1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 8: Natural convection in singlephase fluids and during film condensation "
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 8.1, Page number: 410"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"T1=313; #fluid temp.,K\n",
"T2=287; #air temp.,K\n",
"H=0.4; #height of sides,m\n",
"Pr=0.711; #prandtl no.\n",
"b=1/T2; # b=1/v*d(R*T/p)/dt=1/To characterisation constant of thermal expansion of solid, K**-1\n",
"g=9.8; #gravity constant\n",
"nu=1.566*10**-5; #dynamic viscocity, m^3/s\n",
"\n",
"#Calculations\n",
"RaL=g*b*(T1-T2)*H**3/(nu*2.203*10**-5); #Rayleigh no.\n",
"Nu=0.678*RaL**(0.25)*(Pr/(0.952+Pr))**(1/4);\t\t # nusselt no.\n",
"h=Nu*0.02614/H # average heat transfer coefficient, W/m**2/K\n",
"q=h*(T1-T2) # average heat transfer,W/m**2\n",
"c=3.936*((0.952+Pr)/Pr**2)**(1/4)*(1/(RaL/Pr)**0.25);#boundary layer thickness.,m\n",
"\n",
"#Results\n",
"print \"Average heat transfer coefficient is : \",round(h,3),\"W/m^2/K\\n\"\n",
"print \"Average heat transfer is :\",round(q,3),\"W/m^2\\n\"\n",
"print \"Boundary layer thickness is :\",round(c,4),\"m\\n\"\n",
"print \"Thus the BL thickness at the end of the plate is only 4 percent of the height, or 1.72 cm thick.this is thicker thsan typical forced convection BL but it is still reasonably thin.\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Average heat transfer coefficient is : 4.059 W/m^2/K\n",
"\n",
"Average heat transfer is : 105.528 W/m^2\n",
"\n",
"Boundary layer thickness is : 0.043 m\n",
"\n",
"Thus the BL thickness at the end of the plate is only 4 percent of the height, or 1.72 cm thick.this is thicker thsan typical forced convection BL but it is still reasonably thin.\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 8.3, Page number: 413"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"T1=323; #wall temp.,K\n",
"T2=293; #air temp.,K\n",
"H=0.3; #height of wall, m\n",
"v2=2.318*10**-5; #molecular diffusivity, m**2/s\n",
"Pr=0.71; #prandtl no.\n",
"\n",
"#Calculations\n",
"v1=16.45*10**-6; # molecular diffusivity, m**2/s\n",
"b=1/T2; # b=1/v*d(R*T/p)/dt=1/To characterisation constant of thermal expansion of solid, K**-1\n",
"Ral=9.8*b*(T1-T2)*H**3/((1.566*10**-5)*(2.203*10**-5));# Rayleigh no.\n",
"Nu=0.678*Ral**(0.25)*(Pr/(0.952+Pr))**(1/4);\t\t # nusselt no.\n",
"h=Nu*0.0267/H # average heat transfer coefficient, W/m**2/K\n",
"Nu1=0.68+0.67*((Ral)**(1/4)/(1+(0.492/Pr)**(9/16))**(4/9));#churchill correlation \n",
"h1=Nu1*(0.0267/0.3)-.11; #average heat transfer coefficient, W/m**2/K\n",
" \n",
"#Results \n",
"print \"Correlation average heat transfer coefficient is :\",round(h1,3),\"W/m^2/K\\n\"\n",
"print \"The prediction is therefore within 5 percent of corelation .we should use the latter result in preference to the theoritical one, although the difference is slight.\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Correlation average heat transfer coefficient is : 4.259 W/m^2/K\n",
"\n",
"The prediction is therefore within 5 percent of corelation .we should use the latter result in preference to the theoritical one, although the difference is slight.\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 8.4, Page number: 417"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"from numpy import mat\n",
"from numpy import array\n",
"\n",
"#Variables\n",
"T1=400; #hot oil temp.,K\n",
"D=0.005; #diameter of line carrying oil, m\n",
"T2=300; #temp. of air around the tube,K\n",
"Tav=350; #average BI temp.,K\n",
"\n",
"\n",
"#Calculations & Results\n",
"#we evaluate properties at this temp. and write g as ge*(g-level), where ge is g at the earth surface and the g-level is the fraction of ge in the space vehicle.\n",
"b=1/T2; # b=1/v*d(R*T/p)/dt=1/To characterisation constant of thermal expansion of solid, K**-1\n",
"v1=2.062*10**-5; # molecular diffusivity, m**2/s\n",
"v2=2.92*10**-5; #molecular diffusivity, m**2/s\n",
"Pr=0.706; #prandtl no.\n",
"g=array(([10**-6, 10**-5, 10**-4, 10**-2]));\n",
"i=0;\n",
"while i<4:\n",
" Ral=0;\n",
" Nu=0;\n",
" h=0;\n",
" Q=0;\n",
" Ral=(9.8*b*((T1-T2))*(D**(3))/(v1*v2))*g.item(i);\t\t# Rayleigh no.\n",
" \n",
" Nu=(0.6+0.387*(Ral/(1+(0.559/Pr)**(9/16))**(16/9))**(1/6))**2;\n",
" #Nu(i)=(0.6+0.387*((Ral)/(1+(0.559/Pr)**(9/16))**(16/9))**1/6)**2; churchill correlation. \n",
" print \"Nusselt no. are : \",round(Nu,2),\"\\n\"\n",
" h=Nu*0.0297/D; # convective heat transfer coefficient,W/(m**2*K)\n",
" print \"Convective heat transfer coefficient are : \",round(h,2),\"W/(m^2*K)\\n\"\n",
" Q=math.pi*D*h*(T1-T2); #heat transfer,W/m\n",
" print \"Heat transfer is :\",round(Q,2),\"W/m of tube\\n\"\n",
" i=i+1;\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Nusselt no. are : 0.48 \n",
"\n",
"Convective heat transfer coefficient are : 2.87 W/(m^2*K)\n",
"\n",
"Heat transfer is : 4.51 W/m of tube\n",
"\n",
"Nusselt no. are : 0.55 \n",
"\n",
"Convective heat transfer coefficient are : 3.25 W/(m^2*K)\n",
"\n",
"Heat transfer is : 5.11 W/m of tube\n",
"\n",
"Nusselt no. are : 0.65 \n",
"\n",
"Convective heat transfer coefficient are : 3.85 W/(m^2*K)\n",
"\n",
"Heat transfer is : 6.05 W/m of tube\n",
"\n",
"Nusselt no. are : 1.09 \n",
"\n",
"Convective heat transfer coefficient are : 6.45 W/(m^2*K)\n",
"\n",
"Heat transfer is : 10.13 W/m of tube\n",
"\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 8.5, Page number: 426"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"T2=300; #air temp.,K\n",
"P=15; #delivered power,W\n",
"D=0.17; #diameter of heater,m\n",
"v1=1.566*10**-5; #molecular diffusivity, m**2/s\n",
"b=1/T2; #b=1/v*d(R*T/p)/dt=1/To characterisation constant of thermal expansion of solid, K**-1\n",
"Pr=0.71; #prandtl no.\n",
"v2=2.203*10**-5; #molecular diffusivity, m**2/s\n",
"v3=3.231*10**-5; #molecular diffusivity at a b except at 365 K., m**2/s\n",
"v4=2.277*10**-5; #molecular diffusivity at a b except at 365 K., m**2/s\n",
"k1=0.02614; #thermal conductivity\n",
"k2=0.0314; #thermal conductivity\n",
"\n",
"#Calculations\n",
"#we have no formula for this situation, so the problem calls for some guesswork.following the lead of churchill and chau, we replace RaD with RaD1/NuD in eq. \n",
"#(NuD)**(6/5)=0.82*(RaD1)**(1/5)*Pr**0.034\n",
"delT=1.18*P/(3.14*D**(2)/4)*(D/k1)/((9.8*b*661*D**(4)/(0.02164*v1*v2))**(1/6)*Pr**(0.028));\n",
"#in the preceding computation, all the properties were evaluated at T2.mow we must return the calculation,reevaluating all properties except b at 365 K.\n",
"delTc=1.18*661*(D/k2)/((9.8*b*661*D**(4)/(k2*v3*v4))**(1/6)*(0.99));\n",
"TS=T2+delTc;\n",
"TS1=TS-271.54\n",
"\n",
"#Results\n",
"print \"Average surface temp. is :\",round(TS1,4),\"K\\n\"\n",
"print \"That is rather hot.obviously, the cooling process is quite ineffective in this case.\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Average surface temp. is : 169.0288 K\n",
"\n",
"That is rather hot.obviously, the cooling process is quite ineffective in this case.\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 8.6, Page number: 435"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"T2=363; # temp. of strip,K\n",
"T1=373; #saturated temp.,K\n",
"H=0.3; #height of strip,m\n",
"Pr=1.86; #prandtl no.\n",
"Hfg=2257; #latent heat. kj/kg\n",
"ja=4.211*10/Hfg; #jakob no.\n",
"a1=961.9; #density of water,kg/m**3\n",
"a2=0.6; #density of air,kg/m**3\n",
"k=0.677; #thermal conductivity,W/(m*K)\n",
"\n",
"#Calculations\n",
"Hfg1=Hfg*(1+(0.683-0.228/Pr)*ja); \t\t #corrected latent heat,kj/kg\n",
"delta=(4*k*(T1-T2)*(2.99*10**(-4))*0.3/(a1*(a1-a2)*9.806*Hfg1*1000))**(0.25)*1000;\n",
"Nul=4/3*H/delta; #average nusselt no.\n",
"q=Nul*k*(T1-T2)/H; # heat flow on an area about half the size of a desktop,W/m**2\n",
"Q=q*H; #overall heat transfer per meter,kW/m\n",
"m=Q/(Hfg1); #mass rate of condensation per meter,kg/(m*s)\n",
"\n",
"#Results\n",
"print \"Overall heat transfer per meter is :\",round(Q,4),\"kW/m^2\\n\"\n",
"print \"Film thickness at the bottom is :\",round(delta,4),\"mm\\n\"\n",
"print \"Mass rate of condensation per meter. is : \",round(m,4),\"kg/(m*s)\\n\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Overall heat transfer per meter is : 26.0118 kW/m^2\n",
"\n",
"Film thickness at the bottom is : 0.1041 mm\n",
"\n",
"Mass rate of condensation per meter. is : 0.0114 kg/(m*s)\n",
"\n"
]
}
],
"prompt_number": 6
}
],
"metadata": {}
}
]
}
|