summaryrefslogtreecommitdiff
path: root/A_Heat_Transfer_Text_Book/Chapter8.ipynb
blob: 4ada2e95804a0105920658b8ae59df65a36af3e1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 8: Natural convection in singlephase fluids and during film condensation "
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 8.1, Page number: 410"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#Variables\n",
      "T1=313;                                              #fluid  temp.,K\n",
      "T2=287;                                              #air  temp.,K\n",
      "H=0.4;                                               #height  of  sides,m\n",
      "Pr=0.711;                                            #prandtl  no.\n",
      "b=1/T2;                                              #  b=1/v*d(R*T/p)/dt=1/To characterisation  constant  of  thermal  expansion  of  solid,  K**-1\n",
      "g=9.8;                                               #gravity constant\n",
      "nu=1.566*10**-5;                                     #dynamic viscocity, m^3/s\n",
      "\n",
      "#Calculations\n",
      "RaL=g*b*(T1-T2)*H**3/(nu*2.203*10**-5);              #Rayleigh  no.\n",
      "Nu=0.678*RaL**(0.25)*(Pr/(0.952+Pr))**(1/4);\t\t #  nusselt  no.\n",
      "h=Nu*0.02614/H                                       #  average  heat  transfer  coefficient,  W/m**2/K\n",
      "q=h*(T1-T2)                                          #  average  heat  transfer,W/m**2\n",
      "c=3.936*((0.952+Pr)/Pr**2)**(1/4)*(1/(RaL/Pr)**0.25);#boundary  layer  thickness.,m\n",
      "\n",
      "#Results\n",
      "print \"Average heat transfer coefficient is : \",round(h,3),\"W/m^2/K\\n\"\n",
      "print \"Average heat transfer is :\",round(q,3),\"W/m^2\\n\"\n",
      "print \"Boundary layer thickness is :\",round(c,4),\"m\\n\"\n",
      "print \"Thus the BL thickness at the end of the plate is only 4 percent of the height, or 1.72 cm thick.this is thicker thsan typical forced convection BL but it is still reasonably thin.\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Average heat transfer coefficient is :  4.059 W/m^2/K\n",
        "\n",
        "Average heat transfer is : 105.528 W/m^2\n",
        "\n",
        "Boundary layer thickness is : 0.043 m\n",
        "\n",
        "Thus the BL thickness at the end of the plate is only 4 percent of the height, or 1.72 cm thick.this is thicker thsan typical forced convection BL but it is still reasonably thin.\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 8.3, Page number: 413"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#Variables\n",
      "T1=323;                                                #wall  temp.,K\n",
      "T2=293;                                                #air  temp.,K\n",
      "H=0.3;                                                 #height  of  wall,  m\n",
      "v2=2.318*10**-5;                                       #molecular  diffusivity,  m**2/s\n",
      "Pr=0.71;                                               #prandtl  no.\n",
      "\n",
      "#Calculations\n",
      "v1=16.45*10**-6;                                       #  molecular  diffusivity,  m**2/s\n",
      "b=1/T2;                                                #  b=1/v*d(R*T/p)/dt=1/To      characterisation  constant  of  thermal  expansion  of  solid,  K**-1\n",
      "Ral=9.8*b*(T1-T2)*H**3/((1.566*10**-5)*(2.203*10**-5));#  Rayleigh  no.\n",
      "Nu=0.678*Ral**(0.25)*(Pr/(0.952+Pr))**(1/4);\t\t  #  nusselt  no.\n",
      "h=Nu*0.0267/H                                         #  average  heat  transfer  coefficient,  W/m**2/K\n",
      "Nu1=0.68+0.67*((Ral)**(1/4)/(1+(0.492/Pr)**(9/16))**(4/9));#churchill  correlation  \n",
      "h1=Nu1*(0.0267/0.3)-.11;                              #average  heat  transfer  coefficient,  W/m**2/K\n",
      "   \n",
      "#Results   \n",
      "print \"Correlation average heat transfer coefficient is :\",round(h1,3),\"W/m^2/K\\n\"\n",
      "print \"The prediction is therefore within 5 percent of corelation .we should use the latter result in preference to the theoritical one, although the difference is slight.\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Correlation average heat transfer coefficient is : 4.259 W/m^2/K\n",
        "\n",
        "The prediction is therefore within 5 percent of corelation .we should use the latter result in preference to the theoritical one, although the difference is slight.\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 8.4, Page number: 417"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "import math\n",
      "from numpy import mat\n",
      "from numpy import array\n",
      "\n",
      "#Variables\n",
      "T1=400;                                                      #hot  oil  temp.,K\n",
      "D=0.005;                                                     #diameter  of  line  carrying  oil,  m\n",
      "T2=300;                                                      #temp.  of  air  around  the  tube,K\n",
      "Tav=350;                                                     #average  BI  temp.,K\n",
      "\n",
      "\n",
      "#Calculations & Results\n",
      "#we  evaluate  properties  at  this  temp.  and  write  g  as  ge*(g-level),  where  ge  is  g  at  the  earth  surface  and  the  g-level  is  the  fraction  of  ge  in  the  space  vehicle.\n",
      "b=1/T2;                                                      #  b=1/v*d(R*T/p)/dt=1/To      characterisation  constant  of  thermal  expansion  of  solid,  K**-1\n",
      "v1=2.062*10**-5;                                             #  molecular  diffusivity,  m**2/s\n",
      "v2=2.92*10**-5;                                              #molecular  diffusivity,  m**2/s\n",
      "Pr=0.706;                                                    #prandtl  no.\n",
      "g=array(([10**-6,  10**-5,  10**-4,  10**-2]));\n",
      "i=0;\n",
      "while i<4:\n",
      "    Ral=0;\n",
      "    Nu=0;\n",
      "    h=0;\n",
      "    Q=0;\n",
      "    Ral=(9.8*b*((T1-T2))*(D**(3))/(v1*v2))*g.item(i);\t\t#  Rayleigh  no.\n",
      "       \n",
      "    Nu=(0.6+0.387*(Ral/(1+(0.559/Pr)**(9/16))**(16/9))**(1/6))**2;\n",
      "    #Nu(i)=(0.6+0.387*((Ral)/(1+(0.559/Pr)**(9/16))**(16/9))**1/6)**2;   churchill  correlation.  \n",
      "    print \"Nusselt no. are : \",round(Nu,2),\"\\n\"\n",
      "    h=Nu*0.0297/D;                                          #  convective  heat  transfer  coefficient,W/(m**2*K)\n",
      "    print \"Convective heat transfer coefficient are : \",round(h,2),\"W/(m^2*K)\\n\"\n",
      "    Q=math.pi*D*h*(T1-T2);                                  #heat  transfer,W/m\n",
      "    print \"Heat transfer is :\",round(Q,2),\"W/m of tube\\n\"\n",
      "    i=i+1;\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Nusselt no. are :  0.48 \n",
        "\n",
        "Convective heat transfer coefficient are :  2.87 W/(m^2*K)\n",
        "\n",
        "Heat transfer is : 4.51 W/m of tube\n",
        "\n",
        "Nusselt no. are :  0.55 \n",
        "\n",
        "Convective heat transfer coefficient are :  3.25 W/(m^2*K)\n",
        "\n",
        "Heat transfer is : 5.11 W/m of tube\n",
        "\n",
        "Nusselt no. are :  0.65 \n",
        "\n",
        "Convective heat transfer coefficient are :  3.85 W/(m^2*K)\n",
        "\n",
        "Heat transfer is : 6.05 W/m of tube\n",
        "\n",
        "Nusselt no. are :  1.09 \n",
        "\n",
        "Convective heat transfer coefficient are :  6.45 W/(m^2*K)\n",
        "\n",
        "Heat transfer is : 10.13 W/m of tube\n",
        "\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 8.5, Page number: 426"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#Variables\n",
      "T2=300;                                                           #air  temp.,K\n",
      "P=15;                                                             #delivered  power,W\n",
      "D=0.17;                                                           #diameter  of  heater,m\n",
      "v1=1.566*10**-5;                                                  #molecular  diffusivity,  m**2/s\n",
      "b=1/T2;                                                           #b=1/v*d(R*T/p)/dt=1/To characterisation  constant  of  thermal  expansion  of  solid,  K**-1\n",
      "Pr=0.71;                                                          #prandtl  no.\n",
      "v2=2.203*10**-5;                                                  #molecular  diffusivity,  m**2/s\n",
      "v3=3.231*10**-5;                                                  #molecular  diffusivity  at  a  b  except  at  365  K.,  m**2/s\n",
      "v4=2.277*10**-5;                                                  #molecular  diffusivity  at  a  b  except  at  365  K.,  m**2/s\n",
      "k1=0.02614;                                                       #thermal  conductivity\n",
      "k2=0.0314;                                                        #thermal  conductivity\n",
      "\n",
      "#Calculations\n",
      "#we  have  no  formula  for  this  situation,  so  the  problem  calls  for  some  guesswork.following  the  lead  of  churchill  and  chau,  we  replace  RaD  with  RaD1/NuD  in  eq.      \n",
      "#(NuD)**(6/5)=0.82*(RaD1)**(1/5)*Pr**0.034\n",
      "delT=1.18*P/(3.14*D**(2)/4)*(D/k1)/((9.8*b*661*D**(4)/(0.02164*v1*v2))**(1/6)*Pr**(0.028));\n",
      "#in  the  preceding  computation,  all  the  properties  were  evaluated  at  T2.mow  we  must  return  the  calculation,reevaluating  all  properties  except  b  at  365  K.\n",
      "delTc=1.18*661*(D/k2)/((9.8*b*661*D**(4)/(k2*v3*v4))**(1/6)*(0.99));\n",
      "TS=T2+delTc;\n",
      "TS1=TS-271.54\n",
      "\n",
      "#Results\n",
      "print \"Average surface temp. is :\",round(TS1,4),\"K\\n\"\n",
      "print \"That is rather hot.obviously, the cooling process is quite ineffective in this case.\"\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Average surface temp. is : 169.0288 K\n",
        "\n",
        "That is rather hot.obviously, the cooling process is quite ineffective in this case.\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 8.6, Page number: 435"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#Variables\n",
      "T2=363;                                                # temp.  of  strip,K\n",
      "T1=373;                                                #saturated  temp.,K\n",
      "H=0.3;                                                 #height  of  strip,m\n",
      "Pr=1.86;                                               #prandtl  no.\n",
      "Hfg=2257;                                              #latent heat. kj/kg\n",
      "ja=4.211*10/Hfg;                                       #jakob no.\n",
      "a1=961.9;                                              #density of  water,kg/m**3\n",
      "a2=0.6;                                                #density of  air,kg/m**3\n",
      "k=0.677;                                               #thermal conductivity,W/(m*K)\n",
      "\n",
      "#Calculations\n",
      "Hfg1=Hfg*(1+(0.683-0.228/Pr)*ja);              \t\t   #corrected  latent  heat,kj/kg\n",
      "delta=(4*k*(T1-T2)*(2.99*10**(-4))*0.3/(a1*(a1-a2)*9.806*Hfg1*1000))**(0.25)*1000;\n",
      "Nul=4/3*H/delta;                                       #average  nusselt  no.\n",
      "q=Nul*k*(T1-T2)/H;                                     #  heat  flow  on  an  area  about  half  the  size  of  a  desktop,W/m**2\n",
      "Q=q*H;                                                 #overall  heat  transfer  per  meter,kW/m\n",
      "m=Q/(Hfg1);                                            #mass  rate  of  condensation  per  meter,kg/(m*s)\n",
      "\n",
      "#Results\n",
      "print \"Overall heat transfer per meter is :\",round(Q,4),\"kW/m^2\\n\"\n",
      "print \"Film thickness at the bottom is :\",round(delta,4),\"mm\\n\"\n",
      "print \"Mass rate of condensation per meter. is : \",round(m,4),\"kg/(m*s)\\n\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Overall heat transfer per meter is : 26.0118 kW/m^2\n",
        "\n",
        "Film thickness at the bottom is : 0.1041 mm\n",
        "\n",
        "Mass rate of condensation per meter. is :  0.0114 kg/(m*s)\n",
        "\n"
       ]
      }
     ],
     "prompt_number": 6
    }
   ],
   "metadata": {}
  }
 ]
}