summaryrefslogtreecommitdiff
path: root/A_Heat_Transfer_Text_Book/Chapter4.ipynb
blob: 6c6f72bd52790acf0c51af02bd7a56157bc65be5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 4: Analysis of heat conduction and some steady one-dimensional problems"
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 4.8, Page number: 172"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#Variables\n",
      "d=0.02;                                    #diameter  of  alluminium  rod,m\n",
      "k=205;                                     #thermal  conductivity  of  rod,W/(m.K)\n",
      "l=0.08;                                    #length  of  rod,  m\n",
      "T1=423;                                    #wall  temperature,  K\n",
      "T2=299;                                    #air  temperatutre,  K\n",
      "h=120;                                     #convective  coefficient,  W/(m**2*K)\n",
      "\n",
      "#Calculations\n",
      "mL=math.sqrt(h*(math.pow(l,2))/(k*d/4));   #  formula  for  mL=((h*Perimeter*l**2)/(k*Area))**0.5\n",
      "Bi=h*l/k                                   #Biot no.\n",
      "a1=(math.cosh(0)+(Bi/mL)*math.sinh(0))/(math.cosh(mL)+(Bi/mL)*math.sinh(mL));#formula  for  temperature  difference  T-Ttip\n",
      "Ttip1=T2+a1*(T1-T2);                       #  exact  tip  temperature, C\n",
      "Tt1=Ttip1-273;                             #Exact tip temp., K\n",
      "a2=(math.cosh(0)+(Bi/mL)*math.sinh(0))/(math.cosh(mL));#dimensionless temp. at tip if  heat  transfer  from  the  tip  is  not  considered\n",
      "Ttip2=T2+a2*(T1-T2);                       #Approximate tip temp., K\n",
      "Tt2=Ttip2-273;                             #Approximate tip temp., C\n",
      "\n",
      "#Results\n",
      "print \"The exact tip temperature is :\",round(Tt1,3),\"C\\n\"\n",
      "print \"Approximate tip temperature is : \",round(Tt2,3),\" C\\n\"\n",
      "print \"Thus the insulated tip approximation is adequate for the computation in this case.\"\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The exact tip temperature is : 111.428 C\n",
        "\n",
        "Approximate tip temperature is :  114.659  C\n",
        "\n",
        "Thus the insulated tip approximation is adequate for the computation in this case.\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 4.9, Page number: 174"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#Variables\n",
      "T1=423;                                      #wall  temperature,  K\n",
      "d=0.02;                                      #diameter  of  alluminium  rod,m\n",
      "k=205;                                       #thermal  conductivity  of  rod,W/(m.K)\n",
      "l=0.08;                                      #length  of  rod,  m\n",
      "T2=299;                                      #air  temperatutre,  K  \n",
      "h=120;                                       #convective  coefficient,  W/(m**2*K)\n",
      "mL=0.8656;\n",
      "\n",
      "#Calculations\n",
      "mr=mL*(d/(2*l));                             #  by  looking  at  graph  of  1-Qact/Q(no  temp.depression)  vs.  mr*math.tanh(mL),  we  can  find  out  the  value  of  Troot.  1-Qact./Q(no  temp.  depression)  =  0.05  so  heat  flow  is  reduced  by  5  percent\n",
      "Troot=T1-(T1-T2)*0.05;                       #Actual temperature of root, K (0.05 is from graph)\n",
      "Tr=Troot-273;                                #Actual temperature of root, \u00b0C\n",
      "\n",
      "#Results\n",
      "print \"Actual temperature of root is :\",Tr,\"C , the correction is modest in this \\n\"\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Actual temperature of root is : 143.8 C , the correction is modest in this \n",
        "\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 4.10, Page number: 178"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#Variables\n",
      "T1=308;                                    #air  temperature,  K\n",
      "Q=0.1;                                     #  heat  transferred,W\n",
      "k=16;                                      #thermal  conductivity  of  wires,  W/(m*K)\n",
      "d=0.00062;                                 #diameter  of  wire,m\n",
      "Heff=23;                                   #convection  coefficient,  W/(m**2*K)\n",
      "A=1.33*math.pow(10,-4);                    #Aera of resistor surface, m^2 (from example 2.8)\n",
      "#the  wires  act  actn  as  very  long  fins  connected  to  ressistor  hence  math.tanh(mL)=1\n",
      "\n",
      "#Calculations\n",
      "R1=1/math.sqrt(k*Heff*math.pow(math.pi,2)*math.pow(d,3)/4);       #Fin resistance, K/W\n",
      "Req=math.pow((1/R1+1/R1+7.17*A+13*A),-1);   #the  2  thermal  ressistances  are  in  parallel  to  the  thermal  ressistance  for  natural...\n",
      "#convection  and  thermal  radiation  from  the  ressistor's  surface  found  in  previous  eg.\n",
      "Tres=T1+Q*Req;                             #Resistor temperature, K\n",
      "Trs=Tres-273;                              #Resistor temperature, \u00b0C\n",
      "\n",
      "#Results  \n",
      "print \"Resistor temperature is :\",round(Trs,2),\"C or about 10 C lower than before.\\n\"\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Resistor temperature is : 62.68 C or about 10 C lower than before.\n",
        "\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 4.11, Page number: 181"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#Variables\n",
      "D1=0.03;                                     #  outer  diameter,  m\n",
      "T1=358;                                      #hot  water  temperature,  K\n",
      "t1=0.0008;                                   #thickness  of  fins,  m\n",
      "D2=0.08;                                     #  diameter  of  fins,  m\n",
      "t2=0.02;                                     #  spacing  between  fins,  m\n",
      "h1=20;                                       #  convection  coefficient,  W/(m**2*K)\n",
      "h2=15;                                       #convection  coefficient  with  fins,  W/(m**2*K)\n",
      "To=295;                                      #surrounding  temperature,  K\n",
      "\n",
      "#Calculations\n",
      "Q=math.pi*D1*h1*(T1-To);                     #  if  fins  are  not  added.\n",
      "Q1=math.ceil(Q1);                            #heat  loss  without  fins,W/m\n",
      "#  we  set  wall  temp.=water  temp..since  the  wall  is  constantly  heated  by  water,  we  should  not  have  a  root  temp.  depression  problem  after  the  fins  are  added.hence  by  looking  at  the  graph,  ml(l/Perimeter)**0.5=(h*(D2/2-D1/2)/(125*0.025*t1))  =  0.306,  we  obtain  n(efficiency)=89  percent\n",
      "Qfin=math.ceil(Q*(t2-t1)/t2  +  0.89*(2*3.14*(math.pow(D2,2)/4-math.pow(D1,2)/4))*50*h2*(T1-To)) #Heat transferred with fins, K/W\n",
      "\n",
      "#Results\n",
      "print \"Heat trnsferred without fins is :\",Q1,\"W/m\\n\"\n",
      "print \"Heat transferred with fins is :\", round(Qfin,3),\"W/m or 4.02 times heat loss without fins.\\n\"\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Heat trnsferred without fins is : 199.0 W/m\n",
        "\n",
        "Heat transferred with fins is : 478.0 W/m or 4.02 times heat loss without fins.\n",
        "\n"
       ]
      }
     ],
     "prompt_number": 9
    }
   ],
   "metadata": {}
  }
 ]
}