1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 2: Heat conduction concepts, thermal resistance, and the overall heat transfer coefficient "
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 2.3, Page number: 64"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"\n",
"#Variables\n",
"l=1; # tube length, m\n",
"m=0.01; # mass fraction\n",
"D12=2.84*10**-5; # diffusivity, m**2/s\n",
"a=1.18; # density, kg/m**3\n",
"\n",
"#Calculations\n",
"J=a*D12*m/l;\t\t\t\t\t\t\t\t #steady state flux of water from one side to the other,kg/(m**2*s)\n",
"\n",
"#Results\n",
"print \"Steady flux of water is\",J,\"kg/(m^2*s)\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Steady flux of water is 3.3512e-07 kg/(m^2*s)\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 2.7, Page number: 72"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"h=20; #convective heat transfer coefficient, W/(m**2*K)\n",
"k=0.074; #thermal conductivity, J/(m*K)\n",
"\n",
"#Calculations\n",
"Ro=k/h; # formula for critical thickness of insulation, m.\n",
"\n",
"#Results\n",
"print \"Critical thickness of insulation is :\",Ro,\"m\\n\"\n",
"print \"Insulation will not even start to do any good until ratio of outer radius and inner radius is 2.32 or outer radius is 0.0058 m.\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Critical thickness of insulation is : 0.0037 m\n",
"\n",
"Insulation will not even start to do any good until ratio of outer radius and inner radius is 2.32 or outer radius is 0.0058 m.\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 2.8, Page number: 76"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"P=0.1; #dissipating power,W\n",
"D=0.0036; #outer diameter of cylinder, m\n",
"l=0.01; #length of cylinder, m\n",
"T=308; #temperature of air in the cabinet,K\n",
"Test=323; #Estimated temp of resistor, K\n",
"h=13; #convection coefficient, W/(m**2*K)\n",
"e=0.9;\t\t\t\t\t\t #emmisivity\n",
"A=1.33*math.pow(10,-4); #area of ressistor's surface, m**2\n",
"sigma=5.67*math.pow(10,-8); #Stefan-Boltzmann constant, Wm**-2K**-4\n",
"\n",
"#Calculations\n",
"Tm=(T+Test)/2; #ressistor's temperature at 50 K\n",
"Hr=4*sigma*math.pow(Tm,3)*e; #radiative heat transfer coefficient,W/(m**2*K)\n",
"Rteq=1/(A*(Hr+h)); #Equivalent thermal resistance K/W\n",
"Tres=T+P*Rteq; #Resistor's temp. C\n",
"#we guessed a ressistor's temperature of 323K in finding Hr,recomputing with this higher temperature,\n",
"#we have Tm=327K and Hr=7.17W/(m**2*K). if we repeat the rest of calculations, we get a new value Tres=345.3K,\n",
"#since the use of hr is an approximation, we should check its applicability: 1/4*((345.3-308)/327)**2=0.00325<<1,\n",
"#in this case, the approximation is a very good one.\n",
"Tr=Tres-273.06; #Resistor's temp. , K\n",
"\n",
"#Results\n",
"print \"Temperature of ressistor is :\",round(Tr,3),\"K\\n\"\n",
"print \"Since 1/4*(temperature diffference/mean temperature)= 1/4*((72.3-35)/327)^2=0.00325<<1, in this case, the approximation is a very good one.\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Temperature of ressistor is : 73.676 K\n",
"\n",
"Since 1/4*(temperature diffference/mean temperature)= 1/4*((72.3-35)/327)^2=0.00325<<1, in this case, the approximation is a very good one.\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 2.9, Page number: 77"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"k=10; #thermal conductivity of ressistor, W/(m*K)\n",
"a=2000; #density of ressistor, kg/m**3\n",
"l=0.01; #length of cylinder, m\n",
"A=1.33*math.pow(10,-4); #area of ressistor's surface, m**2\n",
"T1=308; #temperature of air in the cabinet,K\n",
"Cp=700; #heat capacity of ressistor, J/kg/K\n",
"Heff=18.44; #the effective heat transfer coefficient of parallel convection and radiation process, W/(m**2*K)\n",
"D=0.0036; #outer diameter of cylinder, m\n",
"\n",
"#Calculations\n",
"Bi=Heff*(D/2)/k; #Biot no.\n",
"T=a*Cp*math.pi*l*math.pow(D,2)/(4*Heff*A); #since from previous example,To=72.3C, we have Tres=T1+(To-T)*exp(-t/T),Tres=308+(37.3)*.exp(-t/T). 95% of the temperature drop has occured when t=T*3=174s.\n",
"t=3*T; #Time for 95 percent cooling of ressistor, seconds.\n",
"\n",
"#Results\n",
"print \"Time for 95 percent cooling of ressistor is :\",t,\"s\\n\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Time for 95 percent cooling of ressistor is : 174.313737829 s\n",
"\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 2.10, Page number: 79"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"h1=200; #convective heat transfer coefficient, W/(m**2*K)\n",
"a=1/160000; #1/a=l/Kal, l=0.001m, Kal=160 W/(m*K)\n",
"h2=5000; #convective heat transfer coefficient during boiling,W/(m**2*K)\n",
"\n",
"#Calculations\n",
"U=1/(1/h1+a+1/h2); \t\t\t\t #Overall heat transfer coefficient,W/(m^2*K) \n",
"\n",
"#Results\n",
"print \"Overall heat transfer coefficient is :\",round(U,3),\"W/(m^2*K)\\n\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Overall heat transfer coefficient is : 192.077 W/(m^2*K)\n",
"\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 2.12, Page number: 85"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"Rf=0.0005; #fouling ressistance,m**2*K/W\n",
"U=5; #heat transfer coefficient,W/(m**2*K)\n",
"\n",
"#Calculations\n",
"Ucor=(U*Rf+1)/(U);\t\t\t\t\t #Corrected heat transfer coefficient, W/m^2.K\n",
"\n",
"#Results\n",
"print \"Corrected heat transfer coefficient is :\", Ucor,\"W/(m^2*K)\\n Therefore the fouling is entirely irrelevant to domestic heat holds.\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Corrected heat transfer coefficient is : 0.2005 W/(m^2*K)\n",
" Therefore the fouling is entirely irrelevant to domestic heat holds.\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 2.13, Page number: 85"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"\n",
"#Variables\n",
"U1=4000; # overall heat transfer coefficient of water cooled steam condenser, W/(m**2*K)\n",
"Rf1=0.0006; # lower limit of fouling ressistance of water side, m**2*K/W\n",
"Rf2=0.0020; # upper limit of fouling ressistance of water side, m**2*K/W\n",
"\n",
"#Calculations\n",
"U2=U1/(U1*Rf1+1);\t\t\t\t\t\t\t #Upper limit of the corrected overall heat transfer coefficient\n",
"U3=U1/(U1*Rf2+1);\t\t\t\t\t\t\t #Lower limit of corrected overall heat transfer coefficient\n",
"\n",
"#Results\n",
"print \"Upper limit of the corrected overall heat transfer coefficient is :\",round(U2,3),\"W/(m^2*K)\\n\"\n",
"print \"Lower limit of corrected overall heat transfer coefficient is :\",round(U3,3),\"W/m^2/K, U is reduced from 4000 to between 444 and 1176 W/(m^2*K),fouling is crucial in this case and engineering was in serious error.\\n\"\n",
" #end\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Upper limit of the corrected overall heat transfer coefficient is : 1176.471 W/(m^2*K)\n",
"\n",
"Lower limit of corrected overall heat transfer coefficient is : 444.444 W/m^2/K, U is reduced from 4000 to between 444 and 1176 W/(m^2*K),fouling is crucial in this case and engineering was in serious error.\n",
"\n"
]
}
],
"prompt_number": 8
}
],
"metadata": {}
}
]
}
|