot/(3.14*mdia) #rps\n",
"#Maximum number of revolutions by driving wheel(in 1s)\n",
"wrev = mrev*gratio #rps\n",
"#Maximum distance travelled by driving wheel (in 1s)\n",
"dist = wrev*(3.14*wdia) #m\n",
"#Therefore,limiting speed is\n",
"vel = dist*18/5.0 #km/h\n",
"print \"The limiting value of train speed = \",round(vel),\"km/h.\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## EXAMPLE 43.6 , PAGE NO :- 1724"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Torque developed by each motor = 7181.0 N-m.\n"
]
}
],
"source": [
"#A 250-tonne motor coach driven by four motors takes 20 seconds to attain a speed of 42 km/h,starting from rest on an ascending\n",
"#gradient of 1 in 80.The gear ratio is 3.5,gear efficiency 92%,wheel diameter 92cm train resistance 40N/t and rotational inertia\n",
"#10 percent of the dead weight.Find the torque developed by each motor.\n",
"##################################################################################################################################\n",
"\n",
"#Given\n",
"M = 250.0 #tonne (mass of motor)\n",
"Me = 1.1*250.0 #tonne (mass of rotating motor)\n",
"Vm = 42.0 #km/h (speed)\n",
"t1 = 20.0 #s (time)\n",
"G = 1/80.0*100 # (% gradient)\n",
"r = 40.0 #N/tonne(train reistance)\n",
"D = 0.92 #m (wheel diameter)\n",
"gratio = 3.5 # (gear ratio)\n",
"geff = 0.92 # (gear efficiency)\n",
"\n",
"a = Vm/t1 # (acceleration) \n",
"#Now,tractive force is given by\n",
"Ft = 277.8*Me*a + 98*M*G + M*r #N\n",
"#Now Ft = 2*gratio*geff*T/D.Therefore torque 'T' is\n",
"T = Ft*D/(2*gratio*geff) #N-m\n",
"#There are motors.so,torque by each motor is\n",
"torque = T/4 #N-m\n",
"print \"Torque developed by each motor = \",round(torque),\"N-m.\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## EXAMPLE 43.7 , PAGE NO :- 1724"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Time taken to achieve speed of 80km/h is = 44.3 s.\n",
"Current drawn per motor is 488.0 A.\n"
]
}
],
"source": [
"#A 250-tonne motor coach having 4 motors,each developing a torque of 8000 N-m during acceleration,starts from rest.If\n",
"#up-gradient is 30 in 1000,gear ratio 3.5,gear transmission efficiency 90%,wheel diameter 90cm,train resistance 50N/t,\n",
"#rotational inertia effect 10%,compute the time taken by the coach to attain a speed of 80km/h.\n",
"#If supply voltage is 3000V and motor efficiency 85%,calculate the current taken during the acceleration period.\n",
"#########################################################################################################################\n",
"\n",
"#Given\n",
"M = 250.0 #tonne (mass of motor)\n",
"Me = 1.1*250 #tonne (mass of rotating motor)\n",
"r = 50.0 #N/t (train resistance)\n",
"G = 30.0/1000*100 # (% gradient)\n",
"torque = 8000 #N-m (torque of each motor)\n",
"D = 0.90 #m (wheel diameter)\n",
"gratio = 3.5 # (gear ratio)\n",
"geff = 0.90 # (gear efficiency)\n",
"Vm = 80 #km/h (speed)\n",
"meff = 0.85 # (Motor efficiency)\n",
"V = 3000.0 # (Voltage)\n",
"\n",
"T = 4*torque # (total torque)\n",
"#Now,we Know that\n",
"Ft = 2*gratio*geff*T/D #N\n",
"#Also,we know that Ft = 277.8*Me*a + 98MG + Mr\n",
"a = (Ft-98*M*G-M*r)/(277.8*Me) #km/h/s(acceleration)\n",
"#Time taken to attain the speed\n",
"t1 = Vm/a #s\n",
"#Power taken by motor is given by\n",
"Power = Ft*(5.0/18*Vm)/meff #W\n",
"#Total current drawn is (using P = VI)\n",
"I = Power/V #A\n",
"#Current drawn/motor is\n",
"cur = I/4 #A\n",
"\n",
"print \"Time taken to achieve speed of 80km/h is =\",round(t1,1),\"s.\"\n",
"print \"Current drawn per motor is\",round(cur,1),\"A.\""
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"## EXAMPLE 43.8 , PAGE NO :- 1725"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Weight of locomotive is = 142.0 tonne.\n",
"Number of axles required are = 7.0\n"
]
}
],
"source": [
"#A goods train weighing 500 tonne is to be hauled by a locomotive up an ascending gradient of 2% with an\n",
"#acceleation of 1 km/h/s.If the coefficient of adhesion is 0.25,train resistance 40N/t and effect of rotational\n",
"#inertia 10%,find the weight of locomotive and number of axles if load is not to increase beyond 21 tonne/axle.\n",
"###############################################################################################################\n",
"\n",
"from sympy import Eq,Symbol, solve\n",
"#Given\n",
"mass = 500.0 #tonne (mass of goods train)\n",
"a = 1 #km/h/s (acceleration)\n",
"coef_ad = 0.25 #(coefficient of adhesion)\n",
"r = 40.0 #N/t (train resistance)\n",
"G = 2.0 # (% gradient)\n",
"w_axle = 21.0 #tonne/axle (weight per axle)\n",
"#Let Ml be mass of locomotive\n",
"Ml = Symbol('Ml')\n",
"#Total mass is given by\n",
"M = mass + Ml\n",
"#Now,tractive force is given by\n",
"Ft1 = M*(277.8*1.1*a + 98*G + r) #N\n",
"#Also,Maximum tractive force is given by\n",
"Ft2 = 1000*coef_ad*Ml*9.8\n",
"#As both Ft1 and Ft2 are same, therefore equating\n",
"eq = Eq(Ft1,Ft2)\n",
"Ml = solve(eq)\n",
"#Mass of locomotive 'M_l' is\n",
"M_l = Ml[0]\n",
"#No of axles required are\n",
"no_axle = round(M_l)/w_axle\n",
"print \"Weight of locomotive is =\",round(M_l),\"tonne.\"\n",
"print \"Number of axles required are = \",round(no_axle)\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## EXAMPLE 43.9 , PAGE NO :- 1725"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The trailing weight that can now be hauled up = 1100.0 tonne.\n"
]
}
],
"source": [
"#An electric locomotive weighing 100 tonne can just accelerate a train of 500 tonne(trailing weight) with an acceleration of \n",
"#1 km/h/s on an up-gradient of 0.1%.Train resistance is 45N/t and rotational inertia is 10%.If this locomotive is helped by another\n",
"#locomotive of 120 tonne,find:\n",
"#(i)the trailing weight that can now be hauled up the same gradient under the same conditions.\n",
"#(ii)the maximum gradient,if the trailing hauled load remains unchanged.\n",
"#Assume adhesive weight expressed as percentage of total dead weight as 0.8 for both locomotives.'''\n",
"#############################################################################################################################\n",
"\n",
"#Given\n",
"Ml1 = 100.0 #tonne (locomotive 1)\n",
"Ml2 = Ml1 + 120.0 #tonne (locomotive 1&2)\n",
"mass = 500.0 #tonne (trailing part)\n",
"r = 45.0 #N/t (train resistance)\n",
"G = 0.1 # (% gradient)\n",
"a = 1.0 #km/h/s (acceleration)\n",
"\n",
"#Total mass of train and locomotive\n",
"M = Ml1 + mass #tonne\n",
"Me = 1.1*M #tonne \n",
"#Traction Force is\n",
"Ft = 277.8*Me*a + 98*M*G + M*r #N\n",
"#Let coefficient_of_adhesion be 'ua'.Then the maximium tractive effort by locomotive 1 is Ft = 1000*ua*Ml1*9.8\n",
"ua = Ft/(1000*9.8*Ml1)\n",
"\n",
"#Maximum tractive effort by locomotive 1&2 is\n",
"Ft2 = 1000*ua*Ml2*9.8 #N\n",
"#Also,Ft2 = M2*(277.8*1.1*a + G + r).Therefore,\n",
"M2 = Ft2/(277.8*1.1*a + 98*G + r) #tonne\n",
"#(i)The trailing weight that can be hauled up is\n",
"wtrail = M2-Ml2 #tonne\n",
"#(ii)Now, in this case the total weight of train & locomotive is\n",
"M3 = mass + Ml2\n",
"#Tractive force Ft2 = M3*(277.8*1.1*a + 98G2 + r).Therefore,for max gradient 'G2'\n",
"G2 = (Ft2/M3-277.8*1.1*a-r)/98\n",
"\n",
"print \"The trailing weight that can now be hauled up =\",round(wtrail,2),\"tonne.\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## EXAMPLE 43.10 , PAGE NO :- 1726"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Max speed = 44.32 km/h.\n",
"Specific energy output = 30.18 Wh/t-km.\n"
]
}
],
"source": [
"#The average distance between stops on a level section of a railway is 1.25km.Motor-coach train weighing 200 tonne has a\n",
"#schedule speed of 30 km/h,the duration of stops being 30 seconds.The acceleration is 1.9 km/h/s and the braking retardation\n",
"#is 3.2 km/h/s.Train resistance to traction is 45 N/t.Allowance for rotational inertia is 10%.Calculate the specific energy\n",
"#output in Wh/t-km.Assume a trapezoidal speed/time curve.\n",
"##############################################################################################################################\n",
"import math as m\n",
"#Given\n",
"alpha = 1.9*5/18.0 #km/h/s (acceleration)\n",
"beta = 3.2*5/18.0 #km/h/s (retardation)\n",
"D = 1.25*1000.0 #m (distance)\n",
"tstop = 30.0 #s (stop time)\n",
"Vsch = 30*5/18.0 #m/s (schedule speed) \n",
"r = 45.0 #N/t (train resistance) \n",
"K = round((alpha + beta)/(2*alpha*beta),1) #(constant K)\n",
"\n",
"tsch = D/Vsch #s (schedule time)\n",
"t = tsch-tstop #s (running time)\n",
"#Now,max speed is given by\n",
"Vm = (t - m.sqrt(t*t-4*K*D))/(2*K) #m/s\n",
"#Braking distance is given by(using newton's III equation of motion)\n",
"dist = Vm*Vm/(2*beta) #m\n",
"#Therefore non-braking distance\n",
"D2 = (D - dist)/1000 #km\n",
"Vm = Vm*18/5.0 #km/h\n",
"D = D/1000 #km\n",
"#Specific energy output is\n",
"spengy = 0.01072*(Vm*Vm/D)*1.1 + 0.2778*r*(D2/D)\n",
"\n",
"print \"Max speed = \",round(Vm,2),\"km/h.\"\n",
"print \"Specific energy output = \",round(spengy,2),\" Wh/t-km.\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## EXAMPLE 43.11 , PAGE NO :- 1726"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The value of specific energy consumption is 21.6 Wh/t-km.\n"
]
}
],
"source": [
"#A 300-tonne EMU is started with a uniform acceleration and reaches a speed of 40 Km/h in 24 seconds on a level track.\n",
"#Assuming trapezoidal speed/time curve,find specific energy consumption if rotational inertia is 8%,retardation is 3 km/h/s,\n",
"#distance between stops is 3 km,motor efficiency is 0.9 and train resistance is 49N/tonne.\n",
"#############################################################################################################################\n",
"\n",
"#Given\n",
"M = 300.0 #tonne (mass of train)\n",
"Mratio = 1.08 # (Me/M)\n",
"Vm = 40.0 #km/h (speed)\n",
"beta = 3.0 #km/h/s (retardation)\n",
"r = 49.0 #N/t (train resistance)\n",
"meff = 0.9 # (motor efficiency)\n",
"D = 3.0 #km (distance)\n",
"\n",
"#Braking time is(using Newton's Ist eqn)\n",
"t3 = Vm/beta\n",
"#Distance travelled in braking time(using Newton's IInd eqn)\n",
"dist = 0.5*beta*t3*t3/3600 #km\n",
"#Non braking distance D2 is\n",
"D2 = D - dist #km\n",
"#Specific energy consumption is given by,\n",
"spengy = 0.01072*(Vm*Vm/(meff*D))*Mratio + 0.2778*r/meff*(D2/D) #Wh/t-km\n",
"print \"The value of specific energy consumption is\",round(spengy,1),\"Wh/t-km.\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## EXAMPLE 43.12 , PAGE NO :- 1726"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"acceleration = 2.0 km/h/s.\n",
"coasting retardation = 0.2 km/h/s.\n",
"The schedule speed = 30.3 km/h.\n",
"The new schedule speed = 31.6 km/h.\n"
]
}
],
"source": [
"#An electric train accelerates uniformly from rest to a speed of 50km/h in 25 seconds.It then coasts for 70 seconds\n",
"#against a constant resistance of 60N/t and is then braked to rest with uniform retardation of 3.0km/h/s in 12 seconds.\n",
"#Compute :- (i)uniform acceleration (ii)coasting retardation\n",
"#(iii)schedule speed if station stops are of 20-second duration\n",
"#Allow 10% for rotational inertia.How will the scedule speed be affected if duration of stops is reduced to 15 seconds,\n",
"#other factors remaining the same?\n",
"##########################################################################################################################\n",
"\n",
"#Given\n",
"V1 = 50.0 #km/h (Max speed)\n",
"t1 = 25.0 #s (accelerating time)\n",
"t2 = 70.0 #s (coasting time)\n",
"r = 60.0 #N/t (train resistance)\n",
"beta = 3.0 #km/h/s (retardation)\n",
"t3 = 12.0 #s (braking time)\n",
"\n",
"#(i) Uniform acceleration is (using Newton's 1st eqn.)\n",
"alpha = V1/t1 #km/h/s\n",
"print \"acceleration = \",round(alpha,1),\"km/h/s.\"\n",
"#Now in braking period (using Newton's 1st eqn.)-> 0 = V2 - beta*t3\n",
"V2 = beta*t3 #km/h\n",
"#(ii)Now in coasting period (using Newton's 1st eqn.)-> V2 = V1 - beta_c*t2\n",
"beta_c = (V1-V2)/t2 #km/h/s\n",
"print \"coasting retardation = \",round(beta_c,1),\"km/h/s.\"\n",
"#distance travelled in accelerating period (using Newton's 2nd eqn.)\n",
"dis1 = 0.5*alpha*t1*t1/3600 #km\n",
"#distance travelled in coasting period (using Newton's 3rd eqn.)\n",
"dis2 = -(V2*V2 - V1*V1)/(2*beta_c*3600) #km\n",
"#distance travelled in braking period (using Newton's 2nd eqn.)\n",
"dis3 = 0.5*beta*t3*t3/3600 #km\n",
"#Total distance\n",
"D = dis1 + dis2 + dis3 #km\n",
"#Total time\n",
"T = t1 + t2 + t3 + 20.0 #s\n",
"#Scheduled Speed Vsch is\n",
"Vsch = D/T*3600 #km/h\n",
"print \"The schedule speed = \",round(Vsch,1),\"km/h.\"\n",
"#New Total time\n",
"T = t1 + t2 + t3 + 15.0\n",
"#New scheduled speed is\n",
"Vsch = D/T*3600 #km/h\n",
"print \"The new schedule speed = \",round(Vsch,1),\"km/h.\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## EXAMPLE 43.13 , PAGE NO :- 1727"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The specific energy consumption is = 63.1 Wh/t-km.\n"
]
}
],
"source": [
"#A 350-tonne electric train runs up an ascending gradient of 1% with the following speed/time curves:\n",
"# 1.uniform acceleration of 1.6km/h/s for 25 seconds 2.constant speed for 50 seconds\n",
"# 3.coasting for 30 seconds 4.braking at 2.56 km/h/s to rest.\n",
"#Compute the specific energy consumption if train resistance is 50N/t,effect of rotational inertia 10%,overall efficiency of\n",
"#transmission gear and motor,75%.\n",
"#############################################################################################################################\n",
"\n",
"#Given\n",
"M = 350.0 #tonne (weight of train)\n",
"Me = 1.1*M #tonne (effect of rot. inertia)\n",
"G = 1.0 # (% gradient)\n",
"alpha = 1.6 #km/h/s (acceleration)\n",
"t1 = 25.0 #s (acceleration time)\n",
"t2 = 50 #s (constant speed time)\n",
"t3 = 30 #s (coasting time)\n",
"beta = 2.56 #km/h/s (braking retardation)\n",
"r = 50.0 #N/t (train resistance)\n",
"meff = 0.75 # (motor efficiency)\n",
"\n",
"V1 = alpha*t1 #km/h (Max speed attained)\n",
"#Tractive force during coasting is\n",
"Ft = 98*M*G + M*r #N\n",
"#Also,Tractive force during coasting is given by\n",
"#Ft = 277.8*Me*beta_c . Therefore beta_c is\n",
"beta_c = Ft/(277.8*Me) #km/h/s\n",
"\n",
"#During Coasting period.(Using Newton's 1st eqn.) . \"V2\" is given by\n",
"V2 = V1 - beta_c*t3 #km/h\n",
"t4 = V2/beta #s (braking time) \n",
"\n",
"#Distance travelled during acceleration period.\n",
"dis1 = 0.5*alpha*t1*t1/3600 #km\n",
"#Distance travelled during constant speed period.\n",
"dis2 = V1*t2/3600 #km\n",
"#Distance travelled during coasting period.\n",
"dis3 = (V1+V2)/2*t3/3600 #km\n",
"#Distance travelled during braking period.\n",
"dis4 = 0.5*V2*t4/3600 #km\n",
"#Total distance between stops\n",
"D = dis1 + dis2 + dis3 + dis4 #km\n",
"#Distance travelled during acceleration and constant speed period\n",
"D2 = dis1 + dis2 #km\n",
"#Specific energy consumption is given by\n",
"spengy = (0.01072*(V1*V1/D)*(Me/M) + 27.25*G*(D2/D) + 0.2778*r*(D2/D))/meff #Wh/t-km\n",
"\n",
"print \"The specific energy consumption is =\",round(spengy,1),\"Wh/t-km.\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## EXAMPLE 43.14 , PAGE NO :- 1728"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Total number of locomotives required are = 4.0\n"
]
}
],
"source": [
"#An ore-carrying train weighing 5000 tonne is to be hauled down a gradient of 1:50 at a maximum speed of 30km/h\n",
"#and started on a level track at an acceleration of 0.29 km/h/s.How many locomotives,each weighing 75 tonne,will\n",
"#have to be employed?\n",
"#Train resistance during starting = 29.4 N,Train resistance at 30km/h = 49N/t,Coefficient of adhesion = 0.3\n",
"#Rotational inertia = 10%\n",
"################################################################################################################################\n",
"\n",
"#Given\n",
"M = 5000.0 #tonne (Mass of train)\n",
"Ml = 75.0 #tonne (Mass of locomotive) \n",
"G = 1.0/50 # (gradient)\n",
"Vm = 30.0 #km/h (Max speed)\n",
"a = 0.29 #km/h/s (acceleration) \n",
"r1 = 49.0 # (Train resistance at 30km/h)\n",
"r2 = 29.4 # (Train resistance at starting)\n",
"ua = 0.3 # (coefficient of adhesion)\n",
"\n",
"#Downward force due to gravity\n",
"F = M*G*9.8*1000 #N\n",
"#Train resistance\n",
"Fres = r1*M #N\n",
"#Braking force required is\n",
"Fbrk = F-Fres #N\n",
"#Max. braking force which one locomotive can produce.\n",
"#F = 1000*ua*M*g\n",
"Fbrk_1 = 1000*ua*Ml*9.8 #N\n",
"#Therefore, Number of locomotives required for braking\n",
"num1 = Fbrk/Fbrk_1\n",
"num1 = round(num1)+ 1\n",
"#Considering the starting case.Tractive force required is\n",
"Ft = 277.8*a*M*1.1 + M*r2\n",
"#Therefore, Number of locomotives required for starting\n",
"num2 = Ft/Fbrk_1\n",
"#Number of locomotives required\n",
"if num1>num2:\n",
" num = num1\n",
"else:\n",
" num = num2\n",
"print \"Total number of locomotives required are = \",round(num)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## EXAMPLE 43.15 , PAGE NO :- 1729"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Scheduled speed = 32.9 Km/h.\n",
"Specific energy consumption for up-gradient is = 69.08 Wh/t-km.\n",
"Specific energy consumption for down-gradient is = 39.58 Wh/t-km\n"
]
}
],
"source": [
"#A 200-tonne electric train runs according to the following quadrilateral speed/time curve:\n",
"# 1. uniform acceleration from rest at 2 km/h/s for 30 seconds.\n",
"# 2. coasting for 50 seconds\n",
"# 3. duration of braking:15 seconds\n",
"#If up-gradient is =1%,train resistance = 40N/t,rotational inertia effect = 10%,duration of stops = 15s and overall\n",
"#efficiency of gear and motor = 75%,find\n",
"#(i)schedule speed (ii)specific energy consumption (iii)how will the value of specific energy consumption change if\n",
"#there is a down-gradient of 1% rather than the up-gradient ?\n",
"########################################################################################################################\n",
"\n",
"#Given\n",
"M = 200.0 #tonne (Mass of train)\n",
"Me = 1.1*200.0 #tonne (rotational inertia effect on mass)\n",
"alpha = 2.0 #km/h/s (acceleration)\n",
"t1 = 30.0 #s (acceleration time)\n",
"t2 = 50.0 #s (coasting time)\n",
"t3 = 15.0 #s (braking time)\n",
"G = 1.0 # (% gradient)\n",
"r = 40.0 #N/t (train resistance)\n",
"tstop = 15.0 #s (stop time)\n",
"meff = 0.75 # (motor efficiency)\n",
"\n",
"V1 = alpha*t1 #km/h (Max speed)\n",
"#During coasting retardation force is\n",
"Fr = 98*M*G + M*r #N\n",
"#Also this retardation force in terms of coasting retardation beta_c is\n",
"#Fr = 277.8*Me*beta_c.Therefore,\n",
"beta_c = Fr/(277.8*Me) #km/h/s\n",
"#Using newton's Ist eqn in coasting period\n",
"V2 = V1-beta_c*t2 #km/h\n",
"\n",
"#Braking retardation is\n",
"beta = V2/t3\n",
"#Distance travelled during acceleration\n",
"dist1 = 0.5*alpha*t1*t1/3600 #m\n",
"#Distance travelled during coasting\n",
"dist2 = (V1+V2)/2*t2/3600 #m\n",
"#Distance travelled during braking\n",
"dist3 = 0.5*beta*t3*t3/3600 #m\n",
"#Total distance travelled\n",
"D = dist1 + dist2 + dist3 #km\n",
"#Total schedule time\n",
"T = t1 + t2 + t3 + tstop #s\n",
"#(i)Schedule speed\n",
"Vsch = D/T*3600 #km/h\n",
"print \"Scheduled speed = \",round(Vsch,1),\"Km/h.\"\n",
"#(ii)Specific energy consumption is given by\n",
"spengy = (0.01072*(V1*V1/D)*(Me/M) + 27.25*G*(dist1/D)+ 0.2778*r*(dist1/D))/meff #Wh/t-km\n",
"print \"Specific energy consumption for up-gradient is = \",round(spengy,2),\"Wh/t-km.\"\n",
"#If there is a down gradient then during coasting accelerative force is\n",
"Fa = 98*M*(-G) + M*r\n",
"#Also this accelerative force in terms of coasting acceleration alpha_c is\n",
"#Fa = 277.8*Me*alpha_c.Therefore,\n",
"alpha_c = Fa/(277.8*Me) #km/h/s\n",
"#Using newton's Ist eqn in coasting period\n",
"V2 = V1 - alpha_c*t2 #km/h\n",
"#Braking retardation is\n",
"beta = V2/t3\n",
"#Distance travelled during acceleration\n",
"dist1 = 0.5*alpha*t1*t1/3600 #m\n",
"#Distance travelled during coasting\n",
"dist2 = (V1+V2)/2*t2/3600 #m\n",
"#Distance travelled during braking\n",
"dist3 = 0.5*beta*t3*t3/3600 #m\n",
"#Total distance travelled\n",
"D = dist1 + dist2 + dist3 #km\n",
"#(iii)Specific energy consumption is given by\n",
"spengy = (0.01072*(V1*V1/D)*(Me/M) - 27.25*G*(dist1/D)+ 0.2778*r*(dist1/D))/meff #Wh/t-km\n",
"print \"Specific energy consumption for down-gradient is = \",round(spengy,2),\"Wh/t-km\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## EXAMPLE 43.16 , PAGE NO :- 1730"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEPCAYAAABGP2P1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHexJREFUeJzt3X2cnWV95/HPNwnyWGjQkkgxPAkxYCVExEKQHAuViF3g\nRdeoUR7Cdi0hqyBsNdi6THdfdKH7qhTbhGhN2Gg1DZLyEIklpmFEZMFggMhTSGV51ExAFKVRF5Lf\n/nHfk5yZzEzOzJz73E/f9+s1L86555xzX5cT5zf3dd3X91JEYGZm1mtM3g0wM7NicWEwM7M+XBjM\nzKwPFwYzM+vDhcHMzPpwYTAzsz4yLwySDpD0DUmPS3pU0rsljZe0WtJGSXdKOiDrdpiZWWs6ccVw\nPbAqIqYAxwFPAPOBNRExGVgLXNmBdpiZWQuU5QI3SfsDD0bEkf2OPwHMiIgeSROB7oh4W2YNMTOz\nlmV9xXA48JKkGyWtl/QlSfsAEyKiByAiNgMHZdwOMzNrUdaFYRwwDVgQEdOAfycZRup/meJcDjOz\nghiX8ec/DzwXEQ+kz1eQFIYeSROahpK2DPRmSS4YZmYjEBEa6XszvWJIh4uek3R0eug04FHgduDC\n9NgFwG1DfEZlv6666qrc2+D+uW/uX/W+RivrKwaATwJfk7QH8BQwBxgL3CTpIuAZYFYH2mFmZi3I\nvDBExMPAuwb41ulZn9vMzIbPK59z1Gg08m5Cpqrcvyr3Ddy/ust0HcNoSYoit8/MrIgkEUWdfDYz\ns/JxYTAzsz5cGMzMrA8XBjMz66MT6xisgH70I5g+HV59Ne+WmOVn3Di491445pi8W1Isviuppq64\nAiTo6sq7JWb5+dSn4Nhj4bLL8m5Je432riQXhhrauhUmTYJ16+Dww/NujVl+li+HZcvg1lvzbkl7\n+XZVG7Zly+Ckk1wUzGbMgLvvhu3b825Jsbgw1EwELFgAl1ySd0vM8jdxIkyYABs25N2SYnFhqJn7\n74df/ALOOCPvlpgVQ6MB3d15t6JYXBhqZsECmDsXxvgnbwa4MAzEk8818uKLcNRR8NRTcOCBebfG\nrBg2b05uV33pper8weTJZ2vZ4sVw7rkuCmbNPM+wKxeGmti2DRYtgnnz8m6JWfF4OKkvF4aaWLUq\n+avone/MuyVmxePC0JcLQ00sWOCrBbPBeD1DXy4MNbBpE6xfD7O8s7bZgDzP0JcLQw0sWgRz5sBe\ne+XdErPi8nDSTi4MFbd1KyxdChdfnHdLzIrNhWEnF4aKcy6SWWs8z7CTC0OFORfJrHWeZ9jJhaHC\nnItkNjweTkq4MFSYc5HMhseFIeGspIpyLpLZ8FUlN8lZSTYg5yKZDZ/nGRIuDBXkXCSzkfNwUgcK\ng6SnJT0s6UFJ30+PjZe0WtJGSXdKOiDrdtSJc5HMRs6FoTNXDNuBRkQcHxEnpsfmA2siYjKwFriy\nA+2oDecimY2c1zN0pjBogPOcDSxNHy8FzulAO2rBuUhmo+N5hs4UhgC+LWmdpD9Jj02IiB6AiNgM\nHNSBdtSCc5HMRq/uw0mdKAzTI2IacCYwT9J7SIpFM9+T2gbORTJrj7oXhnFZnyAifpL+90VJtwIn\nAj2SJkREj6SJwJbB3t/V1bXjcaPRoNFoZNvgEnMukll7zJiRLA7dvr0c6xm6u7vpbmMly3SBm6R9\ngDER8aqkfYHVwF8CpwEvR8S1kj4DjI+I+QO83wvcWhSR3IV09dXw/vfn3Rqz8psyJflja+rUvFsy\nfKNd4Jb1FcME4BZJkZ7raxGxWtIDwE2SLgKeATxVOkrORTJrr97hpDIWhtFyJEZFnHde8g/4iivy\nbolZNSxfnlwx3Hpr3i0ZvtFeMbgwVIBzkczar8y5Sc5KMucimWWgzusZXBhKzrlIZtmp622rLgwl\n51wks+y4MFgpORfJLDt1zU1yYSgx5yKZZauu8wwuDCXmXCSz7NVxOMmFoaSci2TWGS4MVhrORTLr\njDrOM7gwlFBEMul8ySV5t8Ss+uo4z+DCUELORTLrrLoNJ7kwlNCCBUkkcNmW6ZuVVd0Kg7OSSsa5\nSGadV7bcJGcl1Yxzkcw6r27zDC4MJeJcJLP81Gk4yYWhRJyLZJYfFwYrJOcimeWnTusZXBhKwrlI\nZvmq0zyDC0NJOBfJLH91GU5yYSgB5yKZFYMLgxWGc5HMiqEu8wwuDAXnXCSz4qjLPIMLQ8E5F8ms\nWOownOTCUHDORTIrljoUBmclFZhzkcyKpwy5Sc5KqjDnIpkVTx3mGVwYCsq5SGbFVfXhJBeGgnIu\nkllxuTBYLpyLZFZcVV/P0JHCIGmMpPWSbk+fj5e0WtJGSXdKOqAT7SgL5yKZFVvV5xk6dcVwKfBY\n0/P5wJqImAysBa7sUDtKwblIZsVX5eGkzAuDpEOAM4EvNx0+G1iaPl4KnJN1O8rCuUhm5eDCMDrX\nAX8GNC9ImBARPQARsRk4qAPtKAXnIpmVQ5XnGcZl+eGSPgD0RMRDkhpDvHTQVWxdXV07HjcaDRqN\noT6m3Hpzka6+Ou+WmNnuNM8zTJ2ab1u6u7vpbuPly25XPks6AXgPcDDwK+AR4NsR8bPdfrj0V8DH\ngNeBvYHfAm4BTgAaEdEjaSJwV0RMGeD9tVr5fN998LGPwZNPFndFpZntNHcuTJ4Ml12Wd0v6ymzl\ns6Q5ktaTTAzvDWwEtgCnAGskLZU0aagPj4jPRsSkiDgC+DCwNiLOA1YCF6YvuwC4baQdqBLnIpmV\nS1XnGQa9YpA0D1gSEb8a5PtTgTdGxL+2dCJpBnBFRJwl6UDgJuAtwDPArIj4+QDvqc0Vg3ORzMqn\nqLlJo71icIheQVxzTTKEtGRJ3i0xs+GYMiW5aSTveYZmoy0Mu518lvQ7wH8GDmt+fURcNNKTWl+9\nuUgrVuTdEjMbrt7hpCIVhtFq5eLnNuAAYA1wR9OXtYlzkczKq4rzDK3clfRQRORSC+sylDRzJsye\nDeefn3dLzGy4ijjP0In9GL4p6cyRnsCG5lwks3KrYm7SoHMMkn5JsvBMwGcl/QZ4LX0eEbF/Z5pY\nbc5FMiu/qs0zDHXF8MaI2D8ifisixkTE3k3PXRTawLlIZtVQtXmGoQrDvZJulXSxpMM61J5acS6S\nWTVULTdp0MIQEScAvQu9/1bSOknXSXqfpD0707zq6s1FuuSSvFtiZqNVtXmGISefI+LpiFgUEecA\nJ5NEWZwOfFeSb1kdhfvvh1/8As44I++WmFk7VGk4qeWbqyLitYhYGxGfjogTgY9n2K7Kcy6SWbVU\nqTC0so7hj4D/QbLyeSwdvCupqusYnItkVj1FWs/QiXUMf0uSgHqg70pqj8WL4dxzXRTMqqRK8wyt\nFIbngEcq+ad7DnpzkebNy7slZtZuVRlOamUHt08DqyR9B/hN78GI+Hxmraow5yKZVVejkdyGXrSN\ne4arlSuGq4GtwF4kO7D1ftkILFjgqwWzqqrKeoZWrhgOjoi3Z96SGujNRbr11rxbYmZZKNI+0KPR\nyhXDKknvy7wlNXDDDc5FMqu6KswztHK76i+BfUnmFzoaolel21W3boVJk2DdOkdgmFXZ8uXJPEOe\nIwOZ3646UIgeycY9NgzORTKrhyrMM+y2MEj67/2ejwH+MbMWVZBzkczqowrrGVqZY3iLpCsB0vC8\nW4BNmbaqYpyLZFYvZZ9naKUwXAT8XlocVgJ3RURXpq2qGOcimdVL2QvDoJPPkqY1Pd0D+CLwPWAx\nQESsz7xxFZh83rIFjj7auUhmdZJ3btJoJ5+HKgx3DfG+iIg/GOlJW1WFwnDNNfDkk7BkSd4tMbNO\nmjIluekkj/UMoy0Mgy5wi4j3jvRDLdGbi7RiRd4tMbNOK/M+0B71ztAddzgXyayuyjzP4MKQoYUL\nnYtkVldlXs/gwpCR3lykWbPybomZ5aHM6xlaCdFD0skkO7jteH1EfKWF9+0J3A28IX3vzRHxl5LG\nA8uBQ4GngVkR8cpwG19kzkUys7LOM7SSlfRV4EjgIWBbejgi4pMtnUDaJyK2ShpLcrvrJ4E/Bn4a\nEX8t6TPA+IiYP8B7S3lXknORzAzyy03K7K6kJicAx4z0N3REbE0f7pmeL4CzgRnp8aVAN7BLYSgr\n5yKZGSTzDHPnJvMMZVrg2kpTHwEmjvQEksZIehDYDHw7ItYBEyKiByAiNgMHjfTzi8a5SGbWq6zz\nDK1cMbwJeEzS9+m7tedZrZwgIrYDx0vaH7hF0rEkVw19XjbY+7u6unY8bjQaNBqNVk6bG+cimVmz\nTswzdHd3093Ge2NbmWOYMdDxiPjOsE8mfY5km9A/ARoR0SNpIkn+0pQBXl+6OYbzzkv+AVxxRd4t\nMbMiyGOeIbNIjHaQ9CbgtYh4RdLewJ3ANSTzCy9HxLVVmnx2LpKZ9ZdHblJmk8+S7omIU9Id3Jp/\nOw9nB7c3A0vTPRzGAMsjYpWk+4CbJF0EPANU4m7/JUvg3HNdFMxspzLuA53pFcNolemKYds2OPLI\nJBfJERhm1mzuXJg8GS67rDPny2xrT0n7tXDy3b6mLpyLZGaDKVtu0lAjXrdJ+htJp0rat/egpCMk\n/SdJdwIzs29iOTgXycwGU7bcpCGHkiSdCXwUmA4cCLwGbATuABanaxCya1xJhpI2bYLp0+HZZx2B\nYWYD6+T+DJmufI6IVcCqkX54XTgXycx2p0y5Sa1u7bkLb+2ZcC6SmbWik+sZOrG1514keUkPk9yq\n+g7ggYg4aaQnbblxJSgMixcnP+iVK/NuiZkVWSfXM2R2V1JEvDfd3vMnwLSIOCEi3gkcD7ww0hNW\niXORzKxVZcpNaqVuTY6IH/Y+iYhHgF3iK+rIuUhmNhxluW21lcKwQdKXJTXSr38ASlDzsrdgQbJw\npUxxumaWn7IUhlZC9PYC5gKnpofuBm6IiF9n3LZCzzE4F8nMhqtT8wyZb9QTEb+WtAhYFREbR3qi\nqnEukpkNV1lyk3ZbsySdRbKt57+kz6dKuj3rhhXZtm2waJFXOpvZ8JVhOKmVi5mrgBOBnwNExENA\nre/Ydy6SmY1UVQrDaxHxSr9jxRz47xDnIpnZSJUhN6mVwvCopNnAWElHSfo74N6M21VYmzbB+vUw\nqxI7SJhZp5VhPUMrheETwLEk+z1/HXgF6FCqePE4F8nMRqvow0ktb9QjaZ+I2Jpxe/qfs1C3qzoX\nyczaIevcpMwiMZpOcLKkx4An0ufHSVo40hOW2bJlcNJJLgpmNjpFn2doZSjpOuAM4KcAEfEwOxe7\n1YZzkcysXYo+z9DS2ruIeK7foW0ZtKXQnItkZu1U5HmGVgrDc5JOBkLSHpL+K/B4xu0qHOcimVk7\nFbkwtJKV9CbgeuB0kkJyJ3BpRPw088YVZPLZuUhm1m5Z5iZ1IivpJZJ9n2vLuUhm1m5Fzk1q5a6k\nIyStlPSipC2SbpN0RCcaVwTORTKzrBR1OKmVC5ivAzcBbwYOBr4BLMuyUUXiXCQzy0pRC0Mrcwwb\nIuId/Y49HBHHZdoyijHHMHMmzJ4N55+fazPMrIKymmfIfIEb8C1J8yUdJulQSZ8GVkk6UFKlR92d\ni2RmWSrqeoZWrhj+7xDfjojIbL4h7yuGyy+HPfaAa6/NrQlmVnFz58LkyXBZGxPoRnvF0HJW0og+\nXDoE+AowAdgO/ENEfEHSeGA5cCjwNDBrgGjvXAuDc5HMrBOyyE3KbChJ0rskTWx6fn56R9IXhjGE\n9DpweUQcC5wEzJP0NmA+sCYiJgNrgStH2oGsOBfJzDqhiLlJQ80xfBH4fwCSTgWuIfnr/xXgS618\neERsTnd8IyJeJVkxfQhwNrA0fdlS4JyRND4rzkUys04p4jzDUIVhbES8nD7+EPCliFgREZ8D3jrc\nE0k6DJgK3AdMiIgeSIoHcNBwPy9LzkUys04q2m2rQ618HitpXES8DpwGfLzF9+1C0n7AzSRRGq9K\n6j9xMOhEQldX147HjUaDRqMxnFOPiHORzKyTGo1k+HqkE9Dd3d10t7GyDDr5LOnPgTOBl4BJwLSI\nCElvBZZGxPSWTiCNA74JfCsirk+PPQ40IqInnce4KyKmDPDejk8+OxfJzDqt3esZMpt8joirgSuA\n/w2c0vQbegzJdp+tWgI81lsUUrcDF6aPLwBuG8bnZcq5SGbWaUWbZ8j6dtXpwN3AD0mGiwL4LPB9\nkpiNtwDPkNyu+vMB3t/RK4Zt2+DII2HFCkdgmFlntXM9Q+bpqqMREd8Dxg7y7dOzPPdIOBfJzPIy\n2nmGdvL0apOFC52iamb5KNJ6BheGlHORzCxPRZpncGFI3XADzJkDe+2Vd0vMrK6Ksp7BhYEkF+kr\nX4GLL867JWZWZy4MBeJcJDMrgqLMM9S+MDgXycyKoijzDLUvDM5FMrMiKcJwUu0Lg3ORzKxIilAY\nMl35PFpZr3x2LpKZFU07cpM6sedzZTkXycyKpgjzDLUtDNu2waJFXulsZsWT93BSbQuDc5HMrKhc\nGHLiXCQzK6q81zPUsjA4F8nMiizveYZaFgbnIplZ0eU5nFS7wuBcJDMrAxeGDnIukpmVQZ7zDLUq\nDM5FMrOyyHOeoVaFwblIZlYmeQ0n1aowOBfJzMokr8JQm6wk5yKZWdmMNDfJWUktci6SmZVNXvMM\ntSgMzkUys7LKYzipFoXBuUhmVlYuDBlxLpKZlVUe6xkqXxici2RmZZbHPEPlC4Nzkcys7Do9nFTp\nwuBcJDOrgkoVBkmLJfVI2tB0bLyk1ZI2SrpT0gFZnd+5SGZWBZ2eZ8j6iuFGoH8AxXxgTURMBtYC\nV2ZxYucimVlVdHqeIdPCEBH3AD/rd/hsYGn6eClwThbndi6SmVVJJ4eT8phjOCgiegAiYjNwUBYn\ncS6SmVVJ1QtDf20Pa9qyBVauTO5GMjOrgk7OM4zL/hS76JE0ISJ6JE0Etgz14q6urh2PG40GjUZj\ntydwLpKZVU3zPMPUqX2/193dTXcbLycyT1eVdBiwMiJ+L31+LfByRFwr6TPA+IiYP8h7h52uum0b\nHHkkrFjhCAwzq5a5c2HyZLjssqFfV+h0VUlfB+4Fjpb0rKQ5wDXAH0raCJyWPm8b5yKZWVV1ap6h\ncvsxzJwJs2fD+edn1Cgzs5y0uj9Doa8YOs25SGZWZZ1az1CpwuBcJDOruk4MJ1WmMDgXyczqwIVh\nGJyLZGZ10In1DJUoDM5FMrO66MQ8QyUKg3ORzKxOsh5OqkRhcC6SmdVJ1oWh9OsYtmyBo4+Gp55y\nBIaZ1cPu1jPUfh2Dc5HMrG6ynmcodWHYtg0WLYJ58/JuiZlZZ2U5nFTqwuBcJDOrKxeGQSxc6KsF\nM6unLNczlLYwOBfJzOosy3mG0hYG5yKZWd1lNZxUysLgXCQzMxeGPpyLZGaW3TxD6QqDc5HMzBJZ\nzTOUrjA4F8nMbKcshpNKVxici2RmtlMWhaFUWUnORTIz62ug3KRaZSU5F8nMrK8s5hlKUxici2Rm\nNrB2DyeVpjA4F8nMbGC1LQzORTIzG1i71zOUojA4F8nMbHDtnmcoRWFwLpKZ2dDaOZxU+MLgXCQz\ns92rVWFwLpKZ2e61c54ht8IgaaakJyQ9Kekzg73OuUhmZrvXznmGXAqDpDHA3wNnAMcCH5H0toFe\nW+VcpO6s9uUriCr3r8p9A/evrNo1nJTXFcOJwKaIeCYiXgP+CTh7oBdWORepqv84e1W5f1XuG7h/\nZVX2wvC7wHNNz59Pj+1izpyOtMfMrPR65xlGq/B/izsXycysNb3zDKOVS7qqpN8HuiJiZvp8PhAR\ncW2/1xU3+tXMrMBGk66aV2EYC2wETgN+Anwf+EhEPN7xxpiZWR/j8jhpRGyT9F+A1STDWYtdFMzM\niqHQG/WYmVnnFXLyudXFb2Uh6RBJayU9KumHkj6ZHh8vabWkjZLulHRA3m0dDUljJK2XdHv6vDL9\nk3SApG9Iejz9Ob67Kv2T9ClJj0jaIOlrkt5Q9r5JWiypR9KGpmOD9knSlZI2pT/f9+XT6tYM0re/\nTtv+kKQVkvZv+t6w+1a4wjCcxW8l8jpweUQcC5wEzEv7NB9YExGTgbXAlTm2sR0uBR5rel6l/l0P\nrIqIKcBxwBNUoH+SDgY+AUyLiHeQDC9/hPL37UaS3yHNBuyTpGOAWcAU4P3AQkkjnrjtgIH6tho4\nNiKmApsYZd8KVxgYxuK3soiIzRHxUPr4VeBx4BCSfi1NX7YUOCefFo6epEOAM4EvNx2uRP/Sv77e\nExE3AkTE6xHxChXpHzAW2FfSOGBv4AVK3reIuAf4Wb/Dg/XpLOCf0p/r0yS/WE/sRDtHYqC+RcSa\niOhNSbqP5PcLjLBvRSwMLS9+KyNJhwFTSX54EyKiB5LiARyUX8tG7Trgz4DmSauq9O9w4CVJN6ZD\nZV+StA8V6F9E/Bj4G+BZkoLwSkSsoQJ9G8BBg/Sp/++cFyj375yLgFXp4xH1rYiFobIk7QfcDFya\nXjn0n/kv5Z0Akj4A9KRXRUNdppayfyTDK9OABRExDfh3kmGJ0v/8JP02yV/ShwIHk1w5fJQK9K0F\nleuTpD8HXouIZaP5nCIWhheASU3PD0mPlVp6mX4z8NWIuC093CNpQvr9icCWvNo3StOBsyQ9BSwD\n/kDSV4HNFenf88BzEfFA+nwFSaGows/vdOCpiHg5IrYBtwAnU42+9TdYn14A3tL0ulL+zpF0Iclw\n7uymwyPqWxELwzrgrZIOlfQG4MPA7Tm3qR2WAI9FxPVNx24HLkwfXwDc1v9NZRARn42ISRFxBMnP\na21EnAespBr96wGek3R0eug04FGq8fN7Fvh9SXulk5KnkdxAUIW+ib5XsIP16Xbgw+ndWIcDbyVZ\ndFtkffomaSbJUO5ZEfGbpteNrG8RUbgvYCbJyuhNwPy829OG/kwHtgEPAQ8C69M+HgisSfu6Gvjt\nvNvahr7OAG5PH1emfyR3Iq1Lf4b/DBxQlf4BV5HcELGBZFJ2j7L3Dfg68GPgNyTFbw4wfrA+kdzF\n82/p/w7vy7v9I+jbJuCZ9HfLemDhaPrmBW5mZtZHEYeSzMwsRy4MZmbWhwuDmZn14cJgZmZ9uDCY\nmVkfLgxmZtaHC4OZmfXhwmCFIelASQ+mQXU/kfR8+vhBSfe08TxnS/qL9PGfSvpYuz67EyRdIOnv\nhvj+2yXd2Mk2WbXksrWn2UAi4mXgeABJ/w14NSI+n8GpPg38h/ScX8zg8zth0JWpEfGIpN+VdEhE\nPN/JRlk1+IrBiqpPSqukX6b/nSGpW9Ktkv5N0v+UNFvS/ZIeTvNgkPQmSTenx++XdFJ6/Cjg12kR\nQtJVki5PH98l6Zr09U9Imr5Lo6SJkr6TXsls6H2NpD+UdK+kByQtT2O5kfQuSd9Ld9a6T9K+kvaU\ntCR9/w8kNdLXXpDuvvUtJbuMXdt03jnpsftIIlZ6j39Qya6AD0rqbmrqN0lyq8yGzYXByqL5L+R3\nAB8HjgHOA46KiHcDi0l2I4Nkx7XPp8f/Y/o9SH6prh/iPGPT93wK6Brg+7OBf4kkfvs44CFJbwT+\nAjgtIk4AfgBcLmkPko2mPhHJzlqnA78G5gHbI9kxbTawNA2MJP3MD6Z9/FD6l//EtC0nAaek/e71\nOZL8m+NJNmXp9QDwniH6aTYoDyVZGa2LiC0Akn5EEogG8EOgkT4+HZjStI3hfulf8W8GXhzis/85\n/e8PSPYo2OXcwOL0l/5tEfFw+hf/McD30vPtAfwfYDLw44hYDzt270PSKcAX0mMbJT0N9Ca3/mvT\n6x5N2/A7wF1NVznLgaPS199DUlhuamo7JJHSBw/RT7NBuTBYGTXHCm9ver6dnf+mBbw7ku1hd5D0\nK2B/Btf7WdsY4P8fEfFdSacCHwBulPR54OfA6oj4aL9zvZ2hNy7a8dIBzg+79mcXEXGJpHcBfwT8\nQNK0iPgZsBfwqxbObbYLDyVZWQx3c/bVwKU73iwdlz58nJ1/bQ/7nJImAVsiYjHJ8NQ0km1ap0s6\nMn3NPulcxkZgoqR3psf3kzQW+C7w0fTY0SQbqWwcoh33A6dKGp9eqXywqT1HRMS6iLiK5Cqhd1OW\no4FHWuynWR8uDFYWg92FM9jxS4ET0gnpR4A/TY/fTbLndiufNdBnN4CHJa0HZgHXR8RLJBvALJP0\nMHAvMDm9WvkQ8PeSHiIpVnsCC4GxkjaQ7Hh3Qf8rm+bzR7I/cRdJAfouyUY6vf5XOom9Abg3Ijak\nx98L3DFIP82G5P0YrHYkXQesjIi1ebclC+lEdjdwSkRsz7k5VkK+YrA6+itgn7wbkaFJJDsfuijY\niPiKwczM+vAVg5mZ9eHCYGZmfbgwmJlZHy4MZmbWhwuDmZn18f8BcB9M+5Exe5oAAAAASUVORK5C\nYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x600a6b0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#An electric train has an average speed of 45 kmph on a level track between stops 1500m apart.It is accelerated at\n",
"#1.8km/h/s and is braked at 3 km/h/s.Draw the speed-time curve for the run.\n",
"####################################################################################################################\n",
"\n",
"import math as m\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline \n",
"\n",
"#Given\n",
"alpha = 1.8 #km/h/s (acceleration)\n",
"beta = 3.0 #km/h/s (retardation)\n",
"S = 1.5 #km (Distance of run)\n",
"Va = 45.0 #km/h (Average speed)\n",
"\n",
"T = S/Va*3600 #s (Time of run)\n",
"\n",
"#Constant K is given by\n",
"K = 0.5*(1/alpha + 1/beta)\n",
"#Max speed is given by\n",
"Vm = T/(2*K)-m.sqrt(T*T/(4*K*K) - 3600*S/K) #km/h\n",
"#Acceleration time\n",
"t1 = Vm/alpha #s\n",
"#Braking time\n",
"t3 = Vm/beta #s\n",
"#Free running time\n",
"t2 = T - (t1+t3) #s\n",
"\n",
"#SPEED TIME CURVE\n",
"\n",
"plt.plot([0,t1,t1+t2,t1+t2+t3], [0,Vm,Vm,0])\n",
"plt.ylabel('Speed(in km/h)')\n",
"plt.xlabel('Time(in seconds)')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## EXAMPLE 43.17 , PAGE NO :- 1731"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Maximum Speed is 72.85 Km/h.\n"
]
}
],
"source": [
"#A train has schedule speed of 60 km per hour between the stops which are 9 km apart.Determine the crest speed over\n",
"#the run,assuming trapezoidal speed-time curve.The train accelerates at 3km/h/s and retards at 4.5 km/h/s.Duration\n",
"#of stops is 75 seconds.\n",
"#########################################################################################################################\n",
"import math as m\n",
"\n",
"#Given\n",
"alpha = 3.0 #km/h/s (acceleration)\n",
"beta = 4.5 #Km/h/s (retardation)\n",
"S = 9.0 #km (distance)\n",
"Vsch = 60.0 #km/h (schedule speed)\n",
"\n",
"Tsch = S/Vsch*3600 #s (schedule time)\n",
"T = Tsch - 75.0 #s (time of run)\n",
"#Constant K is\n",
"K = 0.5*(1/alpha + 1/beta)\n",
"\n",
"#Maximum speed Vm is\n",
"Vm = (T/(2*K)) - m.sqrt(T*T/(4*K*K) - 3600*S/K)\n",
"\n",
"print \"Maximum Speed is\",round(Vm,2),\"Km/h.\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## EXAMPLE 43.18 , PAGE NO :- 1732"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Schedule speed is 60.0 km/h.\n"
]
}
],
"source": [
"#An electric train is to have acceleration and braking retardation of 1.2 km/h/s and 4.8 km/h/s respectively.If the ratio of\n",
"#maximum to average speed is 1.6 and time for stop is 35 seconds,find schedule speed for a run of 3km.Assume simplified\n",
"#trapezoidal speed-time curve.\n",
"#############################################################################################################################\n",
"import math as m\n",
"alpha = 1.2 #km/h/s (acceleration)\n",
"beta = 4.8 #km/h/s (retardation)\n",
"S = 3.0 #km (distance)\n",
"\n",
"#Constant K is\n",
"K = 0.5*(1/alpha + 1/beta)\n",
"\n",
"#The average speed is Va = S/T . Therefore Va*T = S*3600\n",
"Va_T = S*3600 \n",
"#Now Vm/Va = 1.6 .Therefore,\n",
"Vm_T = Va_T*1.6\n",
"\n",
"#Since, Vm^2*K - Vm*T + 3600*S = 0, Therefore\n",
"#Vm^2 = Vm*T - 3600*S\n",
"Vm = m.sqrt((Vm_T - 3600*S)/K) #km/h\n",
"#Average Speed is\n",
"Va = Vm/1.5 #km/h\n",
"#Actual Time of Run\n",
"T = 3600*S/Va #s\n",
"#Schedule Time\n",
"Tsch = T + 35.0 #s\n",
"#Schedule Speed\n",
"Vsch = S/Tsch*3600 #km/h\n",
"print \"Schedule speed is\",round(Vsch),\"km/h.\" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## EXAMPLE 43.19 , PAGE NO :- 1732"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The rate of acceleration required to operate this service = 1.85 km/h/s.\n"
]
}
],
"source": [
"#An electric train has a schedule speed of 25 kmph between stations 800m apart.The duration of stop is 20 seconds,the\n",
"#maximum speed is 20 percent higher than the average running speed and the braking retardation is 3 km/h/s.Calculate\n",
"#the rate of acceleration required to operate this service.\n",
"###################################################################################################################\n",
"\n",
"#Given\n",
"Vsch = 25.0 #km/h (Schedule speed)\n",
"S = 0.8 #km (Distance)\n",
"beta = 3.0 #km/h/s (Retardation)\n",
"\n",
"Tsch = S/Vsch*3600 #s\n",
"\n",
"#Actual time of run = Tsch - (time of stop)\n",
"T = Tsch - 20.0 #s\n",
"Va = S/T*3600 #km/h (Average speed)\n",
"Vm = 1.2*Va #km/h (Maximum speed)\n",
"\n",
"#Since, Vm^2*K -Vm*T + 3600*S = 0\n",
"#Constant K = (Vm*T - 3600*S)/(Vm^2)\n",
"K = (Vm*T - 3600*S)/(Vm*Vm)\n",
"\n",
"#Also,K = 0.5*(1/alpha + 1/beta).Therefore,\n",
"alpha = 1/(2*K - 1/beta) #km/h/s\n",
"\n",
"print \"The rate of acceleration required to operate this service =\",round(alpha,2),\"km/h/s.\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## EXAMPLE 43.20 , PAGE NO :- 1733"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Retardation = 0.51 km/h/s.\n"
]
}
],
"source": [
"#A suburban electric train has a maximum speed of 80 kmph.The schedule speed including a station stop of 35 seconds is 50kmph.\n",
"#If the acceleration is 1.5 km/h/s,find the value of retardation when the average distance between stops is 5 km.\n",
"################################################################################################################################\n",
"\n",
"#Given\n",
"Vsch = 50.0 #km/h (schedule speed)\n",
"S = 5.0 #km (distance)\n",
"alpha = 1.5 #km/h/s (acceleration) \n",
"Vm = 80.0 #km/h (Max speed)\n",
"tstop = 30.0 #s (Time of stop)\n",
"\n",
"\n",
"Tsch = S/Vsch*3600 #s (Schedule time)\n",
"T = Tsch - tstop #s (Actual time of run)\n",
"\n",
"#Since, Vm^2*K -Vm*T + 3600*S = 0\n",
"#Constant K = (Vm*T - 3600*S)/(Vm^2)\n",
"K = (Vm*T - 3600*S)/(Vm*Vm)\n",
"\n",
"#Also,K = 0.5*(1/alpha + 1/beta).Therefore,\n",
"beta = 1/(2*K - 1/alpha) #km/h/s\n",
"\n",
"print \"Retardation =\",round(beta,2),\"km/h/s.\""
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"## EXAMPLE 43.21 , PAGE NO :- 1733"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Duration of acceleration = 32.0 s.\n",
"Duration of coasting retardation = 96.84 s.\n",
"Duration of braking retardation = 15.16 s.\n"
]
}
],
"source": [
"#A train is required to run between two stations 1.6 km apart at the average speed of 40 kmph.The run is to be made to a\n",
"#simplified quadrilateral speed-time curve.If the maximum speed is to be limited to 64 kmph,accelerating to 2 km/h/s and\n",
"#coasting and braking retardation to 0.16 km/h/s and 3.2 km/h/s respectively,determine the duration of acceleration,coasting\n",
"#and braking periods.\n",
"#################################################################################################################################\n",
"from sympy import Eq,Symbol,solve\n",
"#Given\n",
"S = 1.6 #km (Distance)\n",
"Va = 40.0 #km/h (Average speed)\n",
"Vm = 64.0 #km/h (Maximum speed)\n",
"alpha = 2.0 #km/h/s (Acceleration)\n",
"beta_c = 0.16 #km/h/s (Coasting retardation)\n",
"beta = 3.2 #km/h/s (braking retardation)\n",
"\n",
"T = S/Va*3600 #s (Actual time of run)\n",
"t1 = Vm/alpha #s (acceleration time)\n",
"#Let us assume the speed at starting of braking be V2\n",
"V2 = Symbol('V2')\n",
"t2 = (Vm-V2)/beta_c #s (coasting period)\n",
"t3 = V2/beta #s (braking period)\n",
"eq = Eq(t1+t2+t3,T)\n",
"V2 = solve(eq)\n",
"Ve2 = V2[0]\n",
"#Therfore coasting and braking periods are\n",
"t2 = (Vm-Ve2)/beta_c #s (coasting period)\n",
"t3 = Ve2/beta #s (braking period)\n",
"\n",
"print \"Duration of acceleration = \",round(t1,2),\"s.\"\n",
"print \"Duration of coasting retardation = \",round(t2,2),\"s.\"\n",
"print \"Duration of braking retardation = \",round(t3,2),\"s.\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## EXAMPLE 43.22 , PAGE NO :- 1737"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Speed-Armature current graph\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEPCAYAAAC3NDh4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYVdWd7vHviyCDA6I2YEQU4hDROAXFKaEQNQ590cSI\nmmickk7UVtuYbiG3uyG5yVXMTZt0oiYmxkZjnCeMraBCaYzzjBNNIhIlUM6K4gDyu3+sfaxDWbuo\nOlWn9jnU+3me87DPqn3O+dUG6q219t5rKSIwMzNrTa+iCzAzs9rlkDAzs1wOCTMzy+WQMDOzXA4J\nMzPL5ZAwM7NcVQ8JSQMlXSPpWUlPSxojaZCkWZLmSZopaWDZ/pMlzc/237/a9ZmZWb7u6En8DPjv\niNgW2BF4DpgE3BER2wCzgckAkkYBE4FtgQOBCySpG2o0M7NWVDUkJK0PfD4iLgGIiBUR8RZwCDA9\n2206cGi2PQG4MtvvBWA+sFs1azQzs3zV7kmMAF6VdImkRyVdJGkAMCQimgAiYgkwONt/U+DFstcv\nytrMzKwA1Q6J3sAuwPkRsQvwLmmoqeVcIJ4bxMysBvWu8vu/BLwYEQ9nz68jhUSTpCER0SRpKPBy\n9vVFwGZlrx+Wta1CkkPFzKwCEdGh87xV7UlkQ0ovSto6axoPPA3MAI7L2o4Fbsq2ZwBHSlpb0ghg\nS+DBnPeu+ceUKVMKr8F1us56rrMeaqynOitR7Z4EwGnA5ZL6AM8DxwNrAVdLOgFYSLqiiYh4RtLV\nwDPAcuDkqPQ7MzOzTqt6SETEE8CurXxp35z9zwbOrmpRZmbWLr7juooaGhqKLqFdXGfXcp1dpx5q\nhPqpsxKqx9EcSR6FMjPrIElELZ24NjOz+uaQMDOzXA4JMzPL5ZAwM7NcDgkzM8vlkDAzs1wOCTMz\ny+WQMDOzXA4JMzPL5ZAwM7NcDgkzM8vlkDAzs1wOCTMzy+WQqJKHHoIf/AA8Wa2Z1TOHRJWMGAHX\nXw/f+56DwszqV3csX9ojbbwx3HknjB+fQuLss0EdmsXdzKx4Dokq2mijFBT77puC4pxzHBRmVl88\n3FRlG20Ed9wBt98OZ53loSczqy8OiW5QCoo77oB/+RcHhZnVD4dEN9lwwxQSs2fDd7/roDCz+uCQ\n6EaloLjrLjjzTAeFmdU+h0Q3GzQonZ/44x/hO99xUJhZbXNIFKAUFPfcA2ec4aAws9rlkCjIBhuk\noLj3Xvinf3JQmFltckgUqBQU998Pp5/uoDCz2uOQKNjAgTBrFjz4IJx2moPCzGpL1UNC0guSnpD0\nmKQHs7ZBkmZJmidppqSBZftPljRf0rOS9q92fbVg4ECYORMefhhOPdVBYWa1ozt6EiuBhojYOSJ2\ny9omAXdExDbAbGAygKRRwERgW+BA4AKpZ0xkUQqKRx6BU06BlSuLrsjMrHtCQq18ziHA9Gx7OnBo\ntj0BuDIiVkTEC8B8YDd6iPXXT0Hx+OMOCjOrDd0REgHcLukhSd/I2oZERBNARCwBBmftmwIvlr12\nUdbWY5SC4skn4eSTHRRmVqzuCIm9ImIX4CDgFEmfJwVHOY/Cl1lvPbjtNnjqKTjpJAeFmRWn6lOF\nR8Ti7M9XJN1IGj5qkjQkIpokDQVeznZfBGxW9vJhWdsnTJ069ePthoYGGhoaur74Aq23Htx6Kxx0\nEHz72/DLX0IvX4tmZh3Q2NhIY2Njp95DUcVLaSQNAHpFxDuS1gFmAd8HxgOvR8Q0SWcBgyJiUnbi\n+nJgDGmY6XZgq2hRpKSWTWuspUtTUHzmM/CrXzkozKxykoiIDl0MVO2QGAHcQBpO6g1cHhHnSNoQ\nuJrUa1gITIyIN7PXTAZOBJYDp0fErFbet8eEBMA776Sg2HpruOgiB4WZVabmQqJaelpIQAqKgw+G\nLbeEX//aQWFmHVdJSPhHTZ1Yd1347/+Gv/wFvvENn8w2s+7hkKgj66wDt9wCCxbAiSfCRx8VXZGZ\nrekcEnVmnXXgD3+AhQsdFGZWfQ6JOlQKir/+FY4/3kFhZtXjkKhTAwakoFi0yEFhZtXjkKhjAwbA\nzTfD4sVw3HEOCjPreg6JOjdgAMyYAUuWwNe/DitWFF2Rma1JHBJrgP79U1C88oqDwsy6lkNiDdG/\nP9x0E7z2GhxzjIPCzLqGQ2IN0r8/3HgjvPGGg8LMuoZDYg1TCoo334Sjj3ZQmFnnOCTWQP36wQ03\nwNtvw1e/CsuXF12RmdUrh8Qaql8/uP56ePddB4WZVc4hsQYrBcWyZXDUUQ4KM+s4h8Qarm/fFBTv\nv++gMLOOc0j0AH37wnXXwYcfwpFHOijMrP0cEj1E375wzTUpII44IgWGmdnqOCR6kL594dpr0xxP\nEyc6KMxs9RwSPczaa6ceBTgozGz1HBI90Nprw9VXgwSHH+6gMLN8Dokeau214aqrYK214LDD4IMP\niq7IzGqRQ6IHKwVFv37wpS+ly2TNzMo5JHq4Pn3giitg4ECYMAHee6/oisysljgkjN694bLLYPBg\n+Pu/T1N5mJmBQ8IyvXvD9Omw2WZw8MHwzjtFV2RmtcAhYR9bay347W9hyy3hwANh6dKiKzKzojkk\nbBW9esFFF8F228H++8NbbxVdkZkVySFhn9CrF1x4IXzuc7DffmkBIzPrmRwS1ioJfv5z2HNPGD8e\nXn+96IrMrAjdEhKSekl6VNKM7PkgSbMkzZM0U9LAsn0nS5ov6VlJ+3dHfdY6Cc47D/bZJwXFq68W\nXZGZdbfu6kmcDjxT9nwScEdEbAPMBiYDSBoFTAS2BQ4ELpCkbqrRWiHBueemE9n77AMvv1x0RWbW\nnaoeEpKGAQcBvylrPgSYnm1PBw7NticAV0bEioh4AZgP7FbtGq1tEvzoR3DooTBuHDQ1FV2RmXWX\n7uhJnAf8MxBlbUMiogkgIpYAg7P2TYEXy/ZblLVZwST4wQ/SWhQNDbB4cdEVmVl36F3NN5d0MNAU\nEY9Lamhj12jja62aOnXqx9sNDQ00NLT19tZV/v3f0413Y8fCnDmwqSPcrGY1NjbS2NjYqfdQRP7P\nZ0l7AEcDnwc2Ad4DngJuAX4XEW1eRS/p/2avXwH0B9YDbgBGAw0R0SRpKDAnIraVNAmIiJiWvf42\nYEpEPNDifaOtuq36fvxj+NWvYPZsGD686GrMrD0kEREdOs+bGxKSbgX+BtwEPAy8DPQDtgbGAf8L\n+I+ImNHO4sYCZ0bEBEnnAq9FxDRJZwGDImJSduL6cmAMaZjpdmCrlongkKgN552XLpOdPRu22KLo\nasxsdSoJibaGm46JiJYXPb4DPJo9fiJp4w7WWHIOcLWkE4CFpCuaiIhnJF1NuhJqOXCy06B2nXFG\nGnpqaEhBMXJk0RWZWVdrc7hplR2l9SkLlYgo7PYq9yRqy4UXwtlnp6DYcsuiqzGzPF3dkyi96beA\n7wPv03yCOQD/3mgAnHRS6lGMGwd33AHbbFN0RWbWVdpzddN3ge1bGXoy+9g3v5kWMBo/Hm6/Hbbd\ntuiKzKwrtCck/gIsq3YhVv+OOy71KMaPh1mzYPvti67IzDqrPSExGbhX0gPAB6XGiDitalVZ3Tr6\n6LQuxX77wcyZsMMORVdkZp3RnpD4FWl+pbnAyuqWY2uCo45KPYr994dbb4Wddy66IjOrVHtCok9E\nfKfqldga5fDDU4/igAPglltg9OiiKzKzSrQnJG6V9A/Azaw63OQVBqxNX/5y6lEcdBDcfDOMGVN0\nRWbWUau9T0LSglaaIyIKuwTW90nUl1tugeOPhxtvTIsYmVkxunRajlrmkKg/M2fCMcfAddfB5z9f\ndDVmPVMlIVHRVOHZpHxm7fbFL8Lvfw+HHQadnJTSzLpRpetJXNylVViPsO++cNVV6aT2nXcWXY2Z\ntYeHm6zb3X03fOUrcNllqYdhZt2jauckJO0C7E2as+lPEfFoZSV2DYdE/bv33rQc6n/9V7r6ycyq\nryrnJCT9O2kd6o2AjYFLJP1rZSWaJXvumS6LPf749KeZ1ab2XAI7D9gxIt7PnvcHHo+Iwub6dE9i\nzfHww3DwwfDLX8KXvlR0NWZrtqpMFU5ana4faapwgL7Aog7WZtaq0aPT1B0HHQQffZTOVZhZ7WhP\nSLwFPC3pdtI5if2AByX9J3iiP+u8XXZJ91EccACsWAFHHll0RWZW0p6QuCF7lDRWpxTryXbcMa1D\nsf/+KSiOPrroiswM2hESETG9Owox2377tLLdfvuloadjjy26IjOr9I7rqV1chxkAo0altbL/9V/h\nYt+yaVa49gw3teaRLq3CrMw226SgGD8+DT1961tFV2TWc7XZk5C0lqQzWrZHhK9st6raaqs0x9PZ\nZ8P55xddjVnP1WZIRMRHwFHdVIvZKkaOTEHxk5/AT39adDVmPVN7bqY7D+gDXAW8W2ovcmoO30zX\ns/z1r7DPPumeilNPTXdrq0O3A5kZVGnuJklzWmmOiNinIx/UlRwSPc9bb6V5ni64APr3h1NOga9+\nFdZZp+jKzOqHFx2yNd7KlWma8fPPh3vuSQsZnXxyOodhZm3rtkWHzIrSq1e6j+LGG+GRR1KvYu+9\n05TjM2ak+yvMrOu4J2F174MP4JprUu9i8WL49rfhxBPh7/6u6MrMakvN9SQk9ZX0gKTHJM2VNCVr\nHyRplqR5kmZKGlj2msmS5kt6VtL+1azP1gx9+6ZpPO67D66/HubPh623TkNR998P/n3CrHLtXXRo\nT2ALym6+i4hL2/UB0oCIWCZpLeBPwGnAYcBrEXGupLOAQRExSdIo4HJgV2AYcAewVctug3sStjqv\nvw6XXJJOdG+wQTrRfdRRaXjKrKeq1qJDlwH/j7Qy3a7ZY3R7PyAilmWbfUkhE8AhpIWMyP48NNue\nAFwZESsi4gVgPrBbez/LrGTDDeHMM1Ov4oc/TD2M4cPhu9+Fv/yl6OrM6kd7puUYDYyq9Fd3Sb1I\n03h8Gjg/Ih6SNCQimgAiYomkwdnumwL3lb18UdZmVpFeveDAA9Pj+efT4ka77w677pp6FwccAGut\nVXSVZrWrPSHxFDAUWFzJB0TESmBnSesDN0jajtSbWGW3jr7v1KlTP95uaGigoaGhkvKsBxk5Es49\nF77/fbjqKpg6Nd2cd9JJcMIJsNFGRVdo1rUaGxtpbGzs1Hu092a6nYAHgQ9K7RExocMfJv0bsAz4\nBtAQEU2ShgJzImJbSZPSW8e0bP/bgCkR8UCL9/E5CesSDz6YroqaMQMOPTT1Lka3ezDVrL5U647r\nsa21R8Rd7ShoY2B5RLyVrY09EzgHGAu8HhHTck5cjyENM92OT1xbN3j11TQ1+S9/CYMHp7CYOBH6\n9Su6MrOuU3N3XEv6LOnEdK/scVVE/EjShsDVwGbAQmBiRLyZvWYycCKwHDg9Ima18r4OCauKjz5K\na26ff366We+EE9J9F1tsUXRlZp3XpSEh6Z6I2FvSUlY9ZyDSkND6lZfaOQ4J6w5//jNceCFMn54m\nFTzllHS3dy/PU2B1quZ6EtXikLDutGwZXHFF6l0sXZrmijruOBg0qOjKzDqmS++TkLRuOz5wtfuY\n1bsBA9I0H488Apdemv4cORK++U147LGiqzOrrrY6zjdJ+omkL0j6eEJmSSMlnShpJnBA9Us0qw0S\n7LEH/O53MG8ejBgBhxyShqIuvzzNIWW2pmlzuEnSQcDXgL2ADUknk+cBtwAXR8SS7iiylbo83GQ1\nYcUK+MMf0lDU3Lmpx/HlL8NOO/kmPas9PidhVqB58+Cii+C229JstGPHphX19tkHRo3yanpWvK6+\nummXtl7o5UvN8i1ZAnPmpMfs2emE97hxzaHx6U87NKz7dXVIlJYt7Ueav+kJ0uWvOwAPR8Qenai1\nUxwSVm8WLmwOjDvvTENRpcAYNw4226zoCq0nqNYd19eTpsaYmz3fHpgaEV+puNJOckhYPYtIs9PO\nnp0ec+ak6czLQ2Pw4NW/j1lHVSskno6I7VbX1p0cErYmWbkSnn66OTTuvhuGDWsOjLFjfU+GdY1q\nhcQVwLvA77KmrwHrRsRRFVXZBRwStiZbsSLdf1EKjfvuSyvtlXoae+8N6/oOJatAtUKiH3AS8IWs\n6W7gwoh4v6Iqu4BDwnqSDz9Ms9WWQuPhh9MltqWexh57eCJCa5+qXQKbzeA6PCLmVVpcV3JIWE+2\nbBnce29zaDz1FIwZ09zTGD0a+vQpukqrRdXqSUwAfgysHREjJO0E/KCS9SS6ikPCrNnbb8Mf/9gc\nGs8/n4akSpfc7rijb+yzpFoh8QiwD9AYETtnbXMj4rMVV9pJDgmzfK++Cnfd1RwaTU3Q0NDc09h2\nW9+j0VNVKyTuj4jdJT1WFhJPRsQOnai1UxwSZu33t79BY2NzaCxb1tzLGDfON/b1JNUKiYuBO4FJ\nwGHAaUCfiPh2pYV2lkPCrHILFjTfnzFnThqKGjeuOTiGDy+6QquWaoXEAOB/A/tnTTOBH/rqJrP6\nV35jXyk01luvuZcxbhxssknRVVpXqeoEf5IGRMSyiirrYg4Js+qIaL6xb86cdG5jyJDmXkZDA2y8\ncdFVWqWq1ZPYE/gN6Qa64ZJ2BL4VESdXXmrnOCTMusdHH8ETTzTPO3XPPWm971JofOELaUoRqw/V\nCokHgK8AM8pOXD8VEdtXXGknOSTMirF8eVqZrzQ0dd99sM02zcNTe++dhqusNlUtJCJiTIurm56I\niB07UWunOCTMasMHHzTfDT5nTrobfIcdmnsae+4J/fsXXaWVVCskrgX+A/gFMAY4HRgdEUdWWmhn\nOSTMatN776W7wUvDU08+me4AL4XGmDGw9tpFV9lzVSskNgZ+BuxLWhN7JnB6RLxWaaGd5ZAwqw9L\nl6bzGKXhqeeeg913bx6eGj0aevcuusqew8uXmllNe/PNNBV6aXjqhRc8hUh3qlZPYiSpJ7E7EMB9\nwBkR8XylhXaWQ8JszfDKK81TiMyZk6YQGTu2OTS22853g3elqk3LAZwPXJE1HQmcGhFjKqqyCzgk\nzNZMixevujb4G2/AllvCyJEwYsSqj+HDfX6jo6oVEp+Yp8lXN5lZd2hqSrPaLljwyceiRelGv5bh\nUXp86lPQq1fR30FtqVZITAPeAK4kDTcdAQwiTR9ORLxeUbWd4JAwsxUr4KWXUmC0FiRvvJF6G+XB\nUd4j2XDDnjeUVa2QWNDGlyMiRrbx2mHApcAQYCXw64j4T0mDgKuAzYEXgIkR8Vb2msnACcAK0lVU\ns1p5X4eEmbXpvffSifHWeiHPP5/WFs/rhYwYAeusU/R30PVq7uomSUOBoRHxuKR1gUeAQ4Djgdci\n4lxJZwGDImKSpFHA5cCuwDDgDmCrlongkDCzznrjjdYDZMGCFC7rrdd6eIwcmXoo9bj6X5eGhKRd\ngRcjYkn2/OukqcIXAlMrGWaSdCPpprxfAGMjoikLksaI+IykSaTeybRs/1uzz3qgxfs4JMysalau\nTOdD8oayFi+GoUObg2PzzdP5kZaPddetrSGtSkKirdtYfkW6gQ5JXwDOAU4FdgIuIs3n1JHitshe\nez8wJCKaACJiiaTB2W6bki6xLVmUtZmZdZtevdIU6ZtskqYWaWn5cnjxxebQWLgQHnssBUv5A5oD\nY+jQ1oOk9Fh//doKlJK2QmKtst7CEcBFEXEdcJ2kxzvyIdlQ07WkcwzvSGrZDehwt2Dq1Kkfbzc0\nNNDQ0NDRtzAzq0ifPmnYaWTuGdk07fo773wyOJqa4Kmn4M47V21bvjw/QFoGzAYbtC9QGhsbaWxs\n7NT32tZw01PAThGxQtJzwD9ExN2lr7V3FlhJvYE/ALdGxM+ytmeBhrLhpjkRsW0rw023AVM83GRm\na7ply1YNjSVLWg+YpiZ4/30YPLjtnknpseGGzZcCd/Vw0xXAXZJeBd4D/ph9yJbAWx34jN8Cz5QC\nIjMDOA6YBhwL3FTWfrmk80jDTFsCD3bgs8zM6tKAAc3nOFbnvffg5Zc/GR7PP5+mby9ve+edtFDU\n0KGV1dXm1U2Sdgc2AWZFxLtZ29akBYgeXe2bS3sBdwNzSUNKAXyP9IP/amAz0onwiRHxZvaaycCJ\nwHJ8CayZWad8+GFzoIweXWOXwFaLQ8LMrOMqGW7yTetmZpbLIWFmZrkcEmZmlsshYWZmuRwSZmaW\nyyFhZma5HBJmZpbLIWFmZrkcEmZmlsshYWZmuRwSZmaWyyFhZma5HBJmZpbLIWFmZrkcEmZmlssh\nYWZmuRwSZmaWyyFhZma5HBJmZpbLIWFmZrkcEmZmlsshYWZmuRwSZmaWyyFhZma5HBJmZpbLIWFm\nZrkcEmZmlsshYWZmuaoaEpIultQk6cmytkGSZkmaJ2mmpIFlX5ssab6kZyXtX83azMxs9ardk7gE\n+GKLtknAHRGxDTAbmAwgaRQwEdgWOBC4QJKqXJ+ZmbWhqiEREfcAb7RoPgSYnm1PBw7NticAV0bE\nioh4AZgP7FbN+szMrG1FnJMYHBFNABGxBBictW8KvFi236KszczMClILJ66j6ALMzKx1vQv4zCZJ\nQyKiSdJQ4OWsfRGwWdl+w7K2Vk2dOvXj7YaGBhoaGrq+UjOzOtbY2EhjY2On3kMR1f1FXtIWwM0R\n8dns+TTg9YiYJuksYFBETMpOXF8OjCENM90ObBWtFCiptWYzM2uDJCKiQxcEVbUnIen3QAOwkaS/\nAlOAc4BrJJ0ALCRd0UREPCPpauAZYDlwspPAzKxYVe9JVIN7EmZmHVdJT6IWTlybmVmNckiYmVku\nh4SZmeVySJiZWS6HhJmZ5XJImJlZLoeEmZnlckiYmVkuh4SZmeVySJiZWS6HhJmZ5XJImJlZLoeE\nmZnlckiYmVkuh4SZmeVySJiZWS6HhJmZ5XJImJlZLoeEmZnlckiYmVkuh4SZmeVySJiZWS6HhJmZ\n5XJImJlZLoeEmZnlckiYmVkuh4SZmeVySJiZWa6aDAlJB0h6TtL/SDqr6HrMzHqqmgsJSb2AXwBf\nBLYDjpL0mWKrqkxjY2PRJbSL6+xarrPr1EONUD91VqLmQgLYDZgfEQsjYjlwJXBIwTVVpF7+4bjO\nruU6u0491Aj1U2clajEkNgVeLHv+UtZmZmbdrBZDwszMaoQiougaViFpd2BqRByQPZ8ERERMK9un\ntoo2M6sTEaGO7F+LIbEWMA8YDywGHgSOiohnCy3MzKwH6l10AS1FxEeS/hGYRRoOu9gBYWZWjJrr\nSZiZWe2ouxPX9XKjnaQXJD0h6TFJDxZdT4mkiyU1SXqyrG2QpFmS5kmaKWlgkTVmNbVW5xRJL0l6\nNHscUHCNwyTNlvS0pLmSTsvaa+p4tlLnqVl7rR3PvpIeyP7PzJU0JWuvteOZV2dNHc+spl5ZLTOy\n5x0+lnXVk8hutPsf0vmKvwEPAUdGxHOFFtYKSc8Dn4uIN4qupZykvYF3gEsjYoesbRrwWkScmwXv\noIiYVIN1TgGWRsR/FFlbiaShwNCIeFzSusAjpHt6jqeGjmcbdR5BDR1PAEkDImJZdm7yT8BpwGHU\n0PFso84Dqb3jeQbwOWD9iJhQyf/1eutJ1NONdqIGj29E3AO0DK5DgOnZ9nTg0G4tqhU5dUI6rjUh\nIpZExOPZ9jvAs8Awaux45tRZuveoZo4nQEQsyzb7ks6ZBjV2PCG3Tqih4ylpGHAQ8Juy5g4fy5r7\nIbYa9XSjXQC3S3pI0jeLLmY1BkdEE6QfKMDggutpyz9KelzSb4oedignaQtgJ+B+YEitHs+yOh/I\nmmrqeGbDI48BS4DbI+IhavB45tQJtXU8zwP+meYAgwqOZb2FRD3ZKyJ2ISX5KdnwSb2o1THIC4CR\nEbET6T9nTXTrsyGca4HTs9/UWx6/mjierdRZc8czIlZGxM6kHtlukrajBo9nK3WOooaOp6SDgaas\nB9lW72a1x7LeQmIRMLzs+bCsreZExOLsz1eAG0hDZbWqSdIQ+Hj8+uWC62lVRLwSzSfRfg3sWmQ9\nAJJ6k37wXhYRN2XNNXc8W6uzFo9nSUS8DTQCB1CDx7OkvM4aO557AROyc6NXAPtIugxY0tFjWW8h\n8RCwpaTNJa0NHAnMKLimT5A0IPutDUnrAPsDTxVb1SrEqr9dzACOy7aPBW5q+YKCrFJn9o+65MvU\nxjH9LfBMRPysrK0Wj+cn6qy14ylp49IQjaT+wH6k8yc1dTxz6nyulo5nRHwvIoZHxEjSz8nZEXEM\ncDMdPJZ1dXUTpEtggZ/RfKPdOQWX9AmSRpB6D0E6qXV5rdQp6fdAA7AR0ARMAW4ErgE2AxYCEyPi\nzaJqhNw6x5HG01cCLwDfKo2vFkHSXsDdwFzS33UA3yPNEnA1NXI826jzq9TW8fws6WRqr+xxVUT8\nSNKG1NbxzKvzUmroeJZIGgucmV3d1OFjWXchYWZm3afehpvMzKwbOSTMzCyXQ8LMzHI5JMzMLJdD\nwszMcjkkzMwsl0PCzMxyOSSsqiQdKmmlpK2r+Bk7SjqwWu9fNEkDJZ3UxteXtuM9+klqVLKJpKsr\nqGMjSR9K+ocW7bfXwGR2ViUOCau2I4E/Ake19sVsPv7O2ok0kWKHSKr6tM7ZGijlzyv5fgcBJ7fx\n9fbcEXsCcF0kiyNiYgV1HA7cxyf/Li8FTqng/awOOCSsarJ5q/YCTqTsB4uksZLulnQT8HQ2F9ez\nki7JVsz6naTxku7Jno/OXrerpHslPZJ9bStJfYAfABOVVuA6XGmFsO+Ufd5cScOzz3lO0nRJc4Fh\nkvbL3vNhSVdJGtDK9/Hp7Lflx7P9RmTfw81l+/xc0tez7QWSzpH0MPAVSXMknSfpIeC0bO6fa5VW\nN3tA0h7Z66Yorcg3R9KfldZ6BzgbGJl9f9PaOt6S7shqfELShLIvf41snp7sOMzNto+VdJ2kW7Nj\nnfv+2d/hmcCmkj5V1n4zOb8E2BogIvzwoyoP0txAv8627wF2zrbHAkuB4dnzzYEPgVHZ84eB32Tb\nE4Absu11gV7Z9njg2mz7WOA/yz53CvCdsudPkmYP3hxYAeyatW8E3AX0z57/C/BvrXwf9wMTsu21\ngX7Z9zBiAMM4AAADGklEQVSjbJ+fA1/PthcA3y372hzgF2XPLwf2zLY3I028V6r7HtJ8XxsBrwJr\nZXU/2cZxfjv7cy1g3bLvbX623Qf4W9n+H79fduz+nB3bvqQ5hzZt5TOGAfOy7R8CZ7T4+jzSKmeF\n/7vzo2sfvVuPDrMucRTw02z7KlJoPJY9fzAi/lq274KIeCbbfhq4M9ueS/qhBrABcKmkrWiePLE9\nyoeVFkbzAjG7A6OAP2VDT31IwynNL0yz+X4qImYARMSHWfvqPvOqNp7vC2xbNty1blkP5paIWAG8\nJqkJGLK6DyovFzhb0hdIk8x9StJgUni0NYnbnZHWl0DSM6Tj3XIK/iNIE8OR/XkxaVGbkleAT9H6\naoJWxxwSVhWSBgH7ANtLCtIPqiCtlAXwbouXfFC2vbLs+Uqa/53+H9KUx1+WtDnpN/TWrGDVodR+\nZdvlnytgVkR8bfXfUYc+o+XntPa5YyItwdvcmDKj5XHoyP/RrwEbk3psKyUtyOp6G+jfxuvKP/Oj\nnM88Chgi6WtZ/ZtI+nRE/CX7ej/gvQ7UanXC5ySsWg4HLo2IERExMiI2BxYof4W+9pxEHkjzb7jH\nl7UvBdYve/4CsAuApF2AETmfcz+wl6RPZ/sOyHopH8t+w35J0iHZPmsrrSGwEBglqY+kDUjDX+01\nCzj944KkHVez/1JgvTa+XvqeBgIvZwExjqwHFmkq6F5Ka7B0mNKVaetExGbZ3+UI0nmSr5btNoR0\n3G0N45CwajmCtKZGuevIP8EZOdvlzgXOkfQIq/7bnUP6gf2opMOzz9koOzl7Mmm8/BPvHRGvkhZg\nuULSE8C9wDatfO4xpBPOTwB/Iq0T/BJp2OUp4Erg0Tbqb/n8dGB0dnL5KeBbOd9vZHW+ThoSezLn\nxHLp/S8Hds3qPJq0YE/JLKA9S+i2duyP5JN/l9dn7WQXFtwfESvb8f5WZ7yehFkPIGln4J8i4tgq\nvPdPgZsiIm/4z+qYexJmPUBEPAbMqdK9IXMdEGsu9yTMzCyXexJmZpbLIWFmZrkcEmZmlsshYWZm\nuRwSZmaW6/8D4cY6ZaAZBXcAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x6499410>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#The torque-armature current characteristics of a series traction motor are given as:\n",
"#Armature Current(amp): 5 10 15 20 25 30 35 40\n",
"#Torque(N-m): 20 50 100 155 215 290 360 430\n",
"#The motor resistance is 0.3 ohm.If this motor is connected across 230V,deduce the speed armature current characteristics.\n",
"############################################################################################################################\n",
"\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline\n",
"#Given\n",
"V = 230 #V (Supply voltage)\n",
"r = 0.3 #ohm (Motor resistance)\n",
"\n",
"#Current Data Ia\n",
"i1 = 5.0 #A\n",
"i2 = 10.0 #A\n",
"i3 = 15.0 #A\n",
"i4 = 20.0 #A\n",
"i5 = 25.0 #A\n",
"i6 = 30.0 #A\n",
"i7 = 35.0 #A\n",
"i8 = 40.0 #A\n",
"\n",
"#Torque Data \n",
"tau1 = 20.0 #N-m\n",
"tau2 = 50.0 #N-m\n",
"tau3 = 100.0 #N-m\n",
"tau4 = 155.0 #N-m\n",
"tau5 = 215.0 #N-m\n",
"tau6 = 290.0 #N-m\n",
"tau7 = 360.0 #N-m\n",
"tau8 = 430.0 #N-m\n",
"\n",
"#Back EMF Eb = V - Ia*r\n",
"e1 = V - i1*r #V\n",
"e2 = V - i2*r #V\n",
"e3 = V - i3*r #V\n",
"e4 = V - i4*r #V\n",
"e5 = V - i5*r #V\n",
"e6 = V - i6*r #V\n",
"e7 = V - i7*r #V\n",
"e8 = V - i8*r #V\n",
"\n",
"\n",
"#Speed Na = 9.55*Eb*Ia/T\n",
"N1 = 9.55*e1*i1/tau1 #rpm\n",
"N2 = 9.55*e2*i2/tau2 #rpm\n",
"N3 = 9.55*e3*i3/tau3 #rpm\n",
"N4 = 9.55*e4*i4/tau4 #rpm\n",
"N5 = 9.55*e5*i5/tau5 #rpm\n",
"N6 = 9.55*e6*i6/tau6 #rpm\n",
"N7 = 9.55*e7*i7/tau7 #rpm\n",
"N8 = 9.55*e8*i8/tau8 #rpm\n",
"\n",
"print \"Speed-Armature current graph\"\n",
"\n",
"plt.plot([i1,i2,i3,i4,i5,i6,i7,i8], [N1,N2,N3,N4,N5,N6,N7,N8])\n",
"plt.axis([0,40,0,600])\n",
"plt.ylabel('Speed(in r.p.m)')\n",
"plt.xlabel('Armature current Ia(in A)')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## EXAMPLE 43.23 , PAGE NO :- 1737"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Speed - Torque Curve\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAEPCAYAAACHuClZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm81VW9//HXG5GccC5JKEQRGZxAQHLiOITizaEy9WpQ\nil0VTdQ0oQn6ZTexa5bl0OBFQdGcbmpXES2PaTleVFBQSAMEFWcyh2L4/P5Y36Ob7QEOe5+9v3uf\n834+HufB3mt/z/f7OSi8WWt9v2spIjAzMytHh7wLMDOz+ucwMTOzsjlMzMysbA4TMzMrm8PEzMzK\n5jAxM7OyVTRMJF0paYmkmQVtu0l6UNLjkh6RNLDgs3GS5kmaI2lYQfsASTMlzZX000rWbGZm667S\nPZNJwMFFbRcC4yOiPzAe+DGApL7A0UAfYDhwmSRl33M5MCoiegG9JBWf08zMclTRMImIB4A3i5pX\nAptlrzcHFmevDweuj4jlETEfmAcMltQF6BwRj2bHTQaOrGTdZma2bjrmcM2zgLskXQQI2Ctr7wo8\nWHDc4qxtObCooH1R1m5mZjUijwn4U4ExEfFpUrD8dw41mJlZK8qjZ/KViBgDEBE3SfpN1r4Y+FTB\ncd2yttW1N0uSFxszMytBRGjtRzWvGj0TZV9NFksaCiDpQNLcCMBtwLGSOknqAfQEHomIl4GlkgZn\nE/IjgVvXdMGIqPmv8ePH515DW6jRdbrOWv+qlzrLVdGeiaSpQAOwlaSFpLu3vgZcImk94H3gPwAi\nYrakG4DZwDJgdHz4E54GXAVsANwREdMqWbeZma2bioZJRBy3mo8GNtcYET8CftRM+/8Bu7RiaWZm\n1or8BHxOGhoa8i5hreqhRnCdrc11tq56qbNcao2xsloiKdraz2RmVmmSiBqfgDczszbOYWJmZmVz\nmJiZWdkcJmZmVjaHiZmZlc1hYmZmZXOYmJlZ2RwmZmZWNoeJmZmVzWFiZmZlc5iYmVnZHCZmZlY2\nh4mZmZXNYWJmZmVzmJiZWdkcJmZmVjaHiZmZlc1hYmZmZXOYmJlZ2RwmZmZWNodJGZ5/Hr74RVi5\nMu9KzMzyVdEwkXSlpCWSZha1f13SHEmzJF1Q0D5O0rzss2EF7QMkzZQ0V9JPK1nzuthuO3j5ZfjV\nr/KuxMwsX4qIyp1c2gf4BzA5InbN2hqAbwGHRsRySVtHxGuS+gBTgUFAN+AeYMeICEkPA6dHxKOS\n7gB+FhF3reaaUcmfqdisWXDAAenXLl2qdlkzs1YliYhQqd9f0Z5JRDwAvFnUfCpwQUQsz455LWs/\nArg+IpZHxHxgHjBYUhegc0Q8mh03GTiyknWvi112gRNPhLPPzrsSM7P85DFn0gvYT9JDku6VtEfW\n3hV4oeC4xVlbV2BRQfuirK1mfO978OCDMH163pWYmeWjY07X3CIihkgaBNwIbN+aF5gwYcIHrxsa\nGmhoaGjN03/ExhvDL34Bo0en4a4NN6zo5czMytbY2EhjY2Orna+icyYAkroDtxfMmdwBTIyI+7L3\n84AhwNcAIuKCrH0aMB5YANwbEX2y9mOBoRFx6mquV9U5k0Jf+hL07g0/+EEulzczK1lNz5lklH01\n+R1wAICkXkCniHgduA04RlInST2AnsAjEfEysFTSYEkCRgK3VqHudfazn8EVV8CcOXlXYmZWXZW+\nNXgq8Begl6SFkk4A/hvYXtIs0t1bIwEiYjZwAzAbuAMYXdDFOA24EpgLzIuIaZWsu1TbbpvmT045\nBXLqHJmZ5aLiw1zVlucwF8CKFTBkSJo/OeGE3MowM1sn5Q5zOUwqYMYMGD4cnn4att4611LMzFrE\nYVKkFsIE4MwzYelSmDQp70rMzNbOYVKkVsLk7behb1+45hoYOjTvaszM1qwe7uZqlzp3hksuSZPx\n//xn3tWYmVWWw6SCjjwSdtwRfvzjvCsxM6ssD3NV2IIFsMceabmVHXfMuxozs+Z5mKvGde8OY8em\nW4VrKOPMzFqVw6QKxoyBV16B667LuxIzs8rwMFeVPPQQfP7zMHs2bLFF3tWYma3KtwYXqdUwATj1\n1DTUdcUVeVdiZrYqh0mRWg6Tt95Kz57cfDN85jN5V2Nm9iFPwNeRzTeHn/wETj4Zli3Luxozs9bj\nMKmyY46BT34SLr4470rMzFqPh7ly8NxzsOee8NhjsN12eVdjZuZhrrq0ww5w1llw+ul+9sTM2gaH\nSU7OPReefx5uuSXvSszMyudhrhz96U9w3HHp2ZNNN827GjNrz3xrcJF6ChOAUaNgk03S/vFmZnlx\nmBSptzB5/XXo1w9+/3sYODDvasysvfIEfJ3baiuYODE9e7J8ed7VmJmVxmFSA0aOTHMml16adyVm\nZqXxMFeNeOYZ2GcfeOIJ6NYt72rMrL3xMFcb0bt32vNkzJi8KzEzW3cVDRNJV0paImlmM599Q9JK\nSVsWtI2TNE/SHEnDCtoHSJopaa6kn1ay5jx961swc2aajDczqyeV7plMAg4ubpTUDfgssKCgrQ9w\nNNAHGA5cJqmpy3U5MCoiegG9JH3knG3BBhvA5ZenJ+PfeSfvaszMWq6iYRIRDwBvNvPRxcC5RW1H\nANdHxPKImA/MAwZL6gJ0johHs+MmA0dWqOTcHXRQmjv5/vfzrsTMrOWqPmci6XDghYiYVfRRV+CF\ngveLs7auwKKC9kVZW5t10UVw1VXw5JN5V2Jm1jIdq3kxSRsC3yINcVXMhAkTPnjd0NBAQ0NDJS/X\n6rbZBs4/H045Bf78Z+jg2yTMrJU1NjbS2NjYauer+K3BkroDt0fErpJ2Bu4B3gUEdCP1QAYDJwJE\nxAXZ900DxpPmVe6NiD5Z+7HA0Ig4dTXXq8tbg4utXAn77gsjRqRQMTOrpHq4NVjZFxHxVER0iYjt\nI6IHaciqf0S8AtwGHCOpk6QeQE/gkYh4GVgqaXA2IT8SuLUKdeeqQ4e0V/x3vwsvv5x3NWZma1bp\nW4OnAn8h3YG1UNIJRYcEHwbNbOAGYDZwBzC6oItxGnAlMBeYFxHTKll3rdhlFzjxRDj77LwrMTNb\nMz8BX+PeeQd23hl++UsYNmztx5uZlaIehrmsDBtvnNbsGj0a3nsv72rMzJrnMKkDhx4K/fvDD3+Y\ndyVmZs3zMFedePFF2HVXuP9+6NMn72rMrK3xMFc7se22MH58uk24DWalmdU5h0kdGT0a3n03PR1v\nZlZLPMxVZ2bMgOHD4emnYeut867GzNoK7wFfpK2HCcBZZ8Fbb8GkSXlXYmZtRUXDRNJngC8D+wKf\nBN4DngL+F7gmIpaWeuFKaQ9h8vbb0K8fTJ4MdbbsmJnVqIpNwEu6EzgJuAs4hBQmfYHvABsAt2Yr\nAFuVde4MP/tZmoz/5z/zrsbMbA09E0lbR8Rra/zmFhxTbe2hZwLpjq4jjoBBg9L6XWZm5ajanImk\nTSlYsj4i3ij1opXUXsIEYMEC2GMPePBB2HHHvKsxs3pW8TCRdDLwfeB90sKMABER25d60UpqT2EC\n8F//BXfdBdOng0r+38DM2rtqhMk84DO1Npy1Ou0tTJYtg4ED4bzz4Ljj8q7GzOpVNZ6Af460mZXV\noPXXTysKn3MOvPlm3tWYWXvVkp5Jf2AS8DDwwb1DEXFGZUsrTXvrmTQZPTrtznjFFXlXYmb1qBrD\nXI8ADwCzgJVN7RFxdakXraT2GiZvvQV9+8JNN8Fee+VdjZnVm2qEyeMR0b/UC1Rbew0TgOuvT8vU\nz5iRhr/MzFqqGnMmd0r6D0mflLRl01epF7TKOeaYtLrwxRfnXYmZtTct6Zn8rZlm3xpco557Dvbc\nEx57DLbbLu9qzKxeeKHHIu09TCANdT34INx+u589MbOWyWVzLEldSr2gVd6558Lzz8Mtt+RdiZm1\nF6VujnVlq1ZhrapTp/TsyZgx8Pe/512NmbUHHuZqw0aNgo03hksuybsSM6t1VRnmkjRA0hmSvi5p\nwDoUd6WkJZJmFrRdKGmOpCck3ZwtINn02ThJ87LPhxVdf6akuZJ+2tLrt3cXXgg33JAm483MKmmt\nYSLpe8DVwFbA1sAkSd9p4fknAQcXtU0H+kXE7sA8YFx2nb7A0UAfYDhwmfTB9PHlwKiI6AX0klR8\nTmvGVlvBxIlw8smwfHne1ZhZW9aSnsnxwKCIGB8R44EhwIiWnDwiHgDeLGq7JyKanqR/COiWvT4c\nuD4ilkfEfFLQDM4m+ztHxKPZcZOBI1tyfYORI2HTTeHSS/OuxMzaspaEyYuknRWbfAxY3ErXPxG4\nI3vdFXih4LPFWVtXYFFB+6KszVpAgssvhx/8ABYtWvvxZmal6Lj2Q1gKPC3pbtJ+Jp8FHpF0CZS+\n4KOkbwPLIuK6Ur5/TSZMmPDB64aGBhra+UbpvXvDaaelu7tuvjnvasysFjQ2NtLY2Nhq52vJE/Bf\nWdPna1vwUVJ34PaI2LWg7avA14ADIuKfWdvYdLqYmL2fBowHFgD3RkSfrP1YYGhEnLqa6/lurma8\n/z7suitcdBEcdlje1ZhZrSn3bq619kxaYXVgZV/pjXQIcC6wX1OQZG4DrpV0MWkYqyfwSESEpKWS\nBgOPAiMB3+y6jjbYAC67LN0ufMAB6ZZhM7PWUuoT8BNaeNxU4C+kO7AWSjoB+DmwCXC3pBmSLgOI\niNnADcBs0jzK6IIuxmmkByXnAvMiYlopdbd3Bx0E++4LBaOAZmatoqSHFiUdFhG3V6CesnmYa82W\nLIFddoG774bddsu7GjOrFRV9aFHSepLOKm6v1SCxtdtmGzj/fDjllLQzo5lZa1hjmETECuDfq1SL\nVclJJ0GHDvCrX+VdiZm1FS25m+tiYH3gt8A7Te0RMaOypZXGw1wtM2tWmoifNQu6eA1os3avGtv2\n3ttMc0TEAaVetJIcJi03diwsXAhTp+ZdiZnlzZtjFXGYtNy770K/fmm5+mHD1n68mbVduWyOZW3D\nRhulNbtGj4b33su7GjOrZw6Tdu7QQ6F//7TVr5lZqTzMZbz4Ylpq5f77oU+fvKsxszxUZc5E0l7A\ndhQsvxIRk0u9aCU5TErz85/DTTdBY2NaadjM2pdq3M01BdgBeAJYkTVHqasFV5rDpDQrVsCQIWn+\n5IQT8q7GzKqtGmEyB+hbL39DO0xKN2MGDB8OTz8NW2+ddzVmVk3VuJvrKcCPtbUDAwbAccfBOefk\nXYmZ1ZuWPrS4O/AI8MGS8RFxeGVLK417JuV5+23o2xemTIF2vqeYWbtSjWGuoc21R8R9pV60khwm\n5fuf/4Fx4+DJJ+FjH8u7GjOrBj8BX8RhUr4IOOIIGDQIvvvdvKsxs2qoWJhIeiAi9pH0Nmnv9w8+\nIt3NtWmpF60kh0nrWLAA9tgDHnwQdtwx72rMrNLcMyniMGk9F10E06bB9Ol+9sSsravY3VySNmnB\nxdd6jNWvMWPg1VfhuuvyrsTMat2abg2+VdJFkvaTtHFTo6TtJY2SdBdwSOVLtLx07JhWFP7GN+DN\nN/Ouxsxq2RqHuSQdChwP7A1sCSwDngX+F7gyIl6uRpHrwsNcrW/06PSE/C9/mXclZlYpnjMp4jBp\nfW+9lZ49uekm2GuvvKsxs0qo5N1cA9b0jd62t325/vq0TP2MGbD++nlXY2atrZJh0rRd7wbAQOBJ\n0m3BuwKPRcRnSr1oJTlMKiMCDjkEDjwQvvnNvKsxs9ZWsbu5ImL/iNgfeAkYEBEDI2IPoD+wuIXF\nXSlpiaSZBW1bSJou6VlJd0narOCzcZLmSZojaVhB+wBJMyXNlfTTUn5QK48El10GF14I8+fnXY2Z\n1ZqWLPS4U0TManoTEU8BLd1CaRJwcFHbWOCeiNgJ+CMwDkBSX+Do7NzDgcukD55uuBwYFRG9gF6S\nis9pVbDDDnD22XDaaamnYmbWpCVhMlPSbyQ1ZF+/Bmau9buAiHgAKL6p9Ajg6uz11cCR2evDgesj\nYnlEzAfmAYMldQE6R8Sj2XGTC77Hquycc1LP5Oab867EzGpJS8LkBOBpYEz2NTtrK9UnImIJQHZr\n8Sey9q7ACwXHLc7augKLCtoXZW2Wg06d4Ior4Mwz4e9/z7saM6sVHdd2QES8L+kK4I6IeLYCNbT6\ngMmECRM+eN3Q0ECD11JvVfvuCwcfDN/5DlxySd7VmFkpGhsbaWxsbLXztWQJ+sOBHwOdIqKHpN2B\n/9fS/UwkdQduj4hds/dzgIaIWJINYd0bEX0kjSUtIDkxO24aMB5Y0HRM1n4sMDQiTl3N9Xw3VxW8\n/jr06we//z0MHJh3NWZWrmrstDgeGAy8BRARTwA91uEayr6a3AZ8NXv9FeDWgvZjJXWS1APoCTyS\nDYUtlTQ4m5AfWfA9lpOttoKJE+Hkk2H58ryrMbO8tSRMlkXE0qK2Fv3TX9JU4C+kO7AWSjoBuAD4\nrKRngQOz90TEbOAG0pzMHcDogi7GacCVwFxgXkRMa8n1rbJGjoRNN4VLL827EjPLW0uGua4E/kC6\npfeLwBnA+hFxSuXLW3ce5qquZ5+FvfeGJ56Abt3yrsbMSlWNYa6vA/1I+79PBZYCZ5Z6QWtbdtop\nPXdyxhl5V2JmeWrxQo+SNoqIdytcT9ncM6m+99+HXXdNm2kddlje1ZhZKSreM5G0l6TZwDPZ+90k\nXVbqBa3t2WCDtNTK6afDO+/kXY2Z5aElw1wXk5ZEeR0gIp4E9qtkUVZ/DjooPX9S8IiPmbUjLQkT\nIuKFoqYVFajF6txFF8HVV8OTT+ZdiZlVW0vC5AVJewEhaX1J5wBzKlyX1aFttkl7npx8MqxcmXc1\nZlZNLQmTU0jPeXQFXgR2z96bfcSoUR/uHW9m7Ye37bVW99RTsP/+MGsWdOmSdzVm1hLVuJtre0m3\nS3pV0iuSbpW0fakXtLZv551TD+Wss/KuxMyqpSXDXFNJy5x8EtgWuBG4rpJFWf373vfgoYdg+vS8\nKzGzamhJmGwUEVOyTauWR8Q1pH3hzVZro43Sml2jR8N77+VdjZlVWkvW5ppI2i3xetICj8cAW5CW\npSci3qhwjevEcya15Utfgk02gR/8wGt3mdWycudMWhImf1vDxxERNTV/4jCpLa+8kjbRuukmGDAA\nRoyAL3wBOnfOuzIzK1TxMKk3DpPa9P77cPvtMGUK/OlP8LnPpSXsDzwQ1lsv7+rMrGJhImkQ8EK2\nORWSRpKWoF8ATKi14a0mDpPa9+qrcP31MHkyLF4Mxx+fgmWXXfKuzKz9qmSYzAAOiog3JO1HmjP5\nOumhxT4RcVSpF60kh0l9mTMn9VauuQa23DKFynHH+fkUs2qrZJg8GRG7Za8vBV6NiAnZ+yciYvdS\nL1pJDpP6tHIl3Hdf6q387ncwZEiaXznyyHRnmJlVViUfWlxPUsfs9YHAHws+69jM8WYl69AhPTU/\naVIa+hoxIvVYunaFE06Ae+/1el9mtWxNPZNvA4cCrwGfBgZEREjqCVwdEXtXr8yWc8+kbXnpJbju\nutRjeeMN+PKXU9D06ZN3ZWZtS0Xv5pI0hPTk+/SIeCdr6wVsEhEzSr1oJTlM2q6ZM1Nv5dprU49l\n5Eg49lj4+Mfzrsys/vnW4CIOk7ZvxQr4wx9Sb+X3v4f99ku9lcMOS7s+mtm6c5gUcZi0L2+/Dbfc\nknosjz8OX/xi6rHsvTeo5D8WZu2Pw6SIw6T9WrQoDYFNnpwekmyaX+nZM+/KzGpfxZegrxRJZ0l6\nStJMSddK6iRpC0nTJT0r6S5JmxUcP07SPElzJA3Lq26rXd26wXnnpf1UbrwRli5NPZS99oIrrkgT\n+GZWGbn0TCRtCzwA9I6If0n6LXAH0Bd4PSIulHQesEVEjJXUF7gWGAR0A+4BdmyuC+KeiRVatiwt\ngz9lCtx5Jxx0UOqtHHoodOqUd3VmtaNueybAesDG2bMsGwKLgSOAq7PPrwaOzF4fDlyfLYE/H5gH\nDK5uuVaP1l8f/u3f0vItCxbA8OFw8cXpbrDTT4eHHwb/28OsfLmESUS8CFwELCSFyNKIuAfYJiKW\nZMe8DHwi+5auwAsFp1ictZm12Oabw0knpSftH3kkLdkyYgT07g3nnw/z5+ddoVn9yuVJdkmbk3oh\n3YGlwI2Sjiftl1KopH8zTpgw4YPXDQ0NNDQ0lFSntV09eqSl8b/97RQskyfDoEHQt2+6G+yoo2Cz\nzdZ+HrN61djYSGNjY6udL685k6OAgyPia9n7EcAQ4ACgISKWSOoC3BsRfSSNJe2dMjE7fhowPiIe\nbubcnjOxkvzrX3DHHWl+5Q9/gEMOST2XYcPScJlZW1avcyYLgSGSNpAk0tpfs4HbgK9mx3wFuDV7\nfRtwbHbHVw+gJ/BIdUu2tq5Tp7Sw5M03w3PPwdCh8MMfwqc+BWeeCTNmeH7FbHVye85E0njgWGAZ\n8DhwEtAZuAH4FGnflKMj4q3s+HHAqOz4MRExfTXndc/EWtW8eWmJ/ClT0grGI0akPVi8DbG1JX5o\nsYjDxColAv785zS/cvPN0L9/ml/5whfSPvdm9cxhUsRhYtVQvA3xYYelYDngAG9DbPXJYVLEYWLV\nVrgN8YsvpiGwESO8DbHVF4dJEYeJ5alwG+Kttkqh4m2IrR44TIo4TKwWNLcN8ciRcMQR3obYapPD\npIjDxGrNu++mQJkyBR56CD7/+RQs++2Xtis2qwUOkyIOE6tlhdsQv/nmh8vk9+6dd2XW3jlMijhM\nrF4UbkPcrVsKFW9DbHlxmBRxmFi9aW4b4pEj4XOf8zbEVj0OkyIOE6tnxdsQH3VU6rF4G2KrNIdJ\nEYeJtRXF2xCPGJG+dtgh78qsLXKYFHGYWFsTkRaZnDIlTd737JlC5eijYcst867O2gqHSRGHibVl\nhdsQT5sGBx6Y5leGD/c2xFYeh0kRh4m1F2+9BTfdlIJl9mw45pgULIMGeX7F1p3DpIjDxNqjv/3t\nw/mVlSth4MD07EqfPunXXr1gww3zrtJqmcOkiMPE2rOI9PzKrFnwzDPpa86ctNnXttuuGjBNr7fe\nOu+qrRY4TIo4TMw+avlyeP75VQOm6deOHVcNmaZfu3f3cvrticOkiMPErOUiYMmS5kPmtddgxx1X\n7cU0DZl5scq2x2FSxGFi1jr+8Q+YO/fDgCkcMuvSZfVDZp78r08OkyIOE7PKWr4c5s//aMjMmZNW\nQW4uZLbbzkNmtc5hUsRhYpaPCHjllY8OmT3zTGrv2bP5IbONN867cgOHyUc4TMxqzzvvND9k9te/\nwjbbNN+b+fjHPWRWTQ6TIg4Ts/qxYsXqh8xg9UNmHTvmWXXb5DAp4jAxq38R6W6y4pB55hl4+eW0\n2GXxrcw77eQhs3LUbZhI2gz4DbAzsBI4EZgL/BboDswHjo6Ipdnx47JjlgNjImL6as7rMDFrw959\nNw2ZFc/LzJuXhsaK52V6905DaR4yW7N6DpOrgPsiYpKkjsDGwLeA1yPiQknnAVtExFhJfYFrgUFA\nN+AeYMfmUsNhYtY+rVgBCxY0P2S2cmXzQ2Y9enjIrEldhomkTYHHI2KHovZngKERsURSF6AxInpL\nGgtEREzMjrsTmBARDzdzboeJma1idUNmL70E22//0ZDZaSfYZJO8q66ueg2T3YBfAbOB3YDHgDOB\nxRGxRcFxb0TElpJ+DjwYEVOz9t8Ad0TELc2c22FiZi3y3nvND5nNnZsewGxuyKxLl7Y5ZFZumOTV\nwesIDABOi4jHJF0MjAWKU6CkVJgwYcIHrxsaGmhoaCitSjNr0zbcEHbbLX0VWrECFi78MGQefxym\nTk3vly1rPmR22KG+hswaGxtpbGxstfPl1TPZhtTT2D57vw8pTHYAGgqGue6NiD7NDHNNA8Z7mMvM\nqu211z7swRT2aBYvbn7IrF+/+lj+vy6HuQAk3Qd8LSLmShoPNC0d90ZETFzNBPyeQFfgbjwBb2Y1\n5L330h1lxSHzk5/A/vvnXd3a1XOY7Ea6NXh94HngBGA94AbgU8AC0q3Bb2XHjwNGAcvwrcFmZq2q\nbsOkUhwmZmbrrtww6dCaxZiZWfvkMDEzs7I5TMzMrGwOEzMzK5vDxMzMyuYwMTOzsjlMzMysbA4T\nMzMrm8PEzMzK5jAxM7OyOUzMzKxsDhMzMyubw8TMzMrmMDEzs7I5TMzMrGwOEzMzK5vDxMzMyuYw\nMTOzsjlMzMysbA4TMzMrm8PEzMzK5jAxM7Oy5RomkjpImiHptuz9FpKmS3pW0l2SNis4dpykeZLm\nSBqWX9VmZlYs757JGGB2wfuxwD0RsRPwR2AcgKS+wNFAH2A4cJkkVbnWVtXY2Jh3CWtVDzWC62xt\nrrN11Uud5cotTCR1Aw4FflPQfARwdfb6auDI7PXhwPURsTwi5gPzgMFVKrUi6uF/sHqoEVxna3Od\nrate6ixXnj2Ti4FzgSho2yYilgBExMvAJ7L2rsALBcctztrMzKwG5BImkv4NWBIRTwBrGq6KNXxm\nZmY1QhHV//ta0n8CXwaWAxsCnYH/AQYCDRGxRFIX4N6I6CNpLBARMTH7/mnA+Ih4uJlzO4DMzEoQ\nESXPRecSJqsUIA0FvhERh0u6EHg9IiZKOg/YIiLGZhPw1wJ7koa37gZ2jLyLNzMzADrmXUCRC4Ab\nJJ0ILCDdwUVEzJZ0A+nOr2XAaAeJmVntyL1nYmZm9S/v50xajaRDJD0jaW42RJZnLVdKWiJpZkFb\nzT2QKambpD9KelrSLEln1Fqtkj4m6WFJj2c1jq+1GovqrfkHcSXNl/Rk9nv6SA3XuZmkG7PrPi1p\nz1qrU1Kv7PdxRvbrUkln1Fqd2XXPkvSUpJmSrpXUqVXrjIi6/yKF4l+B7sD6wBNA7xzr2QfYHZhZ\n0DYR+Gb2+jzggux1X+Bx0pDjdtnPoSrV2QXYPXu9CfAs0LvWagU2yn5dD3iI9IxRTdVYUOtZwDXA\nbTX83/150nxkYVst1nkVcEL2uiOwWS3WWVBvB+BF4FO1ViewbfbfvVP2/rfAV1qzzqr9Rlf4N2oI\ncGfB+7HAeTnX1J1Vw+QZ0nM0kP4Sf6a5WoE7gT1zqvl3wEG1WiuwEfAYMKgWawS6kW4OaeDDMKnF\nOv8GbFViJko9AAAF80lEQVTUVlN1ApsCzzXTXlN1FtU2DLi/FuskhckCYIssIG5r7T/rbWWYq/ih\nxkXU3kONn4gafiBT0nak3tRD1NjDo9nQ0ePAy8DdEfFordWYqZcHcQO4W9Kjkk6q0Tp7AK9JmpQN\nIf1K0kY1WGehY4Cp2euaqjMiXgQuAhZm11waEfe0Zp1tJUzqUc3c+SBpE+AmYExE/IOP1pZrrRGx\nMiL6k/7lP1hSv2ZqyrVG1deDuHtHxADSckanSdqXGvv9JP3reQBwaVbrO6R/LddanQBIWp+07NON\nWVNN1Slpc9JyVd1JvZSNJR3fTF0l19lWwmQx8OmC992ytlqyRNI2AEoPZL6StS8mjbE2qWrtkjqS\ngmRKRNxay7VGxN+BRuCQGqxxb+BwSc8D1wEHSJoCvFxjdRIRL2W/vkoa2hxM7f1+LgJeiIjHsvc3\nk8Kl1upsMhz4v4h4LXtfa3UeBDwfEW9ExArSQ+J7tWadbSVMHgV6SuouqRNwLGlMME9i1X+h3gZ8\nNXv9FeDWgvZjszsregA9gUeqVSTw38DsiPhZQVvN1Cpp66Y7TCRtCHwWmFNLNQJExLci4tMRsT3p\n/78/RsQI4PZaqlPSRllPFEkbk8b5Z1F7v59LgBck9cqaDgSerrU6C/w76R8RTWqtzoXAEEkbSBLp\n93N2q9ZZzQmqCk8wHUK6G2keMDbnWqaS7ur4Z/Yf8QTSxNc9WY3Tgc0Ljh9HultiDjCsinXuDawg\n3f32ODAj+33cslZqBXbJ6noCmAl8O2uvmRqbqXkoH07A11SdpLmIpv/es5r+rNRandl1dyP9Q/EJ\n4BbS3Vy1WOdGwKtA54K2WqxzfHbNmaRV2ddvzTr90KKZmZWtrQxzmZlZjhwmZmZWNoeJmZmVzWFi\nZmZlc5iYmVnZHCZmZlY2h4nVPUlbFiwD/pKkRQXvc9sALlv7aoakBZJeKaipq5I/Zg8RdpB03zqe\n+xpJC5t+PknbSJpXZr33SOpczjms/aq1nRbN1llEvAH0B5D0PeAfEfGTln6/JEUFHriKiEHZ+UcB\n/SLi7IJrHg48GhHvZk1D1/X0wErSU8tXFrSV41rgVODCMs9j7ZB7JtbWrLLIoqRvKm2qNVPS6Vnb\nDkqbLV0j6Smgi6STsg2CHpL0a0k/yY6dkv3F33S+twten6e0cdcTkr6zjnUeT7Z0haT1JL2ZvT4w\n6yHcrLTZ21VrOMfFwDnZ8hirlf0Mv8h+tnmS9pV0ldKmR78uOPQ24Lh1/DnMAIeJtWGSBpPWTNqD\ntKjd6GzFYYCdgIsiYmfSn4PvAHuSNjbbeQ2njezcw4FPR8SepF7R3pKGrEN5e5GWiVnlvJn+wGjS\nBkV9s5+jOX8DHqZlAbBpRAwhbYB0O/Cj7PwDJfUFiIjXgU0kbboOP4cZ4DCxtm0f4OaI+FekpfV/\nB+ybffZcRDyevR4C3BMRb0XEcuCGFpx7GHCIpBmkUNgB6LXmb1lF54h4fzWfPRQRSyJiJWldqu3W\ncJ4fkZZm78Cal76/Pft1FrA4Ip7NhvZmF53/NeCTay/fbFWeM7H26p2i96v7i3g52T+6JK3Hh39m\nBJwfEZNKvP7KNXz2z4LXK1jDn9OIeFbS08AX+LDX9CPSgp3LIqKpV9N0zpVF519ZdP4NgPda8gOY\nFXLPxNqy+4HPS/pYtuz6EVkbrBoeDwH7S9o828LgqILP5gMDs9efJ+1DD3AXMEpp9z+yO7S2Wofa\n/iqpcA+eNc57rMV/knZ4BCAixkVE/4IgKdbstSR1IG3nu7CMWqydcphYmxVpe9/rSPvG/4W0a9/T\nTR8XHLcYOJ80/3Afad+MJr8EPqu0bfDuZP+qj4g7SZuKPSRpJvBbYON1KO9/gf0Ly13dj7G29oiY\nCTy5DueI1bweBDywmnOYrZGXoDcr0tytvBW4Rlfg1xFxaKWusa4k/QL4bUTcv9aDzYq4Z2KWg6w3\ndFXTMFmNmOEgsVK5Z2JmZmVzz8TMzMrmMDEzs7I5TMzMrGwOEzMzK5vDxMzMyuYwMTOzsv1/qItZ\n2B8TkscAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x61bc230>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#The following figures give the magnetization curve of d.c. series motor when working as a seperately excited generator at 600 rpm.\n",
"#Field Current(amperes) : 20 40 60 80\n",
"#E.M.F(volts): 215 381 485 550\n",
"#The total resistance of the motor is 0.8 ohm.Deduce the speed-torque curve for this motor when operating at a constant voltage of\n",
"#600 volts.\n",
"################################################################################################################################\n",
"\n",
"#Given\n",
"V = 600.0 #V (Supply voltage)\n",
"r = 0.8 #ohm (total motor resistance)\n",
"\n",
"#Field Current Data(If=Ia)\n",
"i1 = 20.0 #A\n",
"i2 = 40.0 #A\n",
"i3 = 60.0 #A\n",
"i4 = 80.0 #A\n",
"\n",
"#E.M.F data at 600 rpm(E)\n",
"e1 = 215.0 #V\n",
"e2 = 381.0 #V\n",
"e3 = 485.0 #V\n",
"e4 = 550.0 #V\n",
"\n",
"#At constant voltage of 600V. EMF are Eb = V - Ia*Rm\n",
"eb1 = V - i1*r #V\n",
"eb2 = V - i2*r #V\n",
"eb3 = V - i3*r #V\n",
"eb4 = V - i4*r #V\n",
"\n",
"#For DC series motor N1/E1 = N2/E2 . Therefore N2 = N/E*Eb\n",
"n1 = 600/e1*eb1 #rpm\n",
"n2 = 600/e2*eb2 #rpm\n",
"n3 = 600/e3*eb3 #rpm\n",
"n4 = 600/e4*eb4 #rpm\n",
"\n",
"#Now, Torque T = 9.55*Eb*Ia/N2\n",
"tau1 = 9.55*eb1*i1/n1 #N-m\n",
"tau2 = 9.55*eb2*i2/n2 #N-m\n",
"tau3 = 9.55*eb3*i3/n3 #N-m\n",
"tau4 = 9.55*eb4*i4/n4 #N-m\n",
"\n",
"print \"Speed - Torque Curve\"\n",
"\n",
"plt.plot([tau1,tau2,tau3,tau4], [n1,n2,n3,n4])\n",
"#plt.axis([0,40,0,600])\n",
"plt.ylabel('Speed(in r.p.m)')\n",
"plt.xlabel('Torque T(in N-m)')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"## EXAMPLE 43.24 , PAGE NO :- 1738"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Speed of both motors is = 447.87 rpm.\n",
"Voltage across motor A is = 256.35 V.\n",
"Voltage across motor B is = 243.65 V.\n"
]
}
],
"source": [
"#Two d.c. traction motors run at a speed of 900 r.p.m and 950 r.p.m respectively when each takes a current of 50A from 500V mains.\n",
"#Each motor has an effective resistance of 0.3 ohm . Calculate the speed and voltage across each machine when mechanically coupled\n",
"#and electrically connected in series and taking a current of 50A from 500V mains,the resistance of each motor being unchanged.\n",
"#################################################################################################################################\n",
"from sympy import Eq,Symbol,solve\n",
"#Let the two motors be A and B .\n",
"Na = 900.0 #rpm (speed of motor A)\n",
"Nb = 950.0 #rpm (speed of motor B)\n",
"r = 0.3 #ohm (resistance of each motor)\n",
"V = 500.0 #V (applied voltage)\n",
"I = 50.0 #A (current)\n",
"\n",
"#Back emf of motor A when taking current of 50A,\n",
"Eb_a = V - I*r #V\n",
"#Back emf of motor B when taking current of 50A,\n",
"Eb_b = V - I*r #V\n",
"\n",
"#As the machines are mechanically coupled and are connected in series. Therefore,\n",
"#speed will be same. Say 'N'\n",
"#current will be same and equal to 50A\n",
"#summation of voltage drop is 500V\n",
"\n",
"N = Symbol('N') #rpm\n",
"#Let the voltage drop across motors be Va & Vb .Therefore,for Va & Vb we will find back emf of both motors\n",
"eb_A = Eb_a*N/Na #V (using N1/N2 = E1/E2)\n",
"eb_B= Eb_b*N/Nb #V (using N1/N2 = E1/E2)\n",
"\n",
"#For Va & Vb \n",
"Va = eb_A + I*r #V (using Eb = V - Ia*r)\n",
"Vb = eb_B + I*r #V (using Eb = V - Ia*r)\n",
"\n",
"#We know that Va + Vb = 500 . Therefore,\n",
"eq = Eq(Va+Vb,V)\n",
"N = solve(eq)\n",
"Ne = N[0]\n",
"\n",
"#As we know the speed N . Therefore, Va & Vb are\n",
"eb_A = Eb_a*Ne/Na #V (using N1/N2 = E1/E2)\n",
"eb_B= Eb_b*Ne/Nb #V (using N1/N2 = E1/E2)\n",
"\n",
"Va = eb_A + I*r #V (using Eb = V - Ia*r)\n",
"Vb = eb_B + I*r #V (using Eb = V - Ia*r)\n",
"\n",
"print \"Speed of both motors is = \",round(Ne,2),\"rpm.\"\n",
"print \"Voltage across motor A is = \",round(Va,2),\"V.\"\n",
"print \"Voltage across motor B is = \",round(Vb,2),\"V.\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## EXAMPLE 43.25 , PAGE NO :- 1739"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Current drawn by supply mains is = 138.32 A.\n"
]
}
],
"source": [
"#A tram car is equipped with two motors which are operating in parallel.Calculate the current drawn from the supply main at 500 V\n",
"#when the car is running at steady speed of 50kmph and each motor is developing a tractive effort of 2100 N.The resistance of each \n",
"#motor is 0.4 ohm.The friction,windage and other losses may be assumed as 3500 watts per motor.\n",
"#################################################################################################################################\n",
"from sympy import Eq,Symbol,solve\n",
"\n",
"V = 500.0 #V (applied voltage)\n",
"Vm = 50.0 #km/h (max. speed)\n",
"Ft = 2100 #N (tractive effort)\n",
"Rm = 0.4 #ohm (motor resistance)\n",
"mloss = 3500.0 #W (losses per motor)\n",
"\n",
"#Power output of each motor\n",
"Pout = Ft*Vm*5.0/18 #W\n",
"#Copper loss = I^2*Rm\n",
"I = Symbol('I')\n",
"cu_loss = (I*I)*Rm #W\n",
"#Input power = Output power + constant losses + Copper losses\n",
"Pin = V*I #W\n",
"eq = Eq(Pin,Pout+mloss+cu_loss)\n",
"I = solve(eq) #A\n",
"#current drawn by motor is\n",
"Ie = I[0] #A\n",
"#Therefore,current drawn by supply mains\n",
"Ie = 2*Ie #A\n",
"print \"Current drawn by supply mains is =\",round(Ie,2),\"A.\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## EXAMPLE 43.26 , PAGE NO :- 1740"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Speed of first motor is = 217.17 rpm.\n",
"Speed of second motor is = 227.27 rpm.\n"
]
}
],
"source": [
"#A motor coach is being driven by two identical d.c. series motors.First motor is geared to driving wheel having diameter of 90cm and\n",
"#other motor to driving wheel having diameter of 86cm.The speed of the first motor is 500 rpm when connected in parallel with the other\n",
"#across 600V supply.Find the motor speeds when connected in series across the same supply.Assume armature current to remain same and\n",
"#armature voltage drop of 10% at this current.\n",
"###############################################################################################################################\n",
"from sympy import Eq,Symbol,solve\n",
"#Given\n",
"V = 600.0 #V (applied voltage)\n",
"d1= 0.90 #m (diameter 1) \n",
"d2 = 0.86 #m (diameter 2) \n",
"N1 = 500.0 #rpm (Speed of first motor)\n",
"\n",
"Eb1 = V-0.1*V #V (Back emf)\n",
"\n",
"#Let the supply voltage across motor 1 & 2 be V1 and V2 respectively\n",
"#Therefore, V1 + V2 = 600\n",
"V1 = Symbol('V1') #V\n",
"V2 = V - V1 #V\n",
"\n",
"#Now , N is directly propotional to (V - IR).Therefore, ratio (N1/N2) is\n",
"\n",
"Nratio1 = (V1 - 0.1*V)/(V2 - 0.1*V)\n",
"\n",
"#Also, we know that N1*d1 = N2*d2 . Therefore (N1/N2) is\n",
"Nratio2 = d2/d1\n",
"\n",
"#As, N1/N2 = Nratio1 = Nratio2\n",
"eq = Eq(Nratio1,Nratio2)\n",
"V1 = solve(eq)\n",
"Ve1 = V1[0] #V\n",
"Ve2 = V - Ve1 #V\n",
"#Now , for the speed of motor 1, we know that for N1 ,back emf is Eb1 and for Ne1 ,back emf is (Ve1-0.1*Ve1)\n",
"Ne1 = N1*(Ve1 - 0.1*V)/Eb1 #rpm (using N1/N2 = E1/E2)\n",
"#Nratio is Ne1/Ne2 .Therefore,\n",
"Ne2 = Ne1/Nratio2 #rpm\n",
"\n",
"print \"Speed of first motor is =\",round(Ne1,2),\"rpm.\"\n",
"print \"Speed of second motor is =\",round(Ne2,2),\"rpm.\""
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"## EXAMPLE 43.27 , PAGE NO :- 1741"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Speed of first motor is = 173.74 rpm.\n",
"Speed of second motor is = 181.82 rpm.\n"
]
}
],
"source": [
"#Two similar series type motors are used to drive a locomotive.The supply fed to their parallel connection is 650V.If the first \n",
"#motor 'A' is geared to drive wheels of radius 45 cms and other motor 'B' to 43 cms.And if the speed of first motor 'A' when\n",
"#connected in parallel to 2nd motor 'B' across the main supply lines is 400 rpm,find voltages and speeds of motors when connected\n",
"#in series.Assume Ia to be constant and armature voltage drop of 10% at this current.\n",
"################################################################################################################################\n",
"\n",
"from sympy import Eq,Symbol,solve\n",
"#Given\n",
"V = 650.0 #V (applied voltage)\n",
"r1 = 0.45 #m (radius 1) \n",
"r2 = 0.43 #m (radius 2) \n",
"Na = 400.0 #rpm (Speed of first motor)\n",
"\n",
"Eb_a = V-0.1*V #V (Back emf)\n",
"\n",
"#Let the supply voltage across motor A & B be Va and Vb respectively\n",
"#Therefore, Va + Vb = 650.0 V\n",
"Va = Symbol('Va') #V\n",
"Vb = V - Va #V\n",
"\n",
"#Now , N is directly propotional to (V - IR).Therefore, ratio (N1/N2) is\n",
"\n",
"Nratio1 = (Va - 0.1*V)/(Vb - 0.1*V)\n",
"\n",
"#Also, we know that N1*r1 = N2*r2 . Therefore (N1/N2) is\n",
"Nratio2 = r2/r1\n",
"\n",
"#As, N1/N2 = Nratio1 = Nratio2\n",
"eq = Eq(Nratio1,Nratio2)\n",
"Va = solve(eq)\n",
"Vea = Va[0] #V\n",
"Veb = V - Vea #V\n",
"\n",
"#Now , for the speed of motor A, we know that for Na ,back emf is Eb_a and for Nea ,back emf is (Vea-0.1*Vea)\n",
"Nea = Na*(Vea - 0.1*V)/Eb_a #rpm (using N1/N2 = E1/E2)\n",
"#Nratio is Ne1/Ne2 .Therefore,\n",
"Neb = Nea/Nratio2 #rpm\n",
"\n",
"print \"Speed of first motor is =\",round(Nea,2),\"rpm.\"\n",
"print \"Speed of second motor is =\",round(Neb,2),\"rpm.\""
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"## EXAMPLE 43.28 , PAGE NO :- 1744"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Time for which motors are operated in series = 8.44 s.\n",
"Energy loss during starting period = 480.01 W-h.\n"
]
}
],
"source": [
"#Two motors of a motor coach are started on series-parallel system,the current per motor being 350A during the starting period\n",
"#which is 18 sec.If the acceleration during starting period is uniform,the line voltage is 600V and resistance of each motor is\n",
"#0.1W.Find (a)the time during which the motors are operated in series. (b)the energy loss in the rheostat during starting period.\n",
"#####################################################################################################################################\n",
"\n",
"#Given\n",
"V = 600.0 #V (line voltage)\n",
"I = 350.0 #A (current)\n",
"R = 0.1 #ohm (resistance)\n",
"T = 18.0 #s (starting period)\n",
"\n",
"#time for which motors are in series\n",
"ts = 0.5*(V-2*I*R)/(V-I*R)*T #s\n",
"\n",
"#time for which motors are in parallel\n",
"tp = T - ts #s\n",
"\n",
"#back emf of 1 motor during series operation\n",
"Eb_s = V/2 - I*R #V\n",
"#total back emf\n",
"Eb_s = 2*Eb_s #V\n",
"#Emf during parallel operation\n",
"Eb_p = V - I*R #V\n",
"\n",
"#Energy lost during series connection\n",
"enrgy_s = 0.5*(Eb_s)*I*ts/3600 #W-h\n",
"#Energy lost during parallel connection\n",
"enrgy_p = 0.5*(Eb_p/2)*(2*I)*tp/3600 #W-h\n",
"\n",
"#Total energy lost\n",
"enrgy_t = enrgy_s + enrgy_p #W-h\n",
"\n",
"print \"Time for which motors are operated in series = \",round(ts,2),\"s.\"\n",
"print \"Energy loss during starting period = \",round(enrgy_t,2),\"W-h.\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## EXAMPLE 43.29 , PAGE NO :- 1749"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Energy lost in rheostat = 441.02 W-h.\n",
"Energy lost in motor = 75.0 W-h.\n",
"Motor output = 909.77 W-h.\n",
"Efficiency at starting = 69.07 %.\n",
"Train speed at which transition from series to parallel = 11.98 km/h.\n"
]
}
],
"source": [
"#Two 750V D.C. series motors each having a resistance of 0.1 ohm are started on series-parallel system.Mean current through-out \n",
"#the starting period is 300A.Starting period is 15 sec. and train speed at the end of this period is 25 km/hr.Calculate\n",
"#(i)Rheostatic losses during series and parallel combination of motors\n",
"#(ii)Energy lost in motor\n",
"#(iii)Motor output\n",
"#(iv)Starting eff\n",
"#(v)Train speed at which transition from series to parallel must be made.\n",
"##############################################################################################################################\n",
"\n",
"V = 750.0 #V (applied voltage)\n",
"R = 0.1 #ohm (resistance)\n",
"I = 300.0 #A (current) \n",
"T = 15.0 #s (starting time)\n",
"S = 25.0 #km/h(speed after staring period)\n",
"\n",
"#Time when motors are in series\n",
"ts = 0.5*(V-2*I*R)/(V-I*R)*T #s\n",
"#Time when motors are in parallel\n",
"tp = T - ts #s\n",
"\n",
"#(i)Energy lost in rheostat\n",
"enrgy_lostr = 0.5*(2*(V/2-I*R))*I*ts + 0.5*(V-I*R)/2*2*I*tp #W-s\n",
"enrgy_lostr = enrgy_lostr/3600 #W-h\n",
"\n",
"#(ii)Total energy supplied\n",
"enrgy_supp = V*I*ts + 2*V*I*tp #W-s\n",
"enrgy_supp = enrgy_supp/3600 #W-h\n",
"\n",
"#Energy lost in armature of 2 motors\n",
"enrgy_losta = 2*(I*I*R)*T\n",
"enrgy_losta = enrgy_losta/3600 #W-h\n",
"\n",
"#Motor output is\n",
"outp = enrgy_supp - enrgy_lostr - enrgy_losta #W-h\n",
"\n",
"#Efficiency at starting\n",
"eff_s = (enrgy_supp-enrgy_lostr)/(enrgy_supp)*100\n",
"\n",
"#Acceleraton is uniform during starting period .Therefore,\n",
"speed = S/T*ts #km/h\n",
"print \"Energy lost in rheostat = \",round(enrgy_lostr,2),\"W-h.\"\n",
"print \"Energy lost in motor = \",round(enrgy_losta,2),\"W-h.\"\n",
"print \"Motor output =\",round(outp,2),\"W-h.\"\n",
"print \"Efficiency at starting =\",round(eff_s,2),\"%.\"\n",
"print \"Train speed at which transition from series to parallel = \",round(speed,2),\"km/h.\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## EXAMPLE 43.30 , PAGE NO :- 1750"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Energy loss in series = 213.16 W-h.\n",
"Energy loss in parallel = 263.16 W-h.\n",
"The transition speed = 14.21 km/h.\n"
]
}
],
"source": [
"#Two 600V motors each having a resistance of 0.1 ohm are started on the series-parallel system,the mean current per motor throughout\n",
"#the starting period being 300A.The starting period is 20 seconds and the train speed at the end of this period is 30km per hour.\n",
"Calculate\n",
"#(i)the rheostatic losses during (a)the series and (b) the parallel combination of motors\n",
"#(ii)the train speed at which transition from series to parallel must be made.\n",
"###############################################################################################################################\n",
"\n",
"num_m = 2 # (number of motors)\n",
"V = 600.0 #V (line voltage)\n",
"I = 300.0 #A (current per motor)\n",
"Ts = 20.0 #s (starting period)\n",
"R = 0.1 #ohm (motor resistance)\n",
"Vm = 30.0 #km/h (maximum speed)\n",
"\n",
"#Back emf of each motor in series position,\n",
"Eb_s = V/2 - I*R #V\n",
"#Back emf of each motor in parallel position,\n",
"Eb_p = V - I*R #V\n",
"#time for which motors were in series\n",
"ts = Ts*Eb_s/Eb_p #s\n",
"#time for which motors are in parallel\n",
"tp = Ts - ts #s\n",
"\n",
"#(a) Voltage drop in the starting rheostat in series combination\n",
"V_s = V - 2*I*R #V\n",
"#Energy loss in series is\n",
"enrgy_s = (V_s/2)*I*(ts/3600) #W-h\n",
"#(b) Voltage drop in the starting rheostat in parallel combination\n",
"V_p = V/2 #V\n",
"#Energy loss in parallel is\n",
"enrgy_p = (V_p/2)*(2*I)*(tp/3600)\n",
"\n",
"#Acceleration is\n",
"acc = Vm/Ts #km/h/s\n",
"#Speed at the end of series period\n",
"speed = acc*ts #km/h\n",
"\n",
"print \"Energy loss in series =\",round(enrgy_s,2),\"W-h.\"\n",
"print \"Energy loss in parallel =\",round(enrgy_p,2),\"W-h.\"\n",
"print \"The transition speed = \",round(speed,2),\"km/h.\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## EXAMPLE 43.31 , PAGE NO :- 1751"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Period of series operation = 11.36 s.\n",
"Period of parallel operation = 13.64 s.\n",
"Speed at which series connection are to be changed = 36.36 km/h.\n"
]
}
],
"source": [
"#Two d.c. series motors of a motor coach have resistance of 0.1ohm each.These motors draw a current of 500A from 600V mains during\n",
"#series-parallel starting period of 25 seconds.If the acceleration during starting period remains uniform,determine:\n",
"#(i)time during which the motors operate in (a)series (b)parallel.\n",
"#(ii)the speed at which the series connections are to be changed if the speed just after starting period is 80kmph.\n",
"####################################################################################################################################\n",
"\n",
"\n",
"num_m = 2 # (number of motors)\n",
"V = 600.0 #V (line voltage)\n",
"I = 500.0 #A (current per motor)\n",
"Ts = 25.0 #s (starting period)\n",
"R = 0.1 #ohm (motor resistance)\n",
"Vm = 80.0 #km/h (maximum speed)\n",
"\n",
"#Back emf of each motor in series position,\n",
"Eb_s = V/2 - I*R #V\n",
"#Back emf of each motor in parallel position,\n",
"Eb_p = V - I*R #V\n",
"#time for which motors were in series\n",
"ts = Ts*Eb_s/Eb_p #s\n",
"#time for which motors are in parallel\n",
"tp = Ts - ts #s\n",
"\n",
"#(ii) Speed at which series connection are to be changed = acc*ts and acc = Vm/Ts.Therefore,\n",
"speed = Vm/Ts*ts #km/h\n",
"\n",
"print \"Period of series operation = \",round(ts,2),\"s.\"\n",
"print \"Period of parallel operation = \",round(tp,2),\"s.\"\n",
"print \"Speed at which series connection are to be changed = \",round(speed,2),\"km/h.\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## EXAMPLE 43.32 , PAGE NO :- 1751"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Braking torque = 930.0 N-m.\n"
]
}
],
"source": [
"#The following figures refer to the speed-current and torque-current characteristics of a 600V d.c. series traction motor.\n",
"#Current(A) : 50 100 150 200 250\n",
"#Speed(Kmph): 73.6 48 41.1 37.3 35.2\n",
"#Torque(N-m): 150 525 930 1335 1750\n",
"#Determine the braking torque at a speed of 48kmph when operating as self excited d.c. generator.Assume resistance of motor and\n",
"#braking rheostat to be 0.6 ohm and 3.0 ohm respectively.\n",
"#############################################################################################################################\n",
"\n",
"Rm = 0.6 #ohm(resistance of motor)\n",
"Rrh = 3.0 #ohm(braking rheostat)\n",
"\n",
"#As a motor\n",
"V = 600.0 #V (terminal voltage)\n",
"#From speed-current characteristics . For a speed of 48kmph,\n",
"I = 100.0 #A (current)\n",
"Eb = V - I*Rm #V (back emf)\n",
"\n",
"#As a generator\n",
"\n",
"#At instant of applying rheostatic braking ,the terminal voltage will be equal to emf developed by machine i.e\n",
"V2 = Eb #V\n",
"Rt = Rm + Rrh #ohm (total resistance)\n",
"\n",
"#Using V=IR\n",
"I2 = V2/Rt #A (current)\n",
"\n",
"if (I2==50):\n",
" tau = 150.0 #N-m\n",
"elif (I2==100):\n",
" tau = 525.0 #N-m\n",
"elif (I2==150):\n",
" tau = 930.0 #N-m\n",
"elif (I2==200):\n",
" tau = 1335.0 #N-m\n",
"elif (I2==250):\n",
" tau = 1750.0 #N-m\n",
"\n",
"print \"Braking torque = \",round(tau,2),\"N-m.\" "
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|