1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 4: Analysis of heat conduction and some steady one-dimensional problems"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 4.8, Page number: 172"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"d=0.02; #diameter of alluminium rod,m\n",
"k=205; #thermal conductivity of rod,W/(m.K)\n",
"l=0.08; #length of rod, m\n",
"T1=423; #wall temperature, K\n",
"T2=299; #air temperatutre, K\n",
"h=120; #convective coefficient, W/(m**2*K)\n",
"\n",
"#Calculations\n",
"mL=math.sqrt(h*(math.pow(l,2))/(k*d/4)); # formula for mL=((h*Perimeter*l**2)/(k*Area))**0.5\n",
"Bi=h*l/k #Biot no.\n",
"a1=(math.cosh(0)+(Bi/mL)*math.sinh(0))/(math.cosh(mL)+(Bi/mL)*math.sinh(mL));#formula for temperature difference T-Ttip\n",
"Ttip1=T2+a1*(T1-T2); # exact tip temperature, C\n",
"Tt1=Ttip1-273; #Exact tip temp., K\n",
"a2=(math.cosh(0)+(Bi/mL)*math.sinh(0))/(math.cosh(mL));#dimensionless temp. at tip if heat transfer from the tip is not considered\n",
"Ttip2=T2+a2*(T1-T2); #Approximate tip temp., K\n",
"Tt2=Ttip2-273; #Approximate tip temp., C\n",
"\n",
"#Results\n",
"print \"The exact tip temperature is :\",round(Tt1,3),\"C\\n\"\n",
"print \"Approximate tip temperature is : \",round(Tt2,3),\" C\\n\"\n",
"print \"Thus the insulated tip approximation is adequate for the computation in this case.\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The exact tip temperature is : 111.428 C\n",
"\n",
"Approximate tip temperature is : 114.659 C\n",
"\n",
"Thus the insulated tip approximation is adequate for the computation in this case.\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 4.9, Page number: 174"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"T1=423; #wall temperature, K\n",
"d=0.02; #diameter of alluminium rod,m\n",
"k=205; #thermal conductivity of rod,W/(m.K)\n",
"l=0.08; #length of rod, m\n",
"T2=299; #air temperatutre, K \n",
"h=120; #convective coefficient, W/(m**2*K)\n",
"mL=0.8656;\n",
"\n",
"#Calculations\n",
"mr=mL*(d/(2*l)); # by looking at graph of 1-Qact/Q(no temp.depression) vs. mr*math.tanh(mL), we can find out the value of Troot. 1-Qact./Q(no temp. depression) = 0.05 so heat flow is reduced by 5 percent\n",
"Troot=T1-(T1-T2)*0.05; #Actual temperature of root, K (0.05 is from graph)\n",
"Tr=Troot-273; #Actual temperature of root, \u00b0C\n",
"\n",
"#Results\n",
"print \"Actual temperature of root is :\",Tr,\"C , the correction is modest in this \\n\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Actual temperature of root is : 143.8 C , the correction is modest in this \n",
"\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 4.10, Page number: 178"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"T1=308; #air temperature, K\n",
"Q=0.1; # heat transferred,W\n",
"k=16; #thermal conductivity of wires, W/(m*K)\n",
"d=0.00062; #diameter of wire,m\n",
"Heff=23; #convection coefficient, W/(m**2*K)\n",
"A=1.33*math.pow(10,-4); #Aera of resistor surface, m^2 (from example 2.8)\n",
"#the wires act actn as very long fins connected to ressistor hence math.tanh(mL)=1\n",
"\n",
"#Calculations\n",
"R1=1/math.sqrt(k*Heff*math.pow(math.pi,2)*math.pow(d,3)/4); #Fin resistance, K/W\n",
"Req=math.pow((1/R1+1/R1+7.17*A+13*A),-1); #the 2 thermal ressistances are in parallel to the thermal ressistance for natural...\n",
"#convection and thermal radiation from the ressistor's surface found in previous eg.\n",
"Tres=T1+Q*Req; #Resistor temperature, K\n",
"Trs=Tres-273; #Resistor temperature, \u00b0C\n",
"\n",
"#Results \n",
"print \"Resistor temperature is :\",round(Trs,2),\"C or about 10 C lower than before.\\n\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Resistor temperature is : 62.68 C or about 10 C lower than before.\n",
"\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 4.11, Page number: 181"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"D1=0.03; # outer diameter, m\n",
"T1=358; #hot water temperature, K\n",
"t1=0.0008; #thickness of fins, m\n",
"D2=0.08; # diameter of fins, m\n",
"t2=0.02; # spacing between fins, m\n",
"h1=20; # convection coefficient, W/(m**2*K)\n",
"h2=15; #convection coefficient with fins, W/(m**2*K)\n",
"To=295; #surrounding temperature, K\n",
"\n",
"#Calculations\n",
"Q=math.pi*D1*h1*(T1-To); # if fins are not added.\n",
"Q1=math.ceil(Q1); #heat loss without fins,W/m\n",
"# we set wall temp.=water temp..since the wall is constantly heated by water, we should not have a root temp. depression problem after the fins are added.hence by looking at the graph, ml(l/Perimeter)**0.5=(h*(D2/2-D1/2)/(125*0.025*t1)) = 0.306, we obtain n(efficiency)=89 percent\n",
"Qfin=math.ceil(Q*(t2-t1)/t2 + 0.89*(2*3.14*(math.pow(D2,2)/4-math.pow(D1,2)/4))*50*h2*(T1-To)) #Heat transferred with fins, K/W\n",
"\n",
"#Results\n",
"print \"Heat trnsferred without fins is :\",Q1,\"W/m\\n\"\n",
"print \"Heat transferred with fins is :\", round(Qfin,3),\"W/m or 4.02 times heat loss without fins.\\n\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Heat trnsferred without fins is : 199.0 W/m\n",
"\n",
"Heat transferred with fins is : 478.0 W/m or 4.02 times heat loss without fins.\n",
"\n"
]
}
],
"prompt_number": 9
}
],
"metadata": {}
}
]
}
|