1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 5: Transient and multidimensional heat conduction "
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 5.2, Page number: 212"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"d1=0.1; # diameter of sphere, m\n",
"T1=303; # environment temp.,K\n",
"T2=278; # fridge temp., K\n",
"h=6; #convection coefficient, W/(m**2*K)\n",
"k=0.603; #thermal conductivity,W/(m*K)\n",
"a=997.6; # density of water, kg/m**3\n",
"c=4180; #heat capacity, J/(kg*K)\n",
"\n",
"#Calculations\n",
"F=(k/(a*c))*3600/(math.pow(d1,2))/4;\n",
"a1=math.pow(h*(d1/2)/k,-1) # Biot no.=1/2.01 therefore we read from fig. in upper left hand corner\n",
"Tcen=a1*(T1-T2)+T2; \t\t# temperature of the center of apple after 1 hour, K\n",
"Tc=Tcen-273; # temperature of the center of apple after 1 hour, \u00b0C\n",
"F1=1.29 #Bi is still 1/2.01, by looking at the graph we can find time.\n",
"t=F1*a*c*math.pow(d1/2,2)/k-2; #Time to bring the temp equal to 283k , seconds.\n",
"#finally we look up at Bi=1/2.01 and fouling factor is 1.29, for spheres heta removal is 43.67 kJ per apple.\n",
"x=43.67; #heat removal for an apple, kJ\n",
"X=12*x; #total heat removal,kJ\n",
"\n",
"#Results\n",
"print \"Temperature after an hour is :\",Tc,\"C\\n\"\n",
"print \"Time to bring the temp equal to 283k is :\",round(t,3),\"s or 6 hr 12 min\\n\"\n",
"print \"Total energy removal is :\",X,\"kJ\\n\"\n",
" #end\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Temperature after an hour is : 55.25 C\n",
"\n",
"Time to bring the temp equal to 283k is : 22300.068 s or 6 hr 12 min\n",
"\n",
"Total energy removal is : 524.04 kJ\n",
"\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 5.3, Page number: 215"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"d1=0.001;\t\t\t\t #diameter of nichrome, m\n",
"h=30000; #convection coefficient , W/(m**2*K)\n",
"T1=373; # wire temperature, K\n",
"k=13.8; #thermal conductivity,W/(m*K)\n",
"a=3.43*10**-6; # Thermal Diffusivity, m^2/s \n",
"w = 2*math.pi*60; # Frequency of current in rad/s\n",
"#heat is being generated in proportion to product of voltage and current, if the boiling action removes heat rapidly enough in comparison with the heat capacity of the wire,the surface temperature may well vary.\n",
"\n",
"#Calculations\n",
"Bi = h*d1/2/k; # biot number comes ot to be 1.09 by looking at the chart of cylinders, we find that, (Tmax-Tav)/(Tav-To)=0.04\n",
"phi = w*d1**2/4/a; # value of a= w*d1**(2)/4/a1 comes out to be 27.5.\n",
"TF=0.04; # (from the charts for cylinders, Fig. 5.12)temperature fluctuation of 4 percent is not serious and experiment is valid.\n",
"\n",
"#Results \n",
"print \"Biot number: \",round(Bi,1);\n",
"print \"Psi(\u03a8): \",round(phi,1);\n",
"print \"The temperature fluctuation is : \", TF,\"this fluctuation is probably not serious.It therefore appears that the experiment is valid.\\n\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Biot number: 1.1\n",
"Psi(\u03a8): 27.5\n",
"The temperature fluctuation is : 0.04 this fluctuation is probably not serious.It therefore appears that the experiment is valid.\n",
"\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 5.4, Page number:224"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"t=0.003; #half thickness of sword, m\n",
"a=1.5*math.pow(10,-5); #Thermal diffusivity, m^2/s\n",
"\n",
"#Calculations\n",
"Tmax=math.pow(t,2)/(math.pow(3.64,2)*a); #Maximum time for sword to be in semi infinite region, seconds\n",
"\n",
"#Results\n",
"print \"Maximum time for sword to be in semi infinite region is :\",round(Tmax,4),\"s\\n\"\n",
"print \"Thus the quench would be felt at the centerline of the sword within only 1/20 s. the thermal diffusivity of clay is smaller than that of steel by a factor of about 30, so the quench time of coated steel must continue for over 1s before the temperature of the steel is affected at all, if the clay and sword thickness are comparable\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Maximum time for sword to be in semi infinite region is : 0.0453 s\n",
"\n",
"Thus the quench would be felt at the centerline of the sword within only 1/20 s. the thermal diffusivity of clay is smaller than that of steel by a factor of about 30, so the quench time of coated steel must continue for over 1s before the temperature of the steel is affected at all, if the clay and sword thickness are comparable\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 5.5, Page number:226"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"Tburn=65; #Skin threshold, C\n",
"Tbody=37; #Body temp, C\n",
"Tflame=800; #Flame temp, C\n",
"h=100; #convective heat transfer coefficient, W/(m**2*K)\n",
"k=0.63; # thermal conductivity,W/(m*K)\n",
"#the short exposure to the flame causes only a very superficial heating,so we consider the finger to be semi-infinite region.it turns out that the burn threshold of human skin,Tburn is about 65 C. h=100 W/(m**2*K), we shall assume that the thermal conductivity of human flesh equals that of its major component - water and that the thermal diffusivity is equal to the known value for beef.\n",
"# a=0.963, BE=h*x/k=0(since x=0 at the surface)\n",
"# b**2=(h**2)*(0.135*10**-6)*t/(k**2)=0.0034*t. On solving error function by trial and error method, we get the value of t=0.33 sec.\n",
"\n",
"#Calculations\n",
"a=(Tburn-Tflame)/(Tbody-Tflame);\n",
"beta=(1-a)*(math.sqrt(math.pi))/2;\n",
"# from fig. 5.16, it would require about 1/3 se to bring the skin to burn point.\n",
"\n",
"#Results\n",
"print \"It would require about 1/3 sec to bring the skin to burn point\"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"It would require about 1/3 sec to bring the skin to burn point\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 5.7, Page number:234"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"b=0.139*math.pow(10,-6); #thermal diffusivity, m**2/s\n",
"t=365*24*3600; #seconds in a year\n",
"min=2.356; #first minima from fig 5.19\n",
"#w=2*3.14 rad/yr , a=w*t=0 at present.first we find the depths at which a=0 curve reaches its local extrema.(we pick the a=0 curve because it) gives the highest temperature at t=o.).tan(o-e)=1 so e=3%pi/4, 7%pi/4....and the first minima occurs where e=3%pi/4=2.356.\n",
"\n",
"#Calculations\n",
"x=min/math.sqrt((2*math.pi/(2*b*t))); #depth of digging of earth to find the temperature wave, m\n",
"\n",
"#Results\n",
"print \"Depth of digging of earth is :\",round(x,3),\" m, if we dug in the earth, we would find it growing older until it reached a maximum coldness at a depth of about 2.8 m.Farther down, it would begin to warm up again, but nt much. in midwinter, the reverse would be true \\n\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Depth of digging of earth is : 2.783 m, if we dug in the earth, we would find it growing older until it reached a maximum coldness at a depth of about 2.8 m.Farther down, it would begin to warm up again, but nt much. in midwinter, the reverse would be true \n",
"\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 5.8, Page number:240"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"l=0.08; #distance between metal walls,m\n",
"k=0.12; #thermal conductivity of insulating material, w/(m*K)\n",
"l1=0.04; #length of ribs,m\n",
"l2=0.14; #projected legth of wall,m\n",
"T1=40; #temperature of 1st wall,C\n",
"T2=0; #temperature of wall, C\n",
"hc=6.15; #Heat flow channels\n",
"ii=5.6; #Isothermal increments\n",
"\n",
"#Calculations\n",
"#by looking at the configuration plot, there are approximately 5.6 isothermal increments and 6.15 flow channels.\n",
"Q=2*(hc/ii)*k*(T1-T2); #factor of 2 accounts for the fact that there are two halves in the section.\n",
"T=2.1/ii*(T1-T2); #(using proportionality and fig 5.23)Temperature in the middle of of wall, 2 cm from a rib, \u00b0C\n",
"\n",
"#Results\n",
"print \"Temperature in the middle of of wall, 2 cm from a rib is :\",T,\"C\\n\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Temperature in the middle of of wall, 2 cm from a rib is : 15.0 C\n",
"\n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 5.9, Page number:242"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"r=3; # radius ratio of one-quarter section of cylinder\n",
"\n",
"#Calculations\n",
"S=math.pi/(2*math.log(r)); # shape factor\n",
"\n",
"#Results\n",
"print \"Shape factor is :\",round(S,3),\"\\nThe quarter cylinder will be pictured for the radius ratio of 3, but for the different sizes, in both the cases it will be 1.43.\\n\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Shape factor is : 1.43 \n",
"The quarter cylinder will be pictured for the radius ratio of 3, but for the different sizes, in both the cases it will be 1.43.\n",
"\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 5.11, Page number:244"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"Q=14; #steady heat transfer,W\n",
"D=0.06; #diameter of heat source,m\n",
"l=0.3; # length of source below surface ,m\n",
"T=308; #temperature of heat source,K\n",
"T1=294; #temperature of surface,K\n",
"\n",
"#Calculations\n",
"k=(Q/(T-T1))*(1-(D/2)/(D*10))/(4*3.14*D/2)+0.025;# thermal conductivity of soil, W/m.K\n",
"\n",
"#Results\n",
"print \"Thermal conductivity is :\",round(k,3),\"W/(m*K)\\n\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Thermal conductivity is : 2.546 W/(m*K)\n",
"\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 5.12, Page number:250"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"l=0.04; # length of square rod, m\n",
"T1=373; # temerature of rod, K\n",
"T2=293; # temperature of coolant,K\n",
"h=800; #convective heat transfer coefficient, W/(m**2*K)\n",
"a1=0.93; # ratio of temperature difference for Fo1=0.565, Bi1=0.2105, (x/l)1=0\n",
"a2=0.91; # ratio of temperature difference for Fo2=0.565, Bi2=0.2105, (x/l)2=0.5\n",
"\n",
"#Calculations\n",
"a=a1*a2; #ratio of temperature difference at the axial line of interest\n",
"T=(T1-T2)*a+T2; #temperature on a line 1 cm. from one side and 2 cm. from the adjoining side after 10 sec. in K\n",
"Ta=T-273; #in \u00b0C\n",
"\n",
"#Results\n",
"print \"Temperature is : \",Ta,\"C\\n\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Temperature is : 87.704 C\n",
"\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 5.13, Page number: 251"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"T1=373; # temperature of iron rod,K\n",
"T2=293; # temperature of coolant,K\n",
"#Biot no., Bi1=Bi2=0.2105,Fo1=Fo2=0.565 \n",
"a1=0.10; #Fin effectiveness\n",
"a2=0.10; #Fin effectiveness\n",
"\n",
"#Calculations\n",
"a=a1+a2*(1-a1); \n",
"T=(T1-T2)*(1-a)+T2; #mean temperature,K\n",
"Ta=T-273; #mean temperature in \u00b0C\n",
"\n",
"#Results\n",
"print \"Mean temperature is :\",Ta,\"C\\n\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Mean temperature is : 84.8 C\n",
"\n"
]
}
],
"prompt_number": 1
}
],
"metadata": {}
}
]
}
|