summaryrefslogtreecommitdiff
path: root/A_Heat_Transfer_Text_Book/Chapter3.ipynb
blob: 6791eb702dc32b9e29e0640f5cd7d314eed11cde (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 3 - Heat exchanger design "
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 3.3, Page number: 113"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#Variables\n",
      "T1=20;                                   #Entering  Temperature  of  Water,  K\n",
      "T2=40;                                   #Exit  Temperature  of  water,  K\n",
      "m=25/60                                  #Condensation  rate  of  steam,  kg/s\n",
      "T3=60;                                   #Condensation  Temperature,K\n",
      "A=12;                                    #area  of  exchanger,  m**2\n",
      "h=2358.7*math.pow(10,3);                 #latent  heat,  J/kg\n",
      "Cp=4174;                                 #Specific heat of water, J/kg K\n",
      "\n",
      "#Calculations\n",
      "U=(m*h)/(A*((T2-T1)/math.log((T3-T1)/(T3-T2))));#Overall heat transfer coefficient, W/(m^2*K)\n",
      "Mh=(m*h)/(Cp*(T2-T1));\t\t             #Required flow of water, kg/s\n",
      "\n",
      "#Results\n",
      "print \"Overall heat transfer coefficient is :\",round(U,1),\"W/(m^2*K)\\n\"\n",
      "print \"Required flow of water is :\",round(Mh,2),\"kg/s\\n\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Overall heat transfer coefficient is : 2838.4 W/(m^2*K)\n",
        "\n",
        "Required flow of water is : 11.77 kg/s\n",
        "\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 3.4, Page number: 117"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#Variables\n",
      "m=5.795;                              #flow  rate  of  oil,  kg/s\n",
      "T1=454;                               #Entering  Temperature  of  oil,  K\n",
      "T2=311;                               #Exit  Temperature  of  oil,  K\n",
      "T3=305;                               #  Entering  Temperature  of  water,  K\n",
      "T4=322;                               #Exit  Temperature  of  water,  K\n",
      "c=2282;                               #heat  capacity,  J/(kg*K)\n",
      "U=416;                                #overall  heat  transfer  coefficient  ,  J/(m**2*K*s)\n",
      "F=0.92;                               #Correction  factor  for  2  shell  and  4  tube-pass  exchanger,\n",
      "#since  R=(T1-T2)/(T4-T3)=8.412  >1,  P=(T4-T3)/(T1-T2)=0.114,we  can  get  this  value  of  F  by  using  value  of  P  =R*0.114\n",
      "\n",
      "#Calculations\n",
      "A=(m*c*(T1-T2))/(U*F*((T1-T4-T2+T3)/math.log((T1-T4)/(T2-T3))));#Area for heat exchanger, m^2.\n",
      "\n",
      "#Results\n",
      "print \"Area for heat exchanger is :\",round(A,3),\"m^2\\n\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Area for heat exchanger is : 121.216 m^2\n",
        "\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 3.5, Page number: 112"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#Variables\n",
      "T1=313;                                                    #entering  temperature  of  cold  water,  K\n",
      "T2=423;                                                    #Entering  temperature  of  hot  water,  K\n",
      "Cc=20000;                                                  #heat  capacity  of  cold  water,  W/K\n",
      "Ch=10000;                                                  #heat  capacity  of  hot  water,  W/K\n",
      "A=30;                                                      #area,  m**2\n",
      "U=500;                                                     #overall  heat  transfer  coefficient,  w/(m**2*K)\n",
      "e=0.596;                                                   #no.  of  transfer  units(NTU)=(U*A)/Ch=1.5,  the  effectiveness  of  heat  exchanger  e  can  be  found  by  using  this  value  of  NTU\n",
      "\n",
      "#Calculations\n",
      "Q=e*Ch*(T2-T1);\t\t\t\t\t\t\t\t#Heat transfer, W\n",
      "Q1=Q/1000\t\t\t\t\t     \t\t\t#Heat transfer, KW\n",
      "Texh=T2-Q/Ch;\t\t\t\t\t\t\t\t#exit hot water temperature, K \n",
      "Tn1=Texh-273;\t\t\t\t\t\t\t\t#exit hot water temperature, C\n",
      "Texc=T1+Q/Cc\t\t\t\t\t\t\t\t#exit cold water temperature, K\n",
      "Tn2=Texc-273;\t\t\t\t\t\t\t\t#exit cold water temperature, C\n",
      "\n",
      "#Results\n",
      "print \"Heat transfer is :\",Q1,\"KW\\n\"\n",
      "print \"The exit hot water temperature is:\",Tn1,\"C\\n\"\n",
      "print \"The exit cold water temperature is :\",Tn2,\"C\\n\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Heat transfer is : 655.6 KW\n",
        "\n",
        "The exit hot water temperature is: 84.44 C\n",
        "\n",
        "The exit cold water temperature is : 72.78 C\n",
        "\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 3.6, Page number: 123"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#Variables\n",
      "T1=313;                                          #entering  temperature  of  cold  water,  K\n",
      "T2=423;                                          #Entering  temperature  of  hot  water,  K\n",
      "T3=363;                                          #Exit  temperature  of  hot  water,  K\n",
      "Cc=20000;                                        #heat  capacity  of  cold  water,  W/K\n",
      "Ch=10000;                                        #heat  capacity  of  hot  water,  W/K\n",
      "U=500;                                           #overall  heat  transfer  coefficient,  w/(m**2*K)\n",
      "\n",
      "#Calculations\n",
      "T4=T1+(Ch/Cc)*(T2-T3);\t\t            \t\t #Exit cold fluid temp. K\n",
      "\n",
      "e=(T2-T3)/(T2-T1);\t\t\t                 \t #Effectiveness method\n",
      "NTU=1.15;\t\t\t\t\t                     #No. of transfer unit\n",
      "A1=Ch*(NTU)/U;                                   #  since  NTU=1.15=U*A/Ch,  Area can  be  found  by  using  this  formula\n",
      "#another  way  to  calculate  the  area  is  by  using log  mean  diameter  method\n",
      "LMTD=(T2-T1-T3+T4)/math.log((T2-T1)/(T3-T4));        #Logarithmic mean temp. difference\n",
      "A2=Ch*(T2-T3)/(U*LMTD);\t\t\t\t             #Aera by method 2, in meters^2.\n",
      "\n",
      "#Results\n",
      "print \"Area is :\",A1,\"m^2\\n\"\n",
      "print \"Area is :\",round(A2,3),\"m^2\\n\"\n",
      "print \"There is difference of 1 percent in answers which reflects graph reading inaccuracy.\"\n",
      "#  we  can  see  that  area  calulated  is  same  in  above  2  methods.\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Area is : 23.0 m^2\n",
        "\n",
        "Area is : 22.73 m^2\n",
        "\n",
        "There is difference of 1 percent in answers which reflects graph reading inaccuracy.\n"
       ]
      }
     ],
     "prompt_number": 19
    }
   ],
   "metadata": {}
  }
 ]
}