1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 7: Forced convection in a variety of configurations "
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 7.1, Page number: 350"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"D=0.001; #diameter of tube,m\n",
"T1=293; #temperature of cold water, K\n",
"T2=347; #temperature of hot water, K\n",
"T3=320; #operating temperature of hot water, K\n",
"Q=6000; #heat flux,W/m**2\n",
"v=0.2 ; #speed of water,m/s\n",
"k=0.6367; #thermal conductivity,W/(m*K)\n",
"\n",
"#Calculations\n",
"v1=1.541*10**-7; # molecular diffusivity, m**2/s\n",
"v2=0.556*10**-6; #molecular diffusivity, m**2/s\n",
"Re=D*v/v2; #reynolds no.\n",
"L=D*(54-11/48*Q*D/k)*v*k/(4*Q*v1); #length that is down the tube for water reach to 74 C at its hottest point,m\n",
"\n",
"#Results\n",
"print \"Length that is down the tube for water reach to 74 C at its hottest point is :\",round(L,3),\"m ,while we did not evaluate the thermal entry length here, it may be shown to be much, much less than 1785 diametres.\\n\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Length that is down the tube for water reach to 74 C at its hottest point is : 1.785 m ,while we did not evaluate the thermal entry length here, it may be shown to be much, much less than 1785 diametres.\n",
"\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 7.2, Page number: 354"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"T1 = 300; # air temp.,K\n",
"T2=313; # final air temp.,K\n",
"v=2; # air velocity,m/s\n",
"D=0.01; # inner diameter of pipe,m\n",
"l=0.2; # length surrounded by heater\n",
"nu=16.4*10**-6; # Dynamic viscocity, m^2/s\n",
"Pr=0.711; # prandtl no.\n",
"Cp=1004; # Specific heat, J/kg.K\n",
"k=0.0266; # thermal conductivity ,W/(m.K)\n",
"\n",
"#Calculations\n",
"Red=v*D/(nu); # reynolds no.\n",
"G=Red*Pr*D/l; # graetz no.\n",
"Q=1.159*Cp*v*(T2-T1)*(1/80); # power input, W/m**2\n",
"Tex=T2+Q*D/(5.05*k) # wall temp. at the exit,K\n",
"Tex1=Tex-273;\n",
"\n",
"#Results\n",
"print \"Power input is :\",Q,\"W/m^2\\n\"\n",
"print \"Wall temp. at the exit is:\",round(Tex1,3),\" C\\n\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Power input is : 378.1817 W/m^2\n",
"\n",
"Wall temp. at the exit is: 68.153 C\n",
"\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 7.3, Page number: 362"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"m=21.5; #mass flow rate, kg/s\n",
"D=0.12; #diameter of pipe, m\n",
"T1=363; #pipe temperature,K\n",
"T2=323; #bulk temp. of fluid,K\n",
"a=977; #density, kg/m**3\n",
"Uw=3.1*10**-4; #wall side viscosity,N*s/m**2\n",
"Ub=5.38*10**-4; #bulk viscosity, N*s/m**2\n",
"Pr=2.47; #prandtl no.\n",
"nu=4.07*10**-7; #dynamic viscocity, m^2/s\n",
"k=0.661; #thermal conductivity ,W/(m.K)\n",
"\n",
"#Calculations\n",
"rt=Ub/Uw; #Ration of bulk and wall side viscocities\n",
"u=m/(a*math.pi*(D/2)**2); #average velocity,m/s\n",
"Re=u*D/(nu); #reynolds no.\n",
"f=1/(1.82/2.303*math.log(Re)-1.64)**2; #formula for friction factor for smooth pipes\n",
"Nu=(f/8*Re*Pr)/(1.07+12.7*math.sqrt(f/8)*(Pr**(2/3)-1))*rt**0.11;#formula for nusselt no.in fully developed flow in smooth pipes\n",
"h=Nu*k/D # convective heat transfer coefficient,W/(m**2)/K\n",
"#corrected friction factor = friction factor at bulk temp.*K where K=(7-u1/u2)/6 for wall temp.>bulk temp.\n",
"f1=f*((7-rt)/6); #corrected friction factor\n",
"\n",
"#Results\n",
"print \"Correlation friction factor. is :\",round(f1,4),\"\\n\"\n",
"print \"Convection heat transfer coefficient is :\",round(h,1),\"W/(m^2)/K \\n\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Correlation friction factor. is : 0.0112 \n",
"\n",
"Convection heat transfer coefficient is : 8904.1 W/(m^2)/K \n",
"\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 7.4, Page number: 364"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"m=21.5; #mass flow rate, kg/s\n",
"e=260*10**-6; #wall roughness,m\n",
"D=0.12; #diameter of pipe, m\n",
"T1=363; #pipe temperature,K\n",
"T2=323; #bulk temp. of fluid,K\n",
"a=977; #density, kg/m**3\n",
"Uw=3.1*10**-4; # wall side viscosity,N*s/m**2\n",
"Ub=5.38*10**-4; #bulk viscosity, N*s/m**2\n",
"Pr=2.47; #prandtl no.\n",
"k=0.661; #thermal conductivity ,W/(m.K)\n",
"\n",
"#Calculations\n",
"u=m/(a*math.pi*(D/2)**2); #average velocity,m/s\n",
"Re=u*D/(4.07*10**-7); #reynolds no.\n",
"f=math.pow((1.8*math.log((6.9/Re+(e/D/3.7)**1.11),10)),-2);#friction factor from haaland equation.\n",
"Re1=Re*e/D*math.sqrt(f/8); #roughness reynols no.\n",
"Nu=(f/8)*Re*Pr/(1+math.sqrt(f/8)*(4.5*Re1**(0.2)*math.sqrt(Pr)-8.48));#correlation for local nusselt no.\n",
"h=Nu*k/D/1000; #convection heat transfer coefficient, kW/(m**2*K)\n",
"\n",
"#Results\n",
"print \"Correlation friction factor is :\",round(f,6),\"\\n\"\n",
"print \"Convection heat transfer coefficient is :\",round(h,1),\"kw/(m^2*K)\\n\"\n",
"print \"In this case wall roughness causes a factor of 1.8 increase in h and a factor of 2 increase in f and the pumping power.we have omitted the variable properties hre as they were developed for smooth walled pipes\",\" t in this case wall roughness causes a factor of 1.8 increase in h and a factor of 2 increase in f and the pumping power.we have omitted the variable properties hre as they were developed for smooth walled pipes.\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Correlation friction factor is : 0.024241 \n",
"\n",
"Convection heat transfer coefficient is : 16.4 kw/(m^2*K)\n",
"\n",
"In this case wall roughness causes a factor of 1.8 increase in h and a factor of 2 increase in f and the pumping power.we have omitted the variable properties hre as they were developed for smooth walled pipes t in this case wall roughness causes a factor of 1.8 increase in h and a factor of 2 increase in f and the pumping power.we have omitted the variable properties hre as they were developed for smooth walled pipes.\n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 7.5, Page number: 369"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"T1 = 293; # air temp.,K\n",
"D=0.01; # inner diameter of pipe,m\n",
"v=0.7 # air velocity,m/s\n",
"T2=333; #pipe wall temp.,K\n",
"t=0.25; # distance down the stream\n",
"\n",
"#Calculations\n",
"Re=v*D/(1.66*10**-5); # reynolds no.\n",
"# the flow is therefore laminar, to account for the thermal entry region, we compute the graetz no.\n",
"Gz=Re*(0.709)*D/t; # graetz no.\n",
"Nu=4.32 # nusselt no., Nu=3.657+(0.0668*Gz**(1/3)/(0.04+Gz**(-2/3)))\n",
"h=3.657*(0.0268)/D; # average convective heat transfer coefficient. W/(m**2*K)\n",
"a=1-math.exp((-h/(1.14*1007*v))*(4*t)/D); # (Tb-T1)/(T2-T1)=a (suppose)\n",
"Tb=a*(T2-T1)+T1; # temperature 0.25 m farther down stream.\n",
"Tb1=Tb-270.6;\n",
"\n",
"#Results\n",
"print \"Temperature 0.25 m farther down stream is :\",round(Tb1,3),\" C\\n\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Temperature 0.25 m farther down stream is : 50.586 C\n",
"\n"
]
}
],
"prompt_number": 19
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 7.6, Page number: 371"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"Tbin=290; #inlet bulk temp.,K\n",
"v=1; #speed of air, m/s\n",
"a=0.09; #area of steel,m**2\n",
"l=15; #length of duct running outdoors through awarm air,m\n",
"To=310; #temp. of warm air,K\n",
"h=5; #heat transfer coefficient due to natural convection and thermal radiation.\n",
"Dh=0.3; #hydraulic diameter,m\n",
"\n",
"#Calculations\n",
"Re=v*Dh/(1.578*10**-5); #reynolds no.at Tbin\n",
"Pr=0.713; #prandtl no.\n",
"f=1/(1.82/2.303*math.log(Re)-1.64)**2; # formula for friction factor for smooth pipes\n",
"Nu=(f/8*Re*Pr)/(1.07+12.7*(f/8)**(0.5)*(Pr**(2/3)-1));#formula for nusselt no.in fully developed flow in smooth pipes\n",
"h=Nu*0.02623/Dh; # convective heat transfer coefficient,W/(m**2)/K\n",
"#the remaining problem is to find the bulk temperature change.the thin metal duct wall offers little thermal ressistance, but convection ressistance outside the duct must be considered.\n",
"U=(1/4.371+1/5)**-1; #U=1/Ain*(1/(h*A)in+1/(h*A)out)**-1\n",
"Tbout=(To-Tbin)*(1-math.exp(-U*4*l/(1.217*v*1007*Dh)))+Tbin;#outlet bulk temp., K\n",
"Tbt1=Tbout-273;\t\t\t\t\t\t\t\t #outlet bulk temp. in degree C\n",
"\n",
"#Results\n",
"print \"Outside bulk temp. change is :\",round(Tbt1,3),\"C\\n\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Outside bulk temp. change is : 23.331 C\n",
"\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 7.7, Page number: 379"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"D=0.0001; #diameter of heater,m\n",
"T1 = 293; #air temp.,K\n",
"T2=313; #heater temp.,K\n",
"p=17.8; #dissipating heat,W/m\n",
"\n",
"#Calculations\n",
"h=p/(3.14*D*(T2-T1)); # average convective heat transfer coefficient. W/(m**2*K)\n",
"Nu=h*D/0.0264; #nusselt no., Nu=h*D/thermal conductivity\n",
"Pr=0.71; #prandtl no.\n",
"Re=((Nu-0.3)*(1+(0.4/Pr)**(2/3))**0.25/(0.62*Pr**(1/3)))**2;#reynolds no.\n",
"u=1.596*10**(-5)/(D)*Re+0.2; #air velocity, m/s\n",
"\n",
"#Results\n",
"print \"Air velocity is :\",round(u,3),\"m/s\\n\"\n",
"print \"The data scatter in Red is quite small less than 10 percent, it would appear. therefore, this method can be used to measure local velocities with good accuracy.if the device is calliberated, its accuracy is improved further, such an air speed indicator is called a hot wire anemometer.\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Air velocity is : 73.895 m/s\n",
"\n",
"The data scatter in Red is quite small less than 10 percent, it would appear. therefore, this method can be used to measure local velocities with good accuracy.if the device is calliberated, its accuracy is improved further, such an air speed indicator is called a hot wire anemometer.\n"
]
}
],
"prompt_number": 1
}
],
"metadata": {}
}
]
}
|