1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 6:Laminar and turbulent boundary layers "
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 6.2, Page number: 284"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"T1=300; #air temperature,K\n",
"v=1.5; #air velocity, m/s\n",
"t=0.5; #thickness, m\n",
"u=1.853*math.pow(10,-5); #dynamic viscosity,kg/(m*s)\n",
"v1=1.566*math.pow(10,-5); #kinematic viscosity,m**2/s\n",
"\n",
"#Calculations\n",
"Rex=v*t/v1; #reynolds no. is low enough to permit the use of laminar flow analysis.\n",
"b=4.92*t/(math.sqrt(Rex))*100; # b.l. thickness, cm\n",
"#in this case b/x=1.124/50=0.0225 so laminar flow is valid.\n",
"v2=0.8604*math.sqrt(v1*v/t);\n",
"#since v2 grows larger as x grows smaller, the condition v2<u is not satisfied very near the leading edge.\n",
"#in this case del/thickness is 0.0225.\n",
"x=0.8604*math.sqrt(v1*v/t); #velocity,m/s\n",
"y=x/t;\n",
"\n",
"#Results\n",
"print \"Boundary layer thickness is :\",round(b,3),\"cm\\n\"\n",
"print \"Since velocity grows larger as thickness grows smaller, the condition x<<u is not satisfied very near the leading edge. therefore the BI approximation themselves breakdown.\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Boundary layer thickness is : 1.124 cm\n",
"\n",
"Since velocity grows larger as thickness grows smaller, the condition x<<u is not satisfied very near the leading edge. therefore the BI approximation themselves breakdown.\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 6.3, Page number: 291"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"l=0.5; #total length of surface,m\n",
"Cf=0.00607; #overall friction coefficient\n",
"\n",
"#Calculations\n",
"tw=1.183*(2.25)*Cf/2; # wall shear, kg/(m*s**2)\n",
"a=0.5; #ratio of wall shear at x=l and average wall shear\n",
"#tw(x)=twavg where 0.664/(x**0.5)=1.328/(47,)893, x=1/8 m thus the wall shear stress plummets to twavg one fourth of the way from the leading edge and drops only to one half of twavg in the remaining 75 percent plate.x<600*1.566*10**(-5)/1.5=0.0063 m.\n",
"# preceding analysis should be good over almost 99 percent of the 0.5 m length of the surface.\n",
"\n",
"#Results\n",
"print \"Overall friction coefficient is :\",Cf,\"\\n\"\n",
"print \"Wall shear is :\",tw,\"kg/(m*s^2)\\n\"\n",
"print \"The preceding analysis should be good over almost 99 percent of the 0.5m length of the surface.\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Overall friction coefficient is : 0.00607 \n",
"\n",
"Wall shear is : 0.00807841125 kg/(m*s^2)\n",
"\n",
"The preceding analysis should be good over almost 99 percent of the 0.5m length of the surface.\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 6.4, Page number: 296"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"l=0.06; #length of heater, m\n",
"p=15; #pressure of heater, atm\n",
"T1=440; #temperature of heater, K\n",
"v=2; #free stream velocity,m/s\n",
"T2=460; #constant temperature of heater, K\n",
"T3=450; #mean temperature of heater, K\n",
"k=0.674; #thermal conductivity ,W/(m.K)\n",
"\n",
"#Calculations\n",
"q=2*(0.332)*(k/l)*math.sqrt(v*l/(1.72*10**-7))*(T2-T1)/1000;\t\t #(from Fig 6.10)formula for heat flux is q=2*(0.664)*k/l*(Rel**0.5)*(T2-T1), in kW/m^2\n",
"\n",
"#Results\n",
"print \"Heat flux is :\",round(q,3),\"kW/m^2\\n\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Heat flux is : 124.604 kW/m^2\n",
"\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 6.5, Page number: 308"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"T1=293; #air temperature,K\n",
"v=15; #air velocity,m/s\n",
"T2=383; #temperature of plate,K\n",
"l=0.5; #length of plate,m\n",
"w=0.5; #width of plate,m\n",
"Pr=0.707; #prandtl no.\n",
"k=0.02885; #thermal conductivity of ,W/(m.K)\n",
"\n",
"#Calculations\n",
"Rel=v*l/(0.0000194); #reynolds no.\n",
"Nul=0.664*(Rel)**0.5*Pr**(1/3); \t #nusset no.\n",
"h1=367.8*(k)/l; #average convection coefficient, W/(m**2*K)\n",
"Q=h1*l**(2)*(T2-T1); #heat transferred,W\n",
"h2=h1/2 #convection coefficient at trailing , W/(m**2*K)\n",
"a1=4.92*l/math.sqrt(Rel)*1000 #hydrodynamic boundary layer,m\n",
"a2=a1/(Pr)**(1/3); #thermal boundary layer,mm\n",
"\n",
"#Results\n",
"print \"Average heat trensfer coefficient is :\",round(h1,3),\"W/m^2/K\\n\"\n",
"print \"Total heat transferred is\",round(Q,3),\"W\\n\"\n",
"print \"Convection coefficient at trailing is :\",round(h2,3),\"W/(m^2*K)\\n\"\n",
"print \"Hydrodynamic boundary layer is : \",round(a1,3),\"m\\n\"\n",
"print \"Thermal boundary layer is : \",round(a2,3),\"mm\\n\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Average heat trensfer coefficient is : 21.222 W/m^2/K\n",
"\n",
"Total heat transferred is 477.496 W\n",
"\n",
"Convection coefficient at trailing is : 10.611 W/(m^2*K)\n",
"\n",
"Hydrodynamic boundary layer is : 3.956 m\n",
"\n",
"Thermal boundary layer is : 4.441 mm\n",
"\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 6.6, Page number: 310"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"T1=288; # air temperature,K\n",
"v=1.8; # air velocity,m/s\n",
"l=0.6; # length of panel, m\n",
"Q=420; # power per unit area, m**2\n",
"T2=378; # maximum temperature of surface, K\n",
"k=0.0278; #thermal conductivity of ,W/(m.K)\n",
"Pr=0.709; #Prandtl no.\n",
"\n",
"#Calculations\n",
"T3=Q*l/(k)/(0.453*(l*v/(1.794*10**-5))**(0.50)*(Pr)**(1/3));#maximum temperature difference \n",
"Twmax=T1+T3; #Twmax comes out to be 106.5 C, this is very close to 105 C,if 105 is at all conservative, Q = 420 should be safe.\n",
"T4=0.453/0.6795*T3; #average temperature difference,K\n",
"Twavg=T1+T4; #average wall temperature,K\n",
"Twa=Twavg-273; #average wall temp. in \u00b0C\n",
"\n",
"#Results\n",
"print \"Average wall temperature is :\",round(Twa,3),\"C\\n\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Average wall temperature is : 75.975 C\n",
"\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 6.8, Page number: 313"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"v=15; #air velocity,m/s\n",
"T2=383; # temperature of plate,K\n",
"l=0.5; # length of plate,m\n",
"w=0.5; # width of plate,m\n",
"Pr=0.707; # prandtl no.\n",
"rho=1.05; #Air desnity, kg/m^3\n",
"#Calculations\n",
"Rel=v*l/(0.0000194); #reynolds no.\n",
"Nul=0.664*math.sqrt(Rel)*Pr**(1/3); # nusset no.\n",
"Cf=2*Nul/(Rel*Pr**(1/3)); #friction coefficient\n",
"s=Cf*0.5*rho*v**2; #drag shear, kg/(m*s**2)\n",
"f=s*0.5**2; #drag force, N\n",
"\n",
"#Results\n",
"print \"Drag force on heat transfer surface is :\",round(f,5),\"N\\n\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Drag force on heat transfer surface is : 0.06307 N\n",
"\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 6.9, Page number: 328"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"T1=297; # river water temp.,K\n",
"T2=283; # ocean water temp., K\n",
"n=5; # no. of knots\n",
"k=0.5927; # thermal conductivity,W/(m*K)\n",
"a=998.8; #density of water, kg/m**3\n",
"Cp=4187; # heat capacity, J/kg/K\n",
"Pr=7.66; #Prandtle no.\n",
"x=1; #distance from forward edge,m\n",
"v=1.085*10**-6; # kinematic viscosity, m**2/s\n",
"u=2.572; # velocity of knot,m/s\n",
"\n",
"#Calculations\n",
"T3=(T1+T2)/2; # avg. temp.,K\n",
"Rex=u/v # reynolds no.\n",
"Cf=0.455/(math.log(0.06*Rex))**2 # friction coefficient\n",
"h=k/x*0.032*(Rex)**(0.8)*Pr**(0.43); # heat transfer coefficient,W/(m**2*K)\n",
"h1=a*Cp*u*Cf/2/(1+12.8*(Pr**0.68-1)*math.sqrt(Cf/2)); #heat transfer coefficient,W/(m**2*K)\n",
"\n",
"#Results\n",
"print \"Friction coefficient is :\",round(Cf,5),\"\\n\"\n",
"print \"Convective heat transfer coefficient at a distance of 1 m fom the forward edge is :\",round(h,3),\"W/(m^2*K)\\n\"\n",
"print \"Heat transfer coefficient by another method is :\",round(h1,3),\"W/(m^2*K)\\n\"\n",
"print \"The two values of h differ by about 18 percent, which is within the uncertainity \\n\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Friction coefficient is : 0.00323 \n",
"\n",
"Convective heat transfer coefficient at a distance of 1 m fom the forward edge is : 5728.966 W/(m^2*K)\n",
"\n",
"Heat transfer coefficient by another method is : 6843.244 W/(m^2*K)\n",
"\n",
"The two values of h differ by about 18 percent, which is within the uncertainity \n",
"\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 6.10, Page number: 329"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"l=2; # length of plate,m\n",
"p=1000; # power density,W/m**2\n",
"u=10; # air velocity,m/s\n",
"T1=290; # wind tunnel temp.,K\n",
"p2=1; # pressure,atm\n",
"v=1.578*10**-5; # kinematic viscosity, m**2/s\n",
"k=0.02623; # thermal conductivity,W/(m*K)\n",
"Pr=0.713; # prandtl no.\n",
"Rel=u*l/v; # reynolds no. at 10 m/s\n",
"Nul=1845; # nusselt no.\n",
"Re=400000; #Reynolds no. at the end of turbulent transition engine\n",
"\n",
"#Calculations\n",
"h=Nul*k/l; #convection coefficient,W/(m**2*K)\n",
"Tavg=T1+p/h; #Average temperature of plate, K\n",
"\n",
"#to take better account of the transition region, we can use churchill eqn.\n",
"x=Rel*Pr**(2/3)/(math.sqrt(1+(0.0468/Pr)**(2/3))); \n",
"x1=1.875*x*Re/Rel;\n",
"Nul1=0.45+0.6774*math.sqrt(x)*math.sqrt(1+((x/12500)**(3/5))/(1+(x1/x)**3.5)**0.4);\n",
"H=Nul1*k/l; #convection coefficient,W/(m**2*K)\n",
"Tw=290+1000/H; #average temperature of plate,K\n",
"\n",
"#Results\n",
"print \"Average temperature of plate is :\",round(Tavg,2),\" K\\n\"\n",
"print \"Average temperature of plate is :\",round(Tw,2),\" K , thus in this case, the average heat transfer coefficient is 33 percent higher when the transition regime is included.\\n\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Average temperature of plate is : 331.33 K\n",
"\n",
"Average temperature of plate is : 321.54 K , thus in this case, the average heat transfer coefficient is 33 percent higher when the transition regime is included.\n",
"\n"
]
}
],
"prompt_number": 23
}
],
"metadata": {}
}
]
}
|