summaryrefslogtreecommitdiff
path: root/A_Heat_Transfer_Text_Book/Chapter9.ipynb
blob: 909056113cd52cd4b8534f91c7e84c68319f7670 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 9 : Heat transfer in boiling and \n",
      "other phase-change \n",
      "configurations "
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 9.1, Page number: 467"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#Variables\n",
      "T2=363;                                           #  temp.  of  strip,K\n",
      "T1=373;                                           #saturated  temp.,K\n",
      "p=1.013*10**5;                                    #pressure  of  water,N/m**2\n",
      "psat=1.203*10**5;                                 #saturated  pressure  at  108  C,N/m**2\n",
      "psat1=1.769*10**5;                                #saturated  pressure  at  116  C,N/m**2\n",
      "a=57.36*10**-3;                                   #surface  tension,  N/mat  Tsat=108  C\n",
      "a1=55.78*10**-3;                                  #surface  tension,  N/mat  Tsat=116  C\n",
      "\n",
      "#Calculations\n",
      "Rb=2*a/(psat-p)*1000;                             #bulk  radius  at  108  C,  mm\n",
      "Rb1=2*a1/(psat1-p)*1000;                          #  bulk  radius  at  116  C,  mm\n",
      "\n",
      "#Results\n",
      "print \"Bulk radius at 108 C is :\",Rb,\" mm\\n\"\n",
      "print \"Bulk radius at 116 C is :\",Rb1,\"mm\\n\"\n",
      "print \"This means that the active nucleation sites would be holes with diameters very roughly on the order magnitude of 0.005 mm atleast on the heater .that is within the ransge of roughness of commercially finished surfaces.\"\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Bulk radius at 108 C is : 0.00603789473684  mm\n",
        "\n",
        "Bulk radius at 116 C is : 0.00147566137566 mm\n",
        "\n",
        "This means that the active nucleation sites would be holes with diameters very roughly on the order magnitude of 0.005 mm atleast on the heater .that is within the ransge of roughness of commercially finished surfaces.\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 9.2, Page number: 470"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#Variables\n",
      "q=800;                                          #power  delivered  per  unit  area,KW/m**2\n",
      "T1=373;                                         #saturated  temp.of  water,  K\n",
      "delT=22;                                        #  temp.  difference,K\n",
      "Cp=4.22;                                        #heat  capacity  of  water,kj/(kg*K)\n",
      "Pr=1.75;                                        #prandtl  no.\n",
      "a=958;                                          #desity  difference,kg/m**3\n",
      "s=0.0589;                                       #surface  tension,kg/s**2\n",
      "Hfg=2257;                                       #latent  heat,kj/kg\n",
      "drho=958;                                       #\n",
      "mu=0.0000282;                                   #\n",
      "g=980;\n",
      "\n",
      "#Calculations\n",
      "#by  using  rohensow  correlation  applied  data  for  water  boiling  on  0.61  mm  diameter  platinum  wire\n",
      "RHS=mu*Cp**3/(Hfg**2*Pr**3)*math.sqrt(g*(drho)/s)  #RHS of equation 9.4\n",
      "Csf=(RHS*(delT)**3/(q))**(1/3);          #surface  correction  factor  of  the  heater  surface\n",
      "\n",
      "#Results\n",
      "print \"Surface correction factor of the heater surface is :\",round(Csf,5),\", this value compares favorably with Csf for a platinum or copper surface under water.\\n\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Surface correction factor of the heater surface is : 0.01604 , this value compares favorably with Csf for a platinum or copper surface under water.\n",
        "\n"
       ]
      }
     ],
     "prompt_number": 27
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 9.3, Page number: 477"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#Variables\n",
      "p=1.013*10**5;                                  #pressure  of  water,N/m**2\n",
      "D=0.1;                                          #inside  diameter,m\n",
      "l=0.04;                                         #wavelength,m\n",
      "a=0.0589;                                       #surface  tension,N/m\n",
      "b=0.577;                                        #density  of  gas,  kg/m**3\n",
      "\n",
      "#Calculations\n",
      "u=math.sqrt(2*math.pi*a/(b*l));                   #the  flow  will  be  helmholtz  stable  until  the  steam  velocity  reaches  this  value.\n",
      "\n",
      "#Results\n",
      "print \"Steam velocity required to destablize the liquid flow is :\",round(u,4),\"m/s ,beyond that, the liquid will form whitecaps and be blown back upward.\\n\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Steam velocity required to destablize the liquid flow is : 4.0043 m/s ,beyond that, the liquid will form whitecaps and be blown back upward.\n",
        "\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 9.4, Page number: 478"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#Variables\n",
      "a=13600;                                          #desity  difference,kg/m**3\n",
      "s=0.487;                                          #surface  tension,kg/s**2\n",
      "\n",
      "#Calculations\n",
      "L=2*math.pi*(3**0.5)*math.sqrt(s/(9.8*a))*100;    #spacing  wavelength,cm\n",
      "\n",
      "#Results\n",
      "print \"Maximum spacing is :\",round(L,4),\"cm\\n\"\n",
      "print \"Actually this spacing would give the maximum rate of collapse.it can be shown that collapse would begin at 1/3^0.5 times this value or at 1.2 cm.\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Maximum spacing is : 2.0803 cm\n",
        "\n",
        "Actually this spacing would give the maximum rate of collapse.it can be shown that collapse would begin at 1/3^0.5 times this value or at 1.2 cm.\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 9.5, Page number: 481"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "\n",
      "#Variables\n",
      "T1=373;                                        #saturated  temp.of  water,  K\n",
      "a=957.6;                                       #desity  difference,kg/m**3\n",
      "s=0.0589;                                      #surface  tension,kg/s**2\n",
      "Hfg=2257*1000;                                 #latent  heat,J/kg\n",
      "a2=0.597;                                      #density  of  gas,  kg/m**3\n",
      "g=9.8;                                         #Gravitational constant, m/s^2\n",
      "\n",
      "#Calculations\n",
      "Qmax=0.149*math.sqrt(a2)*Hfg*(g*a*s)**0.25/1000000;\n",
      "\n",
      "#Results\n",
      "print \"Peak heat flux is : \",round(Qmax,3),\",from figure it can be shown that qmax =1.16 MW/m^2, which is less by only about 8 percent.\\n\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Peak heat flux is :  1.26 ,from figure it can be shown that qmax =1.16 MW/m^2, which is less by only about 8 percent.\n",
        "\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 9.6, Page number: 481"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "\n",
      "#Variables\n",
      "T1=628;                                       #saturated  temp.of  water,  K\n",
      "a=13996;                                      #desity  difference,kg/m**3\n",
      "s=0.418;                                      #surface  tension,kg/s**2\n",
      "Hfg=292500;                                   #latent  heat,J/kg\n",
      "a2=4;                                         #density  of  mercury,  kg/m**3\n",
      "g=9.8;                                        #Gravitational constant, m/s^2\n",
      "\n",
      "#Calculations\n",
      "Qmax=0.149*math.sqrt(a2)*Hfg*math.pow((g*a*s),0.25)/(10**6);#Peak heat flux in MW/m^2\n",
      "\n",
      "#Results\n",
      "print \"Peak heat flux is :\",round(Qmax,3),\"MW/m^2\\n\"\n",
      "print \"The result is very close to that for water,the increase in density and surface tension have not been compensated by amuch lower latent heat.\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Peak heat flux is : 1.349 MW/m^2\n",
        "\n",
        "The result is very close to that for water,the increase in density and surface tension have not been compensated by amuch lower latent heat.\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 9.7, Page number: 485"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#Variables\n",
      "T1=373;                                               #saturated  temp.of  water,  K\n",
      "a=958  ;                                              #desity  difference,kg/m**3\n",
      "s=0.0589;                                             #surface  tension,kg/s**2\n",
      "Hfg=2257000;                                          #latent  heat,J/kg\n",
      "a2=0.597;                                             #density  of  gas,  kg/m**3\n",
      "A=400*10**-4;                                         #area  of  mettalic  body,m**2\n",
      "V=0.0006;                                             #volume  of  body,  m**3\n",
      "g=9.8;                                                #Gravitational constant, m/s^2\n",
      "\n",
      "#Calculations\n",
      "Qmax=(0.131*math.sqrt(a2)*Hfg*math.pow((g*a*s),0.25))*0.9*A/1000  ;#large  rate  of  energy  removal,  KW     as  the  cooling  process  progresses,it  goes  through  the  boiling  curve  from  film  boiling,through  qmin,  up  the  transitional  boiling  regime,through  qmax  and  down  the3  nucleate  boiling  curve.  \n",
      "#R=V/A*(9.8*a/s)**0.5       since  this  value  comes  out  to  be  6.0,  which  is  larger  than  the  specified  lower  bound  of  about  4.\n",
      "#to  complete  the  calculation,  it  is  necessary  to  check  whether  or  not  rate  is  large  enough  to  justify  the  use.\n",
      "R=V/A*math.sqrt(g*958/0.0589);                          #the  most  rapid  rate  of  heat  removal  during  the  quench\n",
      "\n",
      "#Results\n",
      "print \"The heat flow is  :\",round(Qmax,1),\"KW\\n\"\n",
      "print \"The most rapid rate of heat removal during the quench is :\",round(R),\", this is larger than the specified lower bound of about 4.\\n\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The heat flow is  : 39.9 KW\n",
        "\n",
        "The most rapid rate of heat removal during the quench is : 6.0 , this is larger than the specified lower bound of about 4.\n",
        "\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 9.8, Page number: 488"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#Variables\n",
      "T1=373;                                             #saturated  temp.of  water,  K\n",
      "a=958;                                              #desity  difference,kg/m**3\n",
      "s=0.0589;                                           #surface  tension,kg/s**2\n",
      "Hfg=2257*1000;                                      #latent  heat,J/kg\n",
      "a2=0.597;                                           #density  of  gas,  kg/m**3\n",
      "g=9.8;                                              #Gravitational constant, m/s^2\n",
      "\n",
      "#Calculations\n",
      "Qmin=0.09*a2*Hfg*(g*a*s/(959**2))**0.25;            #Using equation 9.34\n",
      "\n",
      "#Results\n",
      "print \"peak heat flux is :\",round(Qmin),\"W/m^2  ,from the figure, we read 20000 W/m^2, which is the same, within the accuracy of graph.\\n\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "peak heat flux is : 18990.0 W/m^2  ,from the figure, we read 20000 W/m^2, which is the same, within the accuracy of graph.\n",
        "\n"
       ]
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 9.9, Page number: 502"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#Variables\n",
      "T1=480;                                              #bulk  temp.of  water,  K\n",
      "m=0.6;                                               #mass  flow  rate  of  saturated  water,kg/s\n",
      "D=0.05;                                              #diameter  of  vertical  tube,m\n",
      "p=184000;                                            #heating  rate  f  tube,  W/m**2\n",
      "A=0.001964;                                          #area  of  the  pipe,m**2\n",
      "Pr=0.892;                                            #prandtl  no.\n",
      "x=0.2;                                               #quality\n",
      "a1=9.014;                                            #density  of  gas,kg/m**3\n",
      "a2=856.5                                             #density  of  water,  kg/m**3\n",
      "Hfg=1913*1000;                                       #latent  heat,J/kg\n",
      "muf=1.297*10**-4                                     #\n",
      "\n",
      "#Calculations\n",
      "G=m/A;                                               #superficial  mass  flux\n",
      "Relo=G*D/(1.297*10**-4);                             #reynolds  no.  for  liquid  only.\n",
      "f=1/(1.82/2.303*math.log(Relo)-1.64)**2;             #  formula  for  friction  factor  for  smooth  pipes\n",
      "Nu=(f/8*Relo*Pr)/(1.07+12.7*math.sqrt(f/8)*(Pr**(2/3)-1));#formula  for  nusselt  no.in  fully  developed  flow  in  smooth  pipes\n",
      "hlo=0.659*Nu/D;                                      #heat  transfer  coefficient,w/(m**2*K)\n",
      "Co=((1-x)/x)**0.8*math.sqrt(a1/a2);                  #  Convection  no.\n",
      "Bo=p/(G*Hfg);                                        #  boiling  no.\n",
      "Hfg1=(1-x)**0.8*(0.6683*Co**(-0.2)+1058*Bo**0.7)*hlo;#heat  transfer  coefficient  for  nucleate  boiling  dominant,  w/(m**2*K)\n",
      "Hfg2=(1-x)**0.8*(1.136*Co**(-0.9)+667.2*Bo**0.7)*hlo;#heat  transfer  coefficient  for  connective  boiling  dominant,  w/(m**2*K)\n",
      "#since  the  second  value  is  larger,we  will  use  it.\n",
      "Tw=T1+p/Hfg2;                                        #wall  temperature  ,K\n",
      "Tw1=Tw-273;                                          #wall  temperature  ,C\n",
      "\n",
      "#Results\n",
      "print \"Wall temperature  is :\",round(Tw1,3),\"C\\n\"\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Wall temperature  is : 220.389 C\n",
        "\n"
       ]
      }
     ],
     "prompt_number": 15
    }
   ],
   "metadata": {}
  }
 ]
}