1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 9 : Heat transfer in boiling and \n",
"other phase-change \n",
"configurations "
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 9.1, Page number: 467"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"T2=363; # temp. of strip,K\n",
"T1=373; #saturated temp.,K\n",
"p=1.013*10**5; #pressure of water,N/m**2\n",
"psat=1.203*10**5; #saturated pressure at 108 C,N/m**2\n",
"psat1=1.769*10**5; #saturated pressure at 116 C,N/m**2\n",
"a=57.36*10**-3; #surface tension, N/mat Tsat=108 C\n",
"a1=55.78*10**-3; #surface tension, N/mat Tsat=116 C\n",
"\n",
"#Calculations\n",
"Rb=2*a/(psat-p)*1000; #bulk radius at 108 C, mm\n",
"Rb1=2*a1/(psat1-p)*1000; # bulk radius at 116 C, mm\n",
"\n",
"#Results\n",
"print \"Bulk radius at 108 C is :\",Rb,\" mm\\n\"\n",
"print \"Bulk radius at 116 C is :\",Rb1,\"mm\\n\"\n",
"print \"This means that the active nucleation sites would be holes with diameters very roughly on the order magnitude of 0.005 mm atleast on the heater .that is within the ransge of roughness of commercially finished surfaces.\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Bulk radius at 108 C is : 0.00603789473684 mm\n",
"\n",
"Bulk radius at 116 C is : 0.00147566137566 mm\n",
"\n",
"This means that the active nucleation sites would be holes with diameters very roughly on the order magnitude of 0.005 mm atleast on the heater .that is within the ransge of roughness of commercially finished surfaces.\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 9.2, Page number: 470"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"q=800; #power delivered per unit area,KW/m**2\n",
"T1=373; #saturated temp.of water, K\n",
"delT=22; # temp. difference,K\n",
"Cp=4.22; #heat capacity of water,kj/(kg*K)\n",
"Pr=1.75; #prandtl no.\n",
"a=958; #desity difference,kg/m**3\n",
"s=0.0589; #surface tension,kg/s**2\n",
"Hfg=2257; #latent heat,kj/kg\n",
"drho=958; #\n",
"mu=0.0000282; #\n",
"g=980;\n",
"\n",
"#Calculations\n",
"#by using rohensow correlation applied data for water boiling on 0.61 mm diameter platinum wire\n",
"RHS=mu*Cp**3/(Hfg**2*Pr**3)*math.sqrt(g*(drho)/s) #RHS of equation 9.4\n",
"Csf=(RHS*(delT)**3/(q))**(1/3); #surface correction factor of the heater surface\n",
"\n",
"#Results\n",
"print \"Surface correction factor of the heater surface is :\",round(Csf,5),\", this value compares favorably with Csf for a platinum or copper surface under water.\\n\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Surface correction factor of the heater surface is : 0.01604 , this value compares favorably with Csf for a platinum or copper surface under water.\n",
"\n"
]
}
],
"prompt_number": 27
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 9.3, Page number: 477"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"p=1.013*10**5; #pressure of water,N/m**2\n",
"D=0.1; #inside diameter,m\n",
"l=0.04; #wavelength,m\n",
"a=0.0589; #surface tension,N/m\n",
"b=0.577; #density of gas, kg/m**3\n",
"\n",
"#Calculations\n",
"u=math.sqrt(2*math.pi*a/(b*l)); #the flow will be helmholtz stable until the steam velocity reaches this value.\n",
"\n",
"#Results\n",
"print \"Steam velocity required to destablize the liquid flow is :\",round(u,4),\"m/s ,beyond that, the liquid will form whitecaps and be blown back upward.\\n\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Steam velocity required to destablize the liquid flow is : 4.0043 m/s ,beyond that, the liquid will form whitecaps and be blown back upward.\n",
"\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 9.4, Page number: 478"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"a=13600; #desity difference,kg/m**3\n",
"s=0.487; #surface tension,kg/s**2\n",
"\n",
"#Calculations\n",
"L=2*math.pi*(3**0.5)*math.sqrt(s/(9.8*a))*100; #spacing wavelength,cm\n",
"\n",
"#Results\n",
"print \"Maximum spacing is :\",round(L,4),\"cm\\n\"\n",
"print \"Actually this spacing would give the maximum rate of collapse.it can be shown that collapse would begin at 1/3^0.5 times this value or at 1.2 cm.\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Maximum spacing is : 2.0803 cm\n",
"\n",
"Actually this spacing would give the maximum rate of collapse.it can be shown that collapse would begin at 1/3^0.5 times this value or at 1.2 cm.\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 9.5, Page number: 481"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"\n",
"#Variables\n",
"T1=373; #saturated temp.of water, K\n",
"a=957.6; #desity difference,kg/m**3\n",
"s=0.0589; #surface tension,kg/s**2\n",
"Hfg=2257*1000; #latent heat,J/kg\n",
"a2=0.597; #density of gas, kg/m**3\n",
"g=9.8; #Gravitational constant, m/s^2\n",
"\n",
"#Calculations\n",
"Qmax=0.149*math.sqrt(a2)*Hfg*(g*a*s)**0.25/1000000;\n",
"\n",
"#Results\n",
"print \"Peak heat flux is : \",round(Qmax,3),\",from figure it can be shown that qmax =1.16 MW/m^2, which is less by only about 8 percent.\\n\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Peak heat flux is : 1.26 ,from figure it can be shown that qmax =1.16 MW/m^2, which is less by only about 8 percent.\n",
"\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 9.6, Page number: 481"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"\n",
"#Variables\n",
"T1=628; #saturated temp.of water, K\n",
"a=13996; #desity difference,kg/m**3\n",
"s=0.418; #surface tension,kg/s**2\n",
"Hfg=292500; #latent heat,J/kg\n",
"a2=4; #density of mercury, kg/m**3\n",
"g=9.8; #Gravitational constant, m/s^2\n",
"\n",
"#Calculations\n",
"Qmax=0.149*math.sqrt(a2)*Hfg*math.pow((g*a*s),0.25)/(10**6);#Peak heat flux in MW/m^2\n",
"\n",
"#Results\n",
"print \"Peak heat flux is :\",round(Qmax,3),\"MW/m^2\\n\"\n",
"print \"The result is very close to that for water,the increase in density and surface tension have not been compensated by amuch lower latent heat.\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Peak heat flux is : 1.349 MW/m^2\n",
"\n",
"The result is very close to that for water,the increase in density and surface tension have not been compensated by amuch lower latent heat.\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 9.7, Page number: 485"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"T1=373; #saturated temp.of water, K\n",
"a=958 ; #desity difference,kg/m**3\n",
"s=0.0589; #surface tension,kg/s**2\n",
"Hfg=2257000; #latent heat,J/kg\n",
"a2=0.597; #density of gas, kg/m**3\n",
"A=400*10**-4; #area of mettalic body,m**2\n",
"V=0.0006; #volume of body, m**3\n",
"g=9.8; #Gravitational constant, m/s^2\n",
"\n",
"#Calculations\n",
"Qmax=(0.131*math.sqrt(a2)*Hfg*math.pow((g*a*s),0.25))*0.9*A/1000 ;#large rate of energy removal, KW as the cooling process progresses,it goes through the boiling curve from film boiling,through qmin, up the transitional boiling regime,through qmax and down the3 nucleate boiling curve. \n",
"#R=V/A*(9.8*a/s)**0.5 since this value comes out to be 6.0, which is larger than the specified lower bound of about 4.\n",
"#to complete the calculation, it is necessary to check whether or not rate is large enough to justify the use.\n",
"R=V/A*math.sqrt(g*958/0.0589); #the most rapid rate of heat removal during the quench\n",
"\n",
"#Results\n",
"print \"The heat flow is :\",round(Qmax,1),\"KW\\n\"\n",
"print \"The most rapid rate of heat removal during the quench is :\",round(R),\", this is larger than the specified lower bound of about 4.\\n\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The heat flow is : 39.9 KW\n",
"\n",
"The most rapid rate of heat removal during the quench is : 6.0 , this is larger than the specified lower bound of about 4.\n",
"\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 9.8, Page number: 488"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"T1=373; #saturated temp.of water, K\n",
"a=958; #desity difference,kg/m**3\n",
"s=0.0589; #surface tension,kg/s**2\n",
"Hfg=2257*1000; #latent heat,J/kg\n",
"a2=0.597; #density of gas, kg/m**3\n",
"g=9.8; #Gravitational constant, m/s^2\n",
"\n",
"#Calculations\n",
"Qmin=0.09*a2*Hfg*(g*a*s/(959**2))**0.25; #Using equation 9.34\n",
"\n",
"#Results\n",
"print \"peak heat flux is :\",round(Qmin),\"W/m^2 ,from the figure, we read 20000 W/m^2, which is the same, within the accuracy of graph.\\n\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"peak heat flux is : 18990.0 W/m^2 ,from the figure, we read 20000 W/m^2, which is the same, within the accuracy of graph.\n",
"\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 9.9, Page number: 502"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"T1=480; #bulk temp.of water, K\n",
"m=0.6; #mass flow rate of saturated water,kg/s\n",
"D=0.05; #diameter of vertical tube,m\n",
"p=184000; #heating rate f tube, W/m**2\n",
"A=0.001964; #area of the pipe,m**2\n",
"Pr=0.892; #prandtl no.\n",
"x=0.2; #quality\n",
"a1=9.014; #density of gas,kg/m**3\n",
"a2=856.5 #density of water, kg/m**3\n",
"Hfg=1913*1000; #latent heat,J/kg\n",
"muf=1.297*10**-4 #\n",
"\n",
"#Calculations\n",
"G=m/A; #superficial mass flux\n",
"Relo=G*D/(1.297*10**-4); #reynolds no. for liquid only.\n",
"f=1/(1.82/2.303*math.log(Relo)-1.64)**2; # formula for friction factor for smooth pipes\n",
"Nu=(f/8*Relo*Pr)/(1.07+12.7*math.sqrt(f/8)*(Pr**(2/3)-1));#formula for nusselt no.in fully developed flow in smooth pipes\n",
"hlo=0.659*Nu/D; #heat transfer coefficient,w/(m**2*K)\n",
"Co=((1-x)/x)**0.8*math.sqrt(a1/a2); # Convection no.\n",
"Bo=p/(G*Hfg); # boiling no.\n",
"Hfg1=(1-x)**0.8*(0.6683*Co**(-0.2)+1058*Bo**0.7)*hlo;#heat transfer coefficient for nucleate boiling dominant, w/(m**2*K)\n",
"Hfg2=(1-x)**0.8*(1.136*Co**(-0.9)+667.2*Bo**0.7)*hlo;#heat transfer coefficient for connective boiling dominant, w/(m**2*K)\n",
"#since the second value is larger,we will use it.\n",
"Tw=T1+p/Hfg2; #wall temperature ,K\n",
"Tw1=Tw-273; #wall temperature ,C\n",
"\n",
"#Results\n",
"print \"Wall temperature is :\",round(Tw1,3),\"C\\n\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Wall temperature is : 220.389 C\n",
"\n"
]
}
],
"prompt_number": 15
}
],
"metadata": {}
}
]
}
|