1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 11: An introduction to mass transfer"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 11.1, Page number:603"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"\n",
"#Variables\n",
"Mn2=0.7556; #mass fraction of nitrogen\n",
"Mo2=0.2315; #mass fraction of oxygen\n",
"Mar=0.01289; #mass fraction of argon gas\n",
"M1=28.02; #molar mass of N2,kg/kmol\n",
"M2=32; #molar mass of O2,kg/kmol\n",
"M3=39.95 ; #molar mass of Ar,kg/kmol\n",
"p=101325; #Atmospheric pressure in Pascal(Pa)\n",
"R=8314.5; #Gas constant, J/kmol-K\n",
"T=300; #Approximate room temperature, K\n",
"\n",
"#Calculations\n",
"Mair=(Mn2/M1+Mo2/M2+Mar/M3)**-1; #molar mass of air,kg/kmol\n",
"Xo2=Mo2*Mair/M2; #mole fraction of O2\n",
"PO2=Xo2*p; #partial pressure of O2,Pa\n",
"Co2=PO2/(R*T); #molar volume of O2,kmol/m**3\n",
"ao2=Co2*M2; #density of O2,kg/m**3\n",
"\n",
"\n",
"#Result\n",
"print \"Mole fraction of O2 is :\",round(Xo2,4),\"\\n\"\n",
"print \"Partial pressure of O2 is :\",round(PO2,4),\"\\n\"\n",
"print \"Molar volume of O2 is :\",round(Co2,4),\" kmol/m^3\\n\"\n",
"print \"Density of O2 is :\",round(ao2,4),\" kg/m^3\\n\"\n",
" #end"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Mole fraction of O2 is : 0.2095 \n",
"\n",
"Partial pressure of O2 is : 21232.5938 \n",
"\n",
"Molar volume of O2 is : 0.0085 kmol/m^3\n",
"\n",
"Density of O2 is : 0.2724 kg/m^3\n",
"\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 11.2, Page number: 606"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"\n",
"#Variables\n",
"r=0.00241; #rate of consumption of carbon,kg/(m**2*s)\n",
"Mo2=0.2; #concentration of oxygen at surface s\n",
"Mco2=0.052; #concentration of CO2 at surface s\n",
"sd=0.29; #density of surface s,kg/m**3\n",
"\n",
"#since carbon flows through a second imaginary surface u, the mass fluxes are relatedd by Ncu=-12/32*No2s=12/44*Nco2s\n",
"#the minus sign arises because the O2 flow is opposite the C and CO2 flows.in steady state if we apply mass conservation to the control volume between the u and s surface, wee find that the total mass flux entering the u surface equals that leaving the s surface\n",
"Ncu=r; #mass fluxes of carbon in u surface,kg/m**2/s\n",
"\n",
"#Calculations\n",
"No2s=-32/12*Ncu; #mass flux of O2 in surface s,kg/(m**2*s)\n",
"Nco2s=44/12*Ncu; #mass flux of CO2 in surface s,kg/(m**2*s)\n",
"Vo2s=No2s/(Mo2*sd); #mass average speed,m/s\n",
"Vco2s=Nco2s/(sd); #mass average speed,m/s\n",
"Vs=(Nco2s+No2s)/sd; #effective mass average speed,m/s\n",
"j1=sd*Mo2*(Vo2s-Vs); #diffusional mass flux,kg/(m**2*s)\n",
"j2=sd*Mco2*(Vco2s-Vs); #diffusional mass flux,kg/(m**2*s)\n",
"#the diffusional mass fluxes are very nearly equal to the species m ss fluxes. tha is because the mass average speed is much less than species speeds.\n",
"\n",
"N1 = Ncu/12; #mole flux of carbon through the surface s,kmol/(m**2*s)\n",
"N2 = -N1; #mole flux of oxygen through the surface s,kmol/(m**2*s)\n",
"\n",
"#Result\n",
"print \"Mass flux of O2 through an imaginary surface is :\",round(j1,5),\"kg/(m^2*s)\\n\"\n",
"print \"Mass flux of CO2 through an imaginary surface is :\",round(j2,5),\"kg/(m^2*s)\\n\"\n",
"\n",
"print \"Mole flux of Co2 through an imaginary surface is :\",round(N1,5),\"kmol/(m^2*s)\\n\"\n",
"print \"Mole flux of O2through an imaginary surface is :\",round(N2,5),\"kmol/(m^2*s)\\n\"\n",
"print \"The two diffusional mole fluxes sum to zero themselves because ther is no convective mole flux for other species to diffuse against. the reader may find the velocity of the interface.that calculation shows the interface to be receding so slowly that the velocities are equal to those that would be seen by a stationary observer.\"\n",
" #end\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Mass flux of O2 through an imaginary surface is : -0.00691 kg/(m^2*s)\n",
"\n",
"Mass flux of CO2 through an imaginary surface is : 0.00033 kg/(m^2*s)\n",
"\n",
"Mole flux of Co2 through an imaginary surface is : 0.0002 kmol/(m^2*s)\n",
"\n",
"Mole flux of O2through an imaginary surface is : -0.0002 kmol/(m^2*s)\n",
"\n",
"The two diffusional mole fluxes sum to zero themselves because ther is no convective mole flux for other species to diffuse against. the reader may find the velocity of the interface.that calculation shows the interface to be receding so slowly that the velocities are equal to those that would be seen by a stationary observer.\n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 11.3, Page number: 617"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"T1=276; #temp.of air,K\n",
"aa=3.711; #lennard jones constant or collision diameter,A\n",
"ab=2.827; #lennard jones constant or collision diameter,A\n",
"b1=78.6; #lennard jones constant,K\n",
"b2=59.7; #lennard jones constant,K\n",
"Ma=28.97; #Molecular mass of air, kg/kmol\n",
"Mh=2.016; #Molecular mass of hydrogen, kg/kmol\n",
"\n",
"#Calculations\n",
"a=(aa+ab)/2; #effective molecular diameter for collisions of hydrogen and air,m\n",
"b=math.sqrt(b1*b2); #effective potential well depth,K\n",
"c=T1/b; \n",
"\n",
"d=0.8822; #potential well function, from table 11.3\n",
"Dab=(1.8583*math.pow(10,-7))*math.pow(T1,1.5)/(math.pow(a,2)*d)*math.sqrt(1/Mh+1/Ma); #diffusion coefficient of hydrogen in air,m**2/s\n",
"\n",
"\n",
"#Result\n",
"print \"Diffusion coefficient of hydrogen in air is :\",round(Dab,6),\"m^2/s an experimental value from table is 6.34*10^-5 m^2/s,so the prediction is high by 5 percent.\\n\"\n",
" #end\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Diffusion coefficient of hydrogen in air is : 6.6e-05 m^2/s an experimental value from table is 6.34*10^-5 m^2/s,so the prediction is high by 5 percent.\n",
"\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 11.4, Page number: 625"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"from numpy import array\n",
"\n",
"#Variables\n",
"T1=373.15; #temp.of tea,K\n",
"XN2=0.7808; #mole fraction of nitrogen\n",
"XO2=0.2095; #mole fraction of oxygen\n",
"Xar=0.0093; #mole fraction of\n",
"Cp=1006 #mixture diffusivity,j/(kg*K)\n",
"\n",
"#Calculations\n",
"a=array(([3.798, 3.467, 3.542])); #collisin diameter,m\n",
"b=array(([71.4, 106.7, 93.3])); #lennard jones constant,K\n",
"M=array(([28.02, 32, 39.95])); #molar masses,kg/kmol\n",
"c=array(([0.9599, 1.057, 1.021])); #potential well function\n",
"d=array(([1.8*10**-5, 2.059*10**-5, 2.281*10**-5])); #calculated viscosity,kg/(m*s)\n",
"e=array(([1.8*10**-5, 2.07*10**-5, 2.29*10**-5])); # theoritical viscosity,kg/(m*s)\n",
"f=array(([0.0260, 0.02615, 0.01787])); #theoritical thermal conducitvity,W/(m*K)\n",
"\n",
"u=2.6693*10**-6*(M*T1)**0.5/((a**2*c)); #viscosity,kg/(m*s)\n",
"k=0.083228/((a**2*c*(T1/M**0.5))) #thermal conductivity,W/(m*s)\n",
"umc = XN2*u.item(0)/0.9978+XO2*u.item(1)/1.008+Xar*u.item(2)/0.9435 ; #calculated mixture viscosity,kg/(m*s)\n",
"umc1=1.857*10**-5;\n",
"\n",
"umd=XN2*e.item(0)/0.9978+XO2*e.item(1)/1.008+e.item(2)*Xar/0.9435; #theoritical mixture viscosity,kg/(m*s)\n",
"kmc=XN2*k.item(0)/0.9978+XO2*k.item(1)/1.008+Xar*k.item(2)/0.9435; #calculated thermal conducitvity,W/(m*K)\n",
"kmc1=0.02623;\n",
"kmd=XN2*f.item(0)/0.9978+XO2*f.item(1)/1.008+Xar*f.item(2)/0.9435; #theoritical thermal conductivity, W/(m*K)\n",
"pr=umd*Cp/kmd; #prandtl no.\n",
"\n",
"#Result\n",
"print \"Theoritical mixture viscosity is :\",round(umc1,6),\"kg/(m*s)\\n\"\n",
"print \"Calculated mixture viscosity is :\",round(umd,6),\"kg/(m*s)\\n\"\n",
"print \"Theoritical thermal conducitvity is :\",round(kmc1,4),\" W/(m*K)\\n\"\n",
"print \"Calculated thermal conducitvity is :\",round(kmd,4),\"W/(m*K)\\n\" \n",
"print \"Prandtl no. is :\",round(pr,4),\"\\n\"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Theoritical mixture viscosity is : 1.9e-05 kg/(m*s)\n",
"\n",
"Calculated mixture viscosity is : 1.9e-05 kg/(m*s)\n",
"\n",
"Theoritical thermal conducitvity is : 0.0262 W/(m*K)\n",
"\n",
"Calculated thermal conducitvity is : 0.026 W/(m*K)\n",
"\n",
"Prandtl no. is : 0.7214 \n",
"\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 11.5, Page number: 632"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"from numpy import array\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline\n",
"\n",
"#Variables\n",
"Patm=101.325;\t\t\t#Atmospheric pressure in kPa.\n",
"Mh20=18.02;\t\t\t\t#Molecular mass of H20 in kg/kmol.\n",
"Mair=28.96;\t\t\t\t#Molecular mass of air in kg/kmol.\n",
"Psat =array(([0.6113, 1.2276, 2.3385, 4.2461, 7.3837, 12.35, 19.941, 31.188, 47.39, 70.139, 101.325]));\t\t#Saturated pressure of watrer in kPa \n",
"T=array(([0.01, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]));\t\t#Temperature of air in in degree C\n",
"#Calculations\n",
"xw=Psat/Patm;\t\t\t\t\n",
"\n",
"mw=(xw*Mh20)/(xw*Mh20+(1-xw)*Mair);\t\t#Mass fraction of water vapour.\n",
"#Result\n",
"plt.plot(T,mw);\n",
"plt.xlabel(\"Temperature(Degree C)\")\n",
"plt.ylabel(\"Mass fraction of water vapour\");\n",
"plt.show()\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEPCAYAAACp/QjLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVPX+P/AXmxtq5o5AoYDsIrglipKGmIqlmeJ2FQnJ\n3ErrV997b4bZ1bzebql071UrLRfEyBtmSqaCuYCWqJB4U1QScMOdRbbh8/vjxAiyzDBw5swwr+fj\nMQ+YmTOf855Tnjef3UwIIUBERFSJudIBEBGR4WFyICKiapgciIioGiYHIiKqhsmBiIiqYXIgIqJq\nZE0Os2bNQpcuXeDl5VXrMQsWLICzszO8vb1x6tQpOcMhIiItyZocQkNDER8fX+v7e/bsQUZGBi5c\nuID169djzpw5coZDRERakjU5+Pv748knn6z1/V27dmHGjBkAgAEDBuDevXu4ceOGnCEREZEWFO1z\nyMnJgb29vfq5nZ0dsrOzFYyIiIgAA+iQfnz1DjMzM4UiISKiCpZKntzW1hZZWVnq59nZ2bC1ta12\nnJOTEy5evKjP0IiIjJ6joyMyMjJ0+qyiNYexY8fiq6++AgAkJyejXbt26NKlS7XjLl68CCEEH0Lg\nvffeUzwGQ3nwWvBa8FrU/FixQmD2bNGgP6plrTlMnjwZhw4dwq1bt2Bvb4+lS5eitLQUABAREYFR\no0Zhz549cHJygrW1NTZu3ChnOERETZ4QwObNwLp1wPr1upcja3KIjo7WeExUVJScIRARmZQzZ4DC\nQsDPr2HlKN4hTfUTEBCgdAgGg9fiEV6LR0z9WmzZAkydCpg38O5uJoQw+M1+zMzMYARhEhEpSqUC\n7O2BAwcAN7eG3TtZcyAiaiISEoBu3aTE0FBMDkRETcTmzcC0aY1TFpuViIiagIICwNYW+N//gK5d\npdfYrEREZOJ27QKeeeZRYmgoJgcioiZgyxZg+vTGK4/NSkRERu7mTaBnTyAnB7C2fvQ6m5WIiExY\nTAwQHFw1MTQUkwMRkZHbsqXxRilVYHIgIjJiv/0G/P47MHx445bL5EBEZMS2bgUmTwYsG3mlPEX3\ncyAiIt0JITUpff1145fNmgMRkZFKSgJatAB8fRu/bCYHIiIjVdERLcfuypznQERkhEpKpEX2fvkF\ncHCo+RjOcyAiMjHx8YC7e+2JoaGYHIiIjJAccxsqY7MSEZGRuXcPePppIDMTePLJ2o9jsxIRkQn5\n5htp0ltdiaGhmByIiIxMY6/AWhM2KxERGZErVwAfH+DqVaB587qPZbMSEZGJiI4GJkzQnBgaismB\niMhICNG4+0TXhcmBiMhIpKYC+fnAoEHyn4vJgYjISGzeDEydCpjr4c7NDmkiIiOgUgH29sD+/dLM\naG2wQ5qIqIlLSABsbLRPDA1VZ3JQqVT4+OOP9RMJERHVSh9zGyrT2KzUr18//Pzzz/qKp0ZsViIi\nU1ZYCNjaAufOAV27av+5htw7Ne4EN3jwYMybNw+TJk2CtbW1+nVfOXaXICKianbtAgYMqF9iaCiN\nNYeAgACY1bCTREJCgmxBPY41ByIyZWPGACEh9Z/f0JB7J0crEREZsNxcwNkZyM4GWreu32dlbVZa\nunSp+gSVaxBLlizR6YRERKS97dulmkN9E0NDaRzKam1tDWtra7Ru3Rrm5ubYs2cPMjMz9RAaERHJ\nvalPberdrFRcXIwRI0bg0KFDcsVUDZuViMgUnT8PDBkiNSlZamznqU6vk+AKCgqQk5Oj1bHx8fFw\ndXWFs7MzVq5cWe39W7duYeTIkejduzc8PT2xadOm+oZDRNRkbd0KTJ6sW2JoKI01By8vL/Xv5eXl\nuHnzJpYsWYL58+fXWbBKpYKLiwv2798PW1tb9OvXD9HR0XBzc1MfExkZieLiYqxYsQK3bt2Ci4sL\nbty4AcvHrgRrDkRkaoQAnJyAHTuAPn10K0PWDunvvvtOfRJLS0t07twZVlZWGgs+ceIEnJyc4ODg\nAAAICQlBXFxcleRgY2OD1NRUAMCDBw/QoUOHaomBiMgUJScDzZoBSk0p03gndnBwwOnTp3H48GGY\nmZnB398f3t7eGgvOycmBvb29+rmdnR2OHz9e5Zjw8HAMGzYM3bp1Q15eHnbs2KHDVyAianoqOqJr\nmGamFxqTw+rVq7FhwwaMHz8eQghMmzYN4eHhWLBgQZ2fq2ni3OOWL1+O3r17IzExERcvXkRgYCDO\nnDmDNm3aVDs2MjJS/XtAQAACAgI0lk9EZIxKSqTmpBMn6ve5xMREJCYmNk4QQgNPT0+Rn5+vfp6f\nny88PT01fUwkJSWJoKAg9fPly5eLDz/8sMoxzz//vDhy5Ij6+bBhw8TPP/9crSwtwiQiajLi4oQY\nPLjh5TTk3qnVaCXzSjtLmGu5y0Tfvn1x4cIFZGZmoqSkBDExMRg7dmyVY1xdXbF//34AwI0bN/Db\nb7+hR48e2mU1IqImSt8rsNZEY7NSaGgoBgwYoG5W+vbbbzFr1izNBVtaIioqCkFBQVCpVAgLC4Ob\nmxvWrVsHAIiIiMCf//xnhIaGwtvbG+Xl5fj73/+O9u3bN/xbEREZqfv3gR9+AP64VSpGq0lwJ0+e\nxNGjRwEA/v7+8PHxkT2wyjiUlYhMxRdfALt3Azt3NrwsvUyCqzgBb9JERPJRarmMx2lMDu+//z5m\nzpyJO3fu4NatWwgNDcWyZcv0ERsRkUnJygLOnAFGjVI6Ei2alXr27InU1FS0aNECAPDw4UN4e3vj\n/PnzegkQYLMSEZmGv/8dyMgA1q9vnPJkbVaytbXFw4cP1c+LiopgZ2en08mIiKhmQgCbNxtGkxKg\nxWiltm3bwsPDAyNGjAAA/Pjjj+jfvz/mz58PMzMzrFmzRvYgiYiautRU4MEDYPBgpSORaEwO48aN\nw7hx49TPK89M1mYWNBERaVbREa3lVDLZcZtQIiKFqVTAU08BP/4IuLs3Xrmyrsp6/vx5/PnPf0Z6\nerq678HMzAyXLl3S6YRERFRVYiLQtWvjJoaG0liBCQ0NxauvvgpLS0skJiZixowZmDp1qj5iIyIy\nCYYyt6Eyjc1Kvr6+SElJgZeXF9LS0qq8pi9sViKipqqwELC1BdLTARubxi1b1malFi1aQKVSwcnJ\nCVFRUejWrRsKCgp0OhkREVW1axfQv3/jJ4aG0mo/h8LCQqxZswbvvvsuHjx4gC+//FIfsRERNXmG\n2KQEaNGslJKSAl+l9qn7A5uViKgpys0FnJ2B7GygdevGL1/WGdKLFi2Cq6sr3n33Xfz66686nYSI\niKqLiQHGjJEnMTSUxuSQmJiIhIQEdOzYEREREfDy8uLCe0REjcBQm5SAek6CS0tLw8qVKxETE4PS\n0lI546qCzUpE1NRcuAD4+0tNSpYae391I2uzUnp6OiIjI+Hp6Yl58+bBz88POTk5Op2MiIgkW7cC\nISHyJYaG0lhzGDhwICZNmoSJEyeiW7du+oqrCtYciKgpEULqiN6+HejbV77zyDrPISkpSaeCiYio\nZsnJUo2hTx+lI6mdgaz/R0RkOrZsAaZPBwx5YWuuykpEpEclJdJyGSdOAN27y3suWTukiYio8fzw\nA+DqKn9iaCgmByIiPTLkuQ2VsVmJiEhP7t+XNvW5fBlo317+88nWrKRSqfDxxx/rVDAREVW1cycw\nbJh+EkND1ZkcLCwssG3bNn3FQkTUpG3ebBxNSoAWzUpvvPEGSktLMWnSJFhbW6tf1+dKrWxWIiJj\nl5UF9O4N5OQALVro55wNuXdqTA4BAQEwq2EwbkJCgk4n1AWTAxEZu7//HcjIANav1985ZU0OhoDJ\ngYiMXa9eQFQUMGSI/s4p6zyH69evIywsDCNHjgQgLcT3+eef63QyIiJTlJoqjVQaPFjpSLSnMTnM\nnDkTI0aMwNWrVwEAzs7OHMFERFQPW7YAU6cC5kY0s0xjqLdu3cKkSZNgYWEBALCysoKloa4xS0Rk\nYFQqYNs24xmlVEFjcmjdujVu376tfp6cnIwnnnhC1qCIiJqKQ4eAzp0Bd3elI6kfjVWAjz76CMHB\nwbh06RL8/PyQm5uL2NhYfcRGRGT0jGluQ2UaRysVFRXBwsICv/32G4QQcHFxQXl5OVroa6AuOFqJ\niIxTYaG0Amt6OmBjo//zyzpayc/PD1ZWVvD09ISXlxeaNWsGPz8/rQqPj4+Hq6srnJ2dsXLlyhqP\nSUxMhI+PDzw9PREQEFCv4ImIDNl33wH9+yuTGBqq1mala9eu4erVqygsLERKSgqEEDAzM8ODBw9Q\nWFiosWCVSoV58+Zh//79sLW1Rb9+/TB27Fi4ubmpj7l37x7mzp2LH374AXZ2drh161bjfCsiIgNg\nLCuw1qTW5LBv3z5s2rQJOTk5WLx4sfr1Nm3aYPny5RoLPnHiBJycnODg4AAACAkJQVxcXJXksG3b\nNrz00kuws7MDAHTs2FHX70FEZFByc4HDh4HoaKUj0U2tyWHGjBmYMWMGYmNjMWHChHoXnJOTA3t7\ne/VzOzs7HD9+vMoxFy5cQGlpKZ599lnk5eVh4cKFmD59er3PRURkaHbsAEaPBlq3VjoS3WgcrTRh\nwgTs3r0b6enpKCoqUr++ZMmSOj9X03pMjystLUVKSgoOHDiAwsJCDBw4EM888wycnZ21CJ2IyHBt\n2QJouE0aNI3JISIiAg8fPsTBgwcRHh6Or7/+GgMGDNBYsK2tLbKystTPs7Ky1M1HFezt7dGxY0e0\nbNkSLVu2xJAhQ3DmzJkak0NkZKT694CAAHZeE5HBunBB2tAnMFC/501MTERiYmLjFCY08PT0FEII\n4eXlJYQQIi8vTwwaNEjTx0Rpaano0aOHuHz5siguLhbe3t4iPT29yjHnzp0Tw4cPF2VlZaKgoEB4\nenqKs2fPVitLizCJiAzGe+8JsXCh0lE07N6psebQsmVLAECrVq2Qk5ODDh064Pr16xqTjqWlJaKi\nohAUFASVSoWwsDC4ublh3bp1AKQaiaurK0aOHIlevXrB3Nwc4eHhcDe2aYRERJUIITUpbd+udCQN\no3ES3Pvvv4/58+fj4MGDmDt3LgAgPDwcy5Yt00uAACfBEZHx2LcPWLhQmvimRderrPS2n0NRURGK\niorQrl07nU6mKyYHIjIGBQXSvg1r1kgjlZQma3IYPHgwhg4dCn9/fwwaNAht2rTR6UQNweRARMZg\n0SLg5k2pWckQyJocLl26hMOHD+PIkSNISkpCixYtMHjwYHzyySc6nVAXTA5EZOiSk4Fx44C0NMBQ\n5vM25N6psUO6R48eaNGiBZo3bw4rKyskJCTg3LlzOp2MiKgpKi4GZs2SmpMMJTE0lMaag6OjIzp2\n7IgpU6Zg8ODB8PHxgbmetzNizYGIDNlf/yp1QH/zjfKd0JXJ2qy0evVqHD58GNnZ2XBxccHQoUMx\nZMgQODk56XRCXTA5EJGhOn0aGDECOHPG8FZf1ctopfz8fGzcuBGrVq1CTk4OVCqVTifUBZMDERmi\n0lJgwABgwQJg5kylo6lO1uSwePFiHD58GPn5+fDz84O/vz8GDx4MR0dHnU6oCyYHIjJEK1ZI24Du\n3WtYzUkVZE0OX3/9NYYMGYIuXbrodILGwORARIbmf/8D/P2BX34Bnn5a6WhqprdJcEphciAiQ6JS\nAUOGAFOmAH8sHGGQZN0mlIiIqvr0U8DCApgzR+lI5MOaAxFRPVy6JO0LfewY0LOn0tHUjTUHIiI9\nEAKYPRt4+23DTwwNxeRARKSlzz8H7t8H3nhD6UjkV2uzUlFREVq0aKHveGrEZiUiUlpODtC7N3Dw\nIODlpXQ02pGlWcnPzw8AMG3aNN2iIiJqIoSQOp/nzjWexNBQtS68V1xcjK1bt+LYsWPYuXNnlexj\nZmaG8ePH6yVAIiKlbd8u7QkdG6t0JPpTa3L4z3/+g61bt+L+/fv47rvvqr3P5EBEpiA3V+pj+O47\noFkzpaPRH41DWT/77DO88sor+oqnRuxzICKlhIQA9vbAqlVKR1J/ss6QLikpwb///W/89NNPAICA\ngAC8+uqrsLKy0umEumByICIlxMUBb70lrbjasqXS0dSfrMkhLCwMZWVlmDFjBoQQ2Lx5MywtLfHZ\nZ5/pdEJdMDkQkb7duwd4egLbtklLZRgjWZNDr169kJqaqvE1OTE5EJG+hYUBLVpIS2UYK1m3CbW0\ntERGRoZ6c5+LFy/C0lLjx4iIjNaPPwIHDkj7QZsqjXf5VatWYdiwYejevTsAIDMzExs3bpQ9MCIi\nJeTnS0tkrFsHtGmjdDTK0WrhvaKiIvz2228wMzNDz5499T5zms1KRKQvCxYADx4AmzYpHUnDcT8H\nIqJGcOQIMGmS1JzUvr3S0TQcV2UlImqghw+lTui1a5tGYmgo1hyIiAC88460V8OOHUpH0nhkHa1E\nRNTUnTwJbNwI6HGEvsFjsxIRmbSSEmDWLOCjj4AuXZSOxnAwORCRSVu5ErCzA6ZOVToSw6JVn4NK\npcKNGzdQVlamfu2pp56SNbDK2OdARHI4exYICABSUqTF9ZoaWfsc1q5di6VLl6Jz586wsLBQv55m\nylMHicjoqVRSc9IHHzTNxNBQGmsOjo6OOHHiBDp06KCvmKphzYGIGttHHwG7d0vLZJg30QZ2WWsO\nTz31FNq2batT4UREhigjA1ixAjh+vOkmhobSmBy6d++OZ599FqNHj0azP7ZBMjMzw6JFi2QPjoio\nsZWXA6+8AvzlL4Cjo9LRGC6NOfOpp57Cc889h5KSEuTn5yMvLw95eXlaFR4fHw9XV1c4Oztj5cqV\ntR73888/w9LSEjt37tQ+ciIiHaxfDxQXS2soUe20niFdkRDaaLlMoUqlgouLC/bv3w9bW1v069cP\n0dHRcHNzq3ZcYGAgWrVqhdDQULz00kvVg2SfAxE1gqwswNcXOHQIcHdXOhr5ybq2UlpaGnx8fODh\n4QEPDw/06dMHv/76q8aCT5w4AScnJzg4OMDKygohISGIi4urdtzatWsxYcIEdOrUSacvQESkDSGA\niAhg4ULTSAwNpTE5zJ49G//85z9x5coVXLlyBR999BFmz56tseCcnBzYVxofZmdnh5ycnGrHxMXF\nYc6cOQCkLEdEJIctW4CrV4G331Y6EuOgsUO6sLAQzz77rPp5QEAACgoKNBaszY3+9ddfx4cffqiu\n+rDpiIjkcP068OabwN69gJWV0tEYB61GKy1btgzTp0+HEAJbt25Fjx49NBZsa2uLrKws9fOsrCzY\n2dlVOebkyZMICQkBANy6dQt79+6FlZUVxo4dW628yMhI9e8BAQEICAjQGAMREQDMmydNePP1VToS\neSUmJiIxMbFRytLYIX3nzh289957OHr0KADA398fkZGRePLJJ+ssuKysDC4uLjhw4AC6deuG/v37\n19ghXSE0NBTBwcEYP3589SDZIU1EOvrmG2nY6unTgJ43sVScrJPg2rdvj7Vr19a/YEtLREVFISgo\nCCqVCmFhYXBzc8O6desAABEREfWPloioHu7cAebPB77+2vQSQ0PVWnNYuHAhVq9ejeDg4OofMjPD\nrl27ZA+u8vlYcyCi+poxA2jXDli9WulIlCFLzeFPf/oTAGDx4sU1npCIyJDt3QscPswNfHRVa3Lo\n06cPAOD06dN4/fXXq7z3ySefYOjQofJGRkSkowcPgFdfBT7/HGjdWulojJPGDmkfHx+cOnWqymu9\ne/fG6dOnZQ2sMjYrEVF9vPaatMPbZ58pHYmyZGlWio6OxrZt23D58uUq/Q55eXmKLt9NRFSXxERg\n1y5Ai4UcqA61Jgc/Pz/Y2NggNzcXb775pjr7tG3bFr169dJbgERE2ioslFZc/de/pI5o0p3GZqVL\nly7BxsYGLVu2BAA8fPgQN27cgIODgz7iA8BmJSLSTAhg7lzg7l0gOlrpaAyDrAvvTZw4scr2oObm\n5pgwYYJOJyMikoNKJXVAnzgBREUpHU3ToHESXFlZmXqTHwBo3rw5SktLZQ2KiEhbRUXAlClAXh6Q\nkABouasAaaCx5tCxY8cqS23HxcWhY8eOsgZFRKSN+/eBkSOBZs2k/aCZGBqPxj6HjIwMTJ06FVev\nXgUgLb29efNmODk56SVAgH0ORFTd9evA888DgwdLM6C5F3R1Dbl31msnODMzM7RWYEYJkwMRVXbx\nIhAUJC2P8de/Aly0oWayLrwHALt370Z6ejqKiorUry1ZskSnExIRNcSpU8CYMcCSJdLObiQPjckh\nIiICDx8+xMGDBxEeHo6vv/4aAwYM0EdsRERVJCYCEycC//43UMN289SINDYreXl5IS0tDb169UJq\nairy8/MxcuRIHDlyRF8xslmJiLBzpzRcNSYGqLQ5JdVB1nkOFZPfWrVqhZycHFhaWuL69es6nYyI\nSBcbNki7uf3wAxODvmhsVgoODsbdu3fx1ltvqVdqDQ8Plz0wIiIhgL/9Ddi4EfjpJ0CPgyRNXp3N\nSuXl5UhKSsKgQYMAAEVFRSgqKkI7PS9awmYlItNTXg4sXCjtybB3L2Bjo3RExkfWoaz6Xp67JkwO\nRKalpEQapnr1qrTC6hNPKB2RcZK1z+G5555DbGwsb85EpBf5+dJQ1aIiqY+BiUEZGmsOrVu3RmFh\nISwsLNDijx26zczM8ODBA70EWHE+Jieipi83Fxg9GvD2loarWmo1E4tqI0vN4ejRowCAW7duoby8\nHKWlpcjLy0NeXp5eEwMRmYbff5eWwggMBNavZ2JQWq3JYcGCBQCkTX+IiOT0669SYpg7VxqdxOUw\nlFdrbra0tER4eDiys7OxYMGCKlUTMzMzrFmzRi8BElHTdvQoMH488PHH0tLbZBhqTQ67d+/GgQMH\nsG/fPvTp0wdCCHX7lRnTOhE1gt27gdBQYMsWaSE9MhwaO6RPnz6N3r176yueGrFDmqjp+fJL4O23\ngbg4gMu1yUMvS3YricmBqGlZtUrazvOHHwBXV6WjabpkX7KbiKgxlJdLtYU9e6S+Bjs7pSOi2jA5\nEJFelJYCr7wCXLggLYnRvr3SEVFdmByISHaFhdI+DEIA+/cDrVopHRFpwl1XiUhWd+5IE9vatwe+\n/ZaJwVgwORCRbLKzgSFDgIEDgU2bACsrpSMibWlMDjt27FAvl7Fs2TKMGzcOKSkpsgdGRMbtf/+T\nZj3PmAH84x+AOf8UNSoa/3MtW7YMbdu2xZEjR3DgwAGEhYVhzpw5+oiNiIzUiRNAQADw3nvAW28p\nHQ3pQmNysLCwACDNmA4PD8eYMWNQUlIie2BEZJz27ZNWVt2wQZr9TMZJY3KwtbXF7NmzERMTg9Gj\nR6OoqAjl5eX6iI2IjEx0NDB9OvDf/wLBwUpHQw2hcYZ0QUEB4uPj0atXLzg7O+PatWtIS0vDiBEj\n9BUjZ0gTGYE1a6SZz3v2AF5eSkdDgMw7wV2/fh2jR4+Gs7MzEhISsGPHDvTv31/rE8THx8PV1RXO\nzs5YuXJltfe3bt0Kb29v9OrVC4MGDUJqamr9vgERKeq334AXXpA25zl8mImhqdCYHMaPHw9LS0tk\nZGQgIiIC2dnZmKLluroqlQrz5s1DfHw80tPTER0djXPnzlU5pkePHvjpp5+QmpqKd999F7Nnz9bt\nmxCRXt2+DSxcKI1I8vcHTp8GHByUjooai8bkYG5uDktLS+zcuRPz58/HqlWrcO3aNa0KP3HiBJyc\nnODg4AArKyuEhIQgLi6uyjEDBw7EE39sEjtgwABkZ2fr8DWISF9KSqS9F1xdgbIyID0dePNNoHlz\npSOjxqQxOTRr1gzbtm3DV199hTFjxgAASktLtSo8JycH9vb26ud2dnbIycmp9fjPP/8co0aN0qps\nItIvIaSOZg8PaQmMQ4eATz8FOnVSOjKSg8a1lb744gv85z//wV/+8hd0794dly5dwrRp07QqvD6b\nAiUkJOCLL75Q7139uMjISPXvAQEBCAgI0LpsImqYkyeBRYukpTA+/RTQ43gUqofExEQkJiY2Slmy\n7ueQnJyMyMhIxMfHAwBWrFgBc3NzvP3221WOS01Nxfjx4xEfHw8nJ6fqQXK0EpEicnKAP/9Zmrvw\n/vvArFnAH1OfyAjIOlrp/PnzmDBhAtzd3dG9e3d0794dPXr00Krwvn374sKFC8jMzERJSQliYmIw\nduzYKsdcuXIF48ePx5YtW2pMDESkfwUFQGQk0KuXtOfC+fNAeDgTgynR2KwUGhqKpUuXYtGiRUhM\nTMTGjRuhUqm0K9zSElFRUQgKCoJKpUJYWBjc3Nywbt06AEBERATef/993L17V70kh5WVFU6cONGA\nr0REuiovB776CvjrX4GhQ4GUFODpp5WOipSgsVnJ19cXKSkp8PLyQlpaWpXX9IXNSkTyS0gAFi8G\nWrYE/vlP7uvcFMi6TWiLFi2gUqng5OSEqKgodOvWDQUFBTqdjIgMz/nzwP/7f8CZM8DKlcDLLwP1\nGEtCTZTGPodPPvkEhYWFWLNmDX755Rds2bIFX375pT5iIyIZ3bkDvP464OcnPc6dk3ZrY2IgQObR\nSo2FzUpEjaekBPjXv4Dly4EJE6SO586dlY6K5CBLs1JwcHCtBZuZmWHXrl06nZCIlCEEsGuXtL+C\nk5PUx+DhoXRUZKhqTQ7Jycmws7PD5MmTMeCPnqmKRFGfyW1EpLyUFKmzOTcXWLsWCApSOiIydLU2\nK5WVleHHH39EdHQ00tLSMHr0aEyePBkeCvypwWYlIt3k5EjDUuPjgaVLpUlslhqHoVBTIcskOEtL\nSzz//PP46quvkJycDCcnJwwdOhRRUVE6B0pE+lFQICWDXr0AGxtpWe3Zs5kYSHt1/q9SVFSE77//\nHtu3b0dmZiYWLlyIcePG6Ss2Iqqn8nJg82bgL3+RltE+eZLLaJNuam1Wmj59Os6ePYtRo0Zh0qRJ\n8FJwBw82KxFpduiQtDhes2bSJLaBA5WOiJTWkHtnrcnB3Nwc1tbWtZ7wwYMHOp1QF0wORLU7d06q\nKaSkSJPYOFeBKsgylLW8vFzngIhIXteuAdu3A9u2AVlZ0mS2bduAFi2UjoyaCk6CIzIS9+4BO3dK\nSSAlBXhsZfpGAAARMUlEQVTxRWDKFCAggB3NVDNZmpUMCZMDmaqHD4Hvv5cSwoEDwHPPSQlh9GjW\nEkgzJgeiJqSsDDh4UEoIcXFA375SQhg3DmjXTunoyJgwORAZOSGAEyekhBATI+2hMGWK1LlsY6N0\ndGSsZF2ym4jkc+6clBC2bQOsrKSEcOSItPYRkZKYHIj0LCvr0UijmzeByZOBr78GfHw4BJUMB5uV\niPTg9m3gm2+ArVuBX38FXnpJqiX4+3NfZpIP+xyIDFBBAfDdd1IN4dAhYORIYOpUaUXU5s2Vjo5M\nAZMDkYEoLQV+/FFKCLt3S0tYTJkizUlo00bp6MjUMDkQKai8HDh2TEoIsbGAs7OUEF5+mTuskbI4\nWolIz+7fl4aeHjggdS63bi01GR0/DnTvrnR0RA3H5ECkgUoFpKcDycmPHleuAH36AIMGSVtvenlx\npBE1LWxWInrMzZtSDaAiEfz8szQR7ZlnpMfAgYCnJ9czIsPHPgciHZWUAKmpUhJISpJ+3r4NDBjw\nKBn07w906KB0pET1x+RApKXs7KrNQ6dPAz16VK0VuLgA5rVuoEtkPJgciGrw8KG0TWblZFBcLCWA\nimTQrx+HmFLTxeRAJk8I4NKlR0kgKUnqRPbweJQInnlGqiWw45hMBZMDmZy7d6UNbyrXCpo3r1or\n8PUFWrZUOlIi5TA5UJNTVib1D1y8KNUIKn5W/F5WBnh7V60V2NkpHTWRYWFyIKP04MGjG37lBHDx\norRyaefOgKOj1BTUo0fV3zt2ZPMQkSZMDmSQysuBnJyab/6XLgGFhTXf+B0dpc1uuA0mUcMwOZBi\nCgqAy5drbvr5/XfgySdr/+u/Sxf+9U8kJyYHalRCAPfuAbduAbm51X/euPEoCdy7J60l9PjN39ER\ncHAAWrVS+tsQmS4mB6pTcXHNN/rabv63bwPW1lK7fqdO1X927vwoGdjYcMIYkaEy2OQQHx+P119/\nHSqVCq+88grefvvtascsWLAAe/fuRatWrbBp0yb4+PhUD5LJQU3TX/U1/Swqkm7std3sH//ZoQPQ\nrJnS35SIGsogl+xWqVSYN28e9u/fD1tbW/Tr1w9jx46Fm5ub+pg9e/YgIyMDFy5cwPHjxzFnzhwk\nJyfLFZLeCSF1uubnS23z+flVHzW9punYO3cS0bp1QK1/0Xt4VH+9bdum2bafmJiIgIAApcMwCLwW\nj/BaNA7ZksOJEyfg5OQEBwcHAEBISAji4uKqJIddu3ZhxowZAIABAwbg3r17uHHjBrp06SJLTCqV\n1MRSXCwtuFafn8XF2t/gK14rKJBG3LRuLT2srR/9XtNrNjZ1H2dtDURFJWLZsgBZro+x4U3gEV6L\nR3gtGodsySEnJwf29vbq53Z2djh+/LjGY7Kzs2tMDnPn1v+G/vhPIaRZtM2bS80mdf2s6bWKG/WT\nTwL29rXf5CserVo1/ubx3IyeiPRBtuRgpmU7xuPtYbV9zs1Nu5t6XT+5/j4RkZaETJKSkkRQUJD6\n+fLly8WHH35Y5ZiIiAgRHR2tfu7i4iKuX79erSxHR0cBgA8++OCDj3o8HB0ddb6Hy/a3dN++fXHh\nwgVkZmaiW7duiImJQXR0dJVjxo4di6ioKISEhCA5ORnt2rWrsUkpIyNDrjCJiKgGsiUHS0tLREVF\nISgoCCqVCmFhYXBzc8O6desAABERERg1ahT27NkDJycnWFtbY+PGjXKFQ0RE9WAUk+CIiEi/DHpu\na3x8PFxdXeHs7IyVK1cqHY5eZWVl4dlnn4WHhwc8PT2xZs0aAMCdO3cQGBiInj17YsSIEbh3757C\nkeqPSqWCj48PgoODAZjutbh37x4mTJgANzc3uLu74/jx4yZ7LVasWAEPDw94eXlhypQpKC4uNplr\nMWvWLHTp0gVeXl7q1+r67itWrICzszNcXV2xb98+jeUbbHKomEQXHx+P9PR0REdH49y5c0qHpTdW\nVlb4+OOPcfbsWSQnJ+PTTz/FuXPn8OGHHyIwMBDnz5/H8OHD8eGHHyodqt6sXr0a7u7u6hFtpnot\nFi5ciFGjRuHcuXNITU2Fq6urSV6LzMxMbNiwASkpKUhLS4NKpcL27dtN5lqEhoYiPj6+ymu1fff0\n9HTExMQgPT0d8fHxeO2111BeXl73CXTuypbZsWPHqox2WrFihVixYoWCESnrhRdeED/++GOVEV3X\nrl0TLi4uCkemH1lZWWL48OHi4MGDYsyYMUIIYZLX4t69e6J79+7VXjfFa3H79m3Rs2dPcefOHVFa\nWirGjBkj9u3bZ1LX4vLly8LT01P9vLbv/vho0aCgIJGUlFRn2QZbc6hpglxOTo6CESknMzMTp06d\nwoABA6rMIO/SpQtu3LihcHT68cYbb2DVqlUwr7TKnylei8uXL6NTp04IDQ2Fr68vwsPDUVBQYJLX\non379li8eDGeeuopdOvWDe3atUNgYKBJXosKtX33q1evwq7SVona3E8NNjloO4muqcvPz8dLL72E\n1atXo02bNlXeMzMzM4nrtHv3bnTu3Bk+Pj61LiJmKteirKwMKSkpeO2115CSkgJra+tqzSamci0u\nXryITz75BJmZmbh69Sry8/OxZcuWKseYyrWoiabvrum6GGxysLW1RVZWlvp5VlZWlcxnCkpLS/HS\nSy9h+vTpePHFFwFIfw1cv34dAHDt2jV07txZyRD14tixY9i1axe6d++OyZMn4+DBg5g+fbpJXgs7\nOzvY2dmhX79+AIAJEyYgJSUFXbt2Nblr8csvv8DPzw8dOnSApaUlxo8fj6SkJJO8FhVq+zfx+P00\nOzsbtra2dZZlsMmh8iS6kpISxMTEYOzYsUqHpTdCCISFhcHd3R2vv/66+vWxY8fiyy+/BAB8+eWX\n6qTRlC1fvhxZWVm4fPkytm/fjmHDhmHz5s0meS26du0Ke3t7nD9/HgCwf/9+eHh4IDg42OSuhaur\nK5KTk/Hw4UMIIbB//364u7ub5LWoUNu/ibFjx2L79u0oKSnB5cuXceHCBfTv37/uwhq7g6Qx7dmz\nR/Ts2VM4OjqK5cuXKx2OXh0+fFiYmZkJb29v0bt3b9G7d2+xd+9ecfv2bTF8+HDh7OwsAgMDxd27\nd5UOVa8SExNFcHCwEEKY7LU4ffq06Nu3r+jVq5cYN26cuHfvnslei5UrVwp3d3fh6ekp/vSnP4mS\nkhKTuRYhISHCxsZGWFlZCTs7O/HFF1/U+d3/9re/CUdHR+Hi4iLi4+M1ls9JcEREVI3BNisREZFy\nmByIiKgaJgciIqqGyYGIiKphciAiomqYHIiIqBomB5LF7du34ePjAx8fH9jY2MDOzg4+Pj7w9fVF\nWVmZ0uFVcejQISQlJTVqmTdv3sTo0aMBAImJiXjiiSfg6+sLV1dXDB06FN9//32jnq8hSktL8c47\n76Bnz57o06cP/Pz81Kt9Dh8+HHl5eQpHSEqQbSc4Mm0dOnTAqVOnAABLly5FmzZtsGjRIsXiUalU\nsLCwqPG9hIQEtGnTBgMHDtS6vLKyMlha1v7PJyoqCjNnzlQ/HzJkCL777jsAwJkzZ/Diiy+iZcuW\nGDZsmNbnrEnFNKWGrB/07rvv4saNGzh79iysrKxw8+ZNHDp0CAAQEhKCDRs2KPrfjpTBmgPphRAC\nJ0+eREBAAPr27YuRI0eq14AJCAjAokWL0K9fP7i5ueHnn3/GuHHj0LNnT7z77rsApJVpXV1dMW3a\nNLi7u+Pll1/Gw4cPAaDOct944w3069cPq1evxu7du/HMM8/A19cXgYGBuHnzJjIzM7Fu3Tp8/PHH\n8PX1xZEjRzBz5kx888036thbt24NQKoB+Pv744UXXoCnpyfKy8vx1ltvoX///vD29sb69evVn4mN\njVXXHB7n7e2NJUuWICoqCgCQm5uLCRMmoH///ujfvz+OHTumfj0wMBCenp4IDw+Hg4MD7ty5g8zM\nTLi4uGDGjBnw8vJCVlYWVq1apY4jMjJSfa4tW7ZgwIAB8PHxwauvvlptDf/CwkJ89tlnWLt2Lays\nrAAAnTt3xssvvwzg0bILZILkmtpNVCEyMlKsWrVK+Pn5idzcXCGEENu3bxezZs0SQggREBAg3nnn\nHSGEEKtXrxY2Njbi+vXrori4WNjZ2Yk7d+6Iy5cvCzMzM3Hs2DEhhBCzZs0S//jHP0RpaakYOHCg\nuHXrVo3lzp07Vx1H5aUENmzYIBYvXqyO76OPPlK/N3PmTBEbG6t+3rp1ayGEEAkJCcLa2lpkZmYK\nIYRYt26d+OCDD4QQQhQVFYm+ffuKy5cvi2vXrlVZYz8hIUG9B0WFU6dOCTc3NyGEEJMnTxZHjhwR\nQgjx+++/q1+fO3eueg3++Ph4YWZmJm7fvi0uX74szM3NxfHjx4UQQvzwww9i9uzZQgghVCqVGDNm\njPjpp59Eenq6CA4OFmVlZUIIIebMmSO++uqrKnGcOXNG+Pj41Pwf7g/du3cX+fn5dR5DTQ+blUgv\niouL8euvvyIwMBCA1MzTrVs39fsViyp6enrC09NTvSZ9jx49kJWVhbZt28Le3l7d9DNt2jSsWbMG\nI0eOxNmzZ/Hcc8/VWO6kSZPUv2dlZWHixIm4fv06SkpK0KNHD/V7QstVZPr374+nn34aALBv3z6k\npaUhNjYWAPDgwQNkZGSgTZs2sLGxqbOcyufbv39/lV0O8/LyUFBQgKNHj+Lbb78FAAQFBeHJJ59U\nH/P000+rF07bt28f9u3bBx8fHwBAQUEBMjIycObMGZw8eRJ9+/YFADx8+BBdu3bV6ntW1qVLF2Rl\nZcHV1bXenyXjxeRAeiGEgIeHh7rJ5HHNmzcHAJibm6t/r3he0YFduV1dCAEzMzON5VpbW6t/nz9/\nPt58802MGTMGhw4dqtL8UpmlpaW6+aW8vBwlJSU1lgdIfQsVCa/C8ePHNSabU6dOwd3dXf1djh8/\njmbNmlU7rrZyHo/j//7v/zB79uxqsc2YMQPLly+vNQ4nJydcuXIFeXl51fYLqRyDqe6JYMrY50B6\n0bx5c+Tm5iI5ORmANEImPT29XmVcuXJF/flt27bB398fLi4udZZb+eb64MEDda1i06ZN6tfbtGlT\nZUSOg4MDTp48CQDYtWsXSktLa4wnKCgI//rXv9TJ6/z58ygsLMTTTz+t7veoSWpqKj744APMnTsX\nADBixAisWbNG/f6ZM2cAAIMGDcKOHTsASLWDu3fv1hrHF198gYKCAgDSLoq5ubkYPnw4YmNjkZub\nC0DafP7KlStVPtuqVSuEhYVh4cKF6u+Zm5urrg0B0u5ipraXCjE5kJ5YWFggNjYWb7/9Nnr37g0f\nH58ah4/WtXuVi4sLPv30U7i7u+P+/fuYM2cOrKys6iy3clmRkZF4+eWX0bdvX3Tq1En9XnBwMP77\n3//Cx8cHR48eRXh4OA4dOoTevXsjOTlZ3SH9eHmvvPIK3N3d4evrCy8vL8yZMwcqlQpdu3ZFWVkZ\nCgsL1Z85fPiweijrvHnzsHbtWjz77LMAgDVr1uCXX36Bt7c3PDw8sG7dOgDAe++9h3379sHLywux\nsbHo2rWr+q/7ynEEBgZiypQpGDhwIHr16oWJEyciPz8fbm5u+OCDDzBixAh4e3tjxIgRNSatDz74\nAJ06dYK7uzu8vLwQHByMJ554AgBw/fp1dOjQoVpNhZo+LtlNRiEzMxPBwcFIS0tTOhStREZGws3N\nrUqfR32VlJTAwsICFhYWSEpKwty5c5GSktKIUWq2fv16FBQU4I033tDreUl57HMgo2FM7d5z587F\njBkzGpQcrly5gokTJ6K8vBzNmjXDhg0bGjFC7cTExCAuLk7v5yXlseZARETVsM+BiIiqYXIgIqJq\nmByIiKgaJgciIqqGyYGIiKphciAiomr+P6Ksmp778+IaAAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x7f4109404550>"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 11.6, Page number: 634"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"T1=263.15; #temp.of ice,K\n",
"p=101.325; #Atmospheric pressure, KPa\n",
"Molw=18.02; #Molecular mass of water vapour, g/mol\n",
"Mola=28.96; #Molecular mass of air, g/mol\n",
"\n",
"#Calculations\n",
"Pv=math.exp(21.99-6141/(T1)); #vapor pressure,KPa\n",
"xw=Pv/p; #mole fraction of water\n",
"mw=xw*Molw/(xw*Molw+(1-xw)*Mola); #mass fraction\n",
"\n",
"#Result\n",
"print \"Mass fraction of watervapor above the surface of ice is :\",round(mw,5),\"\\n\"\n",
"#end\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Mass fraction of watervapor above the surface of ice is : 0.0016 \n",
"\n"
]
}
],
"prompt_number": 26
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 11.10, Page number:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"\n",
"#Variables\n",
"T1=303; # isothermal temp.,K\n",
"v=5; #air speed,m/s\n",
"l=0.05; #length of naphthalene model that is flat, m\n",
"Mnap=128.2; #molar mass of naphthalene,kg/kmol\n",
"nu=1.867*10**-5; #Dynamic viscocity, m^2/s\n",
"\n",
"#Calculations\n",
"D=0.86*(10**-5); #diffusion coefficient of naphthalene in air,m/s\n",
"\n",
"Pv=10**(11.45-3729.3/T1)*133.31; #vapor pressure of napthalene, Pa\n",
"xn=Pv/101325; #mole fraction of naphthalene\n",
"mn=xn*Mnap/(xn*Mnap+(1-xn)*28.96); #mass fraction of naphthalene\n",
"mnp=0; #mass fraction of naphthalene in free stream is 0\n",
"\n",
"Rel=v*l/nu; #reynolds no.\n",
"Sc=nu/D; #schimidt no.\n",
"Nul=0.664*math.sqrt(Rel)*(Sc**(1/3)); #mass transfer nusselt no.\n",
"Gmn=D*Nul*1.166/l; #gas phase mass transfer coefficient,kg/(m**2*s)\n",
"n=Gmn*(mn-mnp); #average mass flux,kg/(m**2*s)\n",
"n1=n*1000*3600;# average mass flux, g/m**2.h\n",
"\n",
"#Result\n",
"print \"Average rate of loss of naphthalene from a part of model is :\",round(n,7),\"kg/(m^2*s) or \",round(n1),\"g/(m^2*h)\\n\"\n",
"print \"Naphthalene sublimatin can be used to infer heat transfer coefficient by measuring the loss of naphthalene from a model over some length of time.since the schimidt no. of naphthalene is not generally equal to prandtl no. under the conditions of interest, some assumption about the dependence of nusselt no. on the prandtl no. must usually be introduced.\\n\"\n",
" #end\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Average rate of loss of naphthalene from a part of model is : 1.61e-05 kg/(m^2*s) or 58.0 g/(m^2*h)\n",
"\n",
"Naphthalene sublimatin can be used to infer heat transfer coefficient by measuring the loss of naphthalene from a model over some length of time.since the schimidt no. of naphthalene is not generally equal to prandtl no. under the conditions of interest, some assumption about the dependence of nusselt no. on the prandtl no. must usually be introduced.\n",
"\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 11.11, Page number:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"\n",
"#Variables\n",
"T1=300; #temp. of helium-water tube,K\n",
"h=0.4; #height of vertical wall,m\n",
"m=0.087*10**-3; #flow rate of helium,kg/(m**2*s)\n",
"#this is a uniform flux natural convection problem.\n",
"Mhes=0.01; # assuming the value of mass fraction of helium at the wall to be 0.01\n",
"Mhef=Mhes/2; #film composition\n",
"af=1.141; #film density,kg/m**3\n",
"wd=1.107; #wall density,kg/m**3\n",
"Dha=7.119*10**-5; #diffusion coefficient,m**2/s\n",
"u=1.857*10**-5; #film viscosity at 300K,kg/(m*s)\n",
"aa=1.177; #air density,kg/m**3\n",
"g=9.8; #Gravity constant, m/s**2\n",
"#Calculations\n",
"Sc=(u/af)/Dha; #schimidt no.\n",
"Ra1=g*(aa-wd)*m*h**4/(u*af*Dha**2*Mhes); #Rayleigh no.\n",
"Nu=6/5*(Ra1*Sc/(4+9*math.sqrt(Sc)+10*Sc))**(1/5); #approximate nusselt no.\n",
"s=m*h/(af*Dha*Nu); #average concentration of helium at the wall\n",
"#thus we have obtained an average wall concentration 14 oercent higher than our initial guess of Mhes.we repeat this calclations with revised values of densities to obtain Mhes = 0.01142\n",
"\n",
"\n",
"#Result\n",
"print \"Average conentration of helium at the wall is \",round(s,5),\",since the result is within 0.5 percent of our second guess, a third iteration is not needed\"\n",
" #end\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Average conentration of helium at the wall is 0.01136 ,since the result is within 0.5 percent of our second guess, a third iteration is not needed\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 11.14, Page number:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"T1=325; #temp. of helium-water tube,K\n",
"l=0.2; #length of tube,m\n",
"x=0.01; # mole fraction of water\n",
"R=8314.472; #gas constant,J/(kmol*K)\n",
"Mw=18.02;#Molecular mass of water, g/mol\n",
"#the vapor pressure of the liquid water is approximately the saturation pressure at the water temp.\n",
"\n",
"#Calculations\n",
"p=1.341*10000 ; #vapor pressure using steam table,Pa\n",
"x1=p/101325; #mole fraction of saturated water\n",
"c=101325/(R*T1); #mole concentration in tube,kmol/m**3\n",
"D12=1.067*math.pow(10,-4); #diffusivity ofwater with respect to helium,m**2/s \n",
"Nw=c*D12*math.log(1+(x-x1)/(x1-1))/l ; #molar evaporation rate,kmol/(m**2*s)\n",
"nw=Nw*Mw; # mass evaporation rate,kg/(m**2*s)\n",
"\n",
"#S=1+(x1-1)*math.exp(Nw*y/(c*D12)) conentration distribution of water-vapor\n",
"#Result\n",
"print \"Conentration distribution of water-vapor is : x1(y)=1-0.8677*exp(0.6593*y) where y is expressed in meters.\\n\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Conentration distribution of water-vapor is : x1(y)=1-0.8677*exp(0.6593*y) where y is expressed in meters.\n",
"\n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 11.15, Page number:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"\n",
"#Variables\n",
"T1=1473; #suraface temp.of hot water,K\n",
"x=0.05; #mass fraction of water\n",
"Gm=0.017; #average mass transfer coefficient,kg/(m**2*s)\n",
"A=0.04; #suraface area of pan,m**2\n",
"\n",
" #only water vapour passes through the liquid surface, since air is not strongly absorbed into water under normal conditions.\n",
"#Calculations\n",
"p=38.58*1000; #saturation pressure of water,kPa\n",
"Xwater=p/101325; #mole fraction of saturated water\n",
"Mwater=Xwater*18.02/(Xwater*18.02+(1-Xwater)*28.96); #mass fraction of saturated water\n",
"\n",
"B=(x-Mwater)/(Mwater-1); #mass transfer driving force\n",
"m=Gm*B*A; #evaporation rate,kg/s\n",
"\n",
"#Result\n",
"print \"Evaporation rate is:\",round(m,6),\" kg/s\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Evaporation rate is: 0.000213 kg/s\n"
]
}
],
"prompt_number": 23
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 11.16, Page number:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variables\n",
"T1=298; #temp.of air,K\n",
"T2=323.15; #film temp.,K\n",
"x=0.05; #mass fraction of water at 75 C\n",
"Gm=0.017; #average mass transfer coefficient,kg/(m**2*s)\n",
"A=0.04; #suraface area of pan,m**2\n",
"l=0.2; #length of pan in flow direction,m\n",
"v=5; #air speed,m/s\n",
"m=(x+0.277)/2; #film composition of water at 50 C\n",
"Mf=26.34; #mixture molecular weight,kg/kmol\n",
"p=101325; #Atmospheric pressure, Pa\n",
"R=8314.5; #Gas constant, J/kmol-K\n",
"Uf=1.75*math.pow(10,-5); #film viscosity,kg/(m*s)\n",
"B=0.314; #mass transfer driving force\n",
"D=2.96*math.pow(10,-5); #diffusivity of water in air,m**2/s\n",
"df=0.993; #Density of ideal air, kg/m**#\n",
"\n",
"#Calculations\n",
"af=p*Mf/(R*T2); \t #film density from ideal gas law,kg/m**3\n",
"Vf=Uf/af; #kinematic viscosity,m**2/s\n",
"Rel=v*l/Vf; #reynolds no. comes out to be 56,800 so the flow is laminar.\n",
"Sc=Vf/D; #scimidt no.\n",
"Nu=0.664*math.sqrt(Rel)*math.pow(Sc,1/3); #nussselt no.\n",
"Gmw1=Nu*(D*df/l); #appropriate value of mass transfer gas phase coeffficient of water in air,kg/(m**2*s)\n",
"Gmw=Gmw1*(math.log(1+B)/B); \t #mass transfer gas phase coeffficient of water in air,kg/(m**2*s)\n",
"\n",
"#Results\n",
"print \"Mass transfer gas phase coeffficient of water in air is :\",round(Gmw,4),\"kg/(m^2*s)\\nIn this caes, the blowing factor is 0.870. Thus the mild blowing has reduced the mass transfer coefficient by about 13 percent\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"0.01955648559 133.069905487\n",
"Mass transfer gas phase coeffficient of water in air is : 0.017 kg/(m^2*s)\n",
"In this caes, the blowing factor is 0.870. Thus the mild blowing has reduced the mass transfer coefficient by about 13 percent\n"
]
}
],
"prompt_number": 28
}
],
"metadata": {}
}
]
}
|