summaryrefslogtreecommitdiff
path: root/A_Heat_Transfer_Text_Book/Chapter10.ipynb
blob: 71f05ef18466cf0c7c5ca15d6e1ad203be40db27 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 10: Radiative heat transfer "
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 10.1, Page number: 539"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#Variables\n",
      "T1=2273;             #temp.  of  liquid  air,K\n",
      "T2=303;              #temp.  of  room,K\n",
      "T3=973;              #temp.  of  shield,K\n",
      "D1=0.003;            #diameter  of  crucible,m\n",
      "D2=0.05;             #diameter  of  shield,m\n",
      "theta1=330;          #surrounding  angle  of  jet,degree\n",
      "theta2=30            #  angle  of  slit,degree\n",
      "Fjr=theta2/360;      #fraction  of  energy  of  view  of  jet  occupied  by  room\n",
      "Fjs=theta1/360  ;    #fraction  of  energy  of  view  of  jet  occupied  by  shield\n",
      "sigma=5.67*10**-8;   #Stefen-Boltzman constant\n",
      "\n",
      "#Calculations\n",
      "Qnjr=math.pi*D1*Fjr*sigma*(T1**4-T2**4);  #net  heat  transfer  from  jet  to  room,W/m\n",
      "Qnjs=math.pi*D1*Fjs*sigma*(T1**4-T3**4);  #net  heat  transfer  from  jet  to  shield,W/m\n",
      "#to  find  the  radiation  from  the  inside  of  the  shield  to  the  room,  we  need  Fshield-room.since  any  radiation  passing  out  of  the  slit  goes  to  the  room,we  can  find  this  view  factor  equating  view  factors  to  the  room  with  view  factors  to  the  slit.\n",
      "Aslit=math.pi*D2*Fjr;                            #Slit's area, m^2\n",
      "Fsj=math.pi*D1/Aslit*Fjr;                        #fraction  of  energy  of  view  of  slit  occupied  by  jet\n",
      "Fss=1-Fsj;                                       #fraction  of  energy  of  view  of  slit    occupied  by  shield.\n",
      "Fsr=Aslit*Fss/(math.pi*D2*Fjs);                  #fraction  of  energy  of  view  of  shield  occupied  by  room\n",
      "Qnsr=math.pi*D2*Fjs*sigma*Fsr*(T3**4-T2**4);     #net  heat  transfer  from  shield  to  room,  W/m\n",
      "\n",
      "\n",
      "#Result\n",
      "print \"Heat transfer from jet to room through the slit is :\",round(Qnjr,2),\"W/m\\n\"\n",
      "print \"Heat transfer from the jet to shield is :\",round(Qnjs,2),\" W/m\\n\"\n",
      "print \"Heat transfer from inside of shield to the room is :\",round(Qnsr,2),\"W/m\\n\"\n",
      "print \"Both the jet and the inside of the shield have relatively small view factors to the room, so that comparatively little heat is lost through the silt \\n\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Heat transfer from jet to room through the slit is : 1188.32 W/m\n",
        "\n",
        "Heat transfer from the jet to shield is : 12636.6  W/m\n",
        "\n",
        "Heat transfer from inside of shield to the room is : 619.44 W/m\n",
        "\n",
        "Both the jet and the inside of the shield have relatively small view factors to the room, so that comparatively little heat is lost through the silt \n",
        "\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 10.2, Page number: 542"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#Variables\n",
      "T1=373;                               #temp.  of  shield,K      \n",
      "T2=1473;                              #temp  of  heater,K\n",
      "h=0.2  ;                              #height  of  disc  heater,m\n",
      "r1=0.05;                              #smaller  radius  of  heater,m\n",
      "r2=0.1;                               #larger  radius  of  heater,m  \n",
      "R1=r1/h  ;                            #factors  necessary  for  finding  view  factor\n",
      "R2=r2/h  ;                            #factors  necessary  for  finding  view  factor\n",
      "sigma=5.67*10**-8;                    #Stefen-Boltzman constant\n",
      "\n",
      "#Calculations\n",
      "X=1+(1+R2**2)/R1**2;                                                  #factors  necessary  for  finding  view  factor\n",
      "Fht=0.5*(X-math.sqrt(X**2-4*(R2**2/R1**2)));                          #view  factor\n",
      "Fhs=1-Fht;                                                            #view  factor  of  heater    occupied  by  shield\n",
      "Qnhs=math.pi*r2**2*Fhs*sigma*(T2**4-T1**4)/4;                         #Net heat transfer from the heater to shield\n",
      "\n",
      "#Result\n",
      "print \"Net heat transfer from the heater to shield is : \",round(Qnhs),\" W\\n\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Net heat transfer from the heater to shield is :  1686.0  W\n",
        "\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 10.3, Page number: 547"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#Variables\n",
      "h=0.2  ;                       #height  of  disc  heater,m\n",
      "r1=0.05;                       #smaller  radius  of  heater,m\n",
      "r2=0.1;                        #larger  radius  of  heater,m\n",
      "Fhs=0.808;                     #view  factor  of  heater  occupied  by  shield\n",
      "\n",
      "#Calculations\n",
      "As=math.pi*(r1+r2)*math.sqrt(h**2+(r2-r1)**2);      #area  of  frustrum  shaped  shield,m**2\n",
      "Ah=math.pi/4*r2**2;                                 #heater  area,m**2\n",
      "Fsh=Ah/As*Fhs;                                      #view  factor  of  shield  occupied  by  heater\n",
      "\n",
      "#Result\n",
      "print \"View factor of shield occupied by heater is :\",round(Fsh,3),\"\\n\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "View factor of shield occupied by heater is : 0.065 \n",
        "\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 10.4, Page number: 548"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "\n",
      "#Variables\n",
      "F1342=0.245;               #view  factor  of  1and  3  occupied  by  2  and  4\n",
      "F14=0.2;                   #view  factor  of  1  occupied  by  4\n",
      "\n",
      "#Calculations\n",
      "F12=F1342-F14;             #view  factor  of  1  occupied  by  2  \n",
      "\n",
      "#Results\n",
      "print \"View factor of 1 occupied by 2  is :\",F12,\"\\n\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "View factor of 1 occupied by 2  is : 0.045 \n",
        "\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 10.8, Page number: 554"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "import math\n",
      "from sympy import *\n",
      "\n",
      "#Variables\n",
      "T1=80;             #temp.of  liquid  nitrgen,K      \n",
      "T2=230;             #temp  of  chamber  walls,K\n",
      "D1=0.00635;         #outer  diameter  of  steel,  m\n",
      "D2=0.0127;         #diameter  of  2nd  steel  tube,  m\n",
      "e1=0.2  ;           #emissivity  0f  steel\n",
      "sigma=5.67*10**-8;  #Stefen-Boltzman constant\n",
      "\n",
      "#Calculations\n",
      "x = Symbol('x');\n",
      "#the  nitrogen  coolant  will  hold  the  surface  of  the  line  at  essentially  80  K,  since  the  thermal  ressistance  of  tube  wall  and  int.  convection  or  boiling  process  are  small.\n",
      "Qgain=math.pi*D1*e1*sigma*(T2**4-T1**4);  #  net  heat  gain  of  line  per  unit  length,W/m\n",
      "#with  the  shield  ,  assuming  that  the  chamber  area  is  large  compared  to  the  shielded  line.\n",
      "Qgain1=math.pi*D1*sigma*(T2**4-T1**4)/(((1-e1)/e1+1)+D1/D2*(2*(1-e1)/e1+1));  #net  heat  gain  with  shield,W/m\n",
      "s=(Qgain-Qgain1)/Qgain*100;                        \t\t\t\t\t\t\t\t\t#rate  of  heat  gain  reducton  in  percentage\n",
      "T = (230**4 -0.328/(3.14*D2*e1*sigma))**(1/4)  \t\t\t\t\t\t#Temp. of the shield\n",
      "\n",
      "#Result\n",
      "print \"Net heat gain of line per unit length is :\",round(Qgain,2),\" W/m\\n\"\n",
      "print \"Rate of heat gain reducton is :\",round(s,2),\"  percent \\n\"\n",
      "print \"Temp. of the shield is : \",round(T,2),\" C\\n\"\n",
      "   \n",
      "\n",
      "    "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Net heat gain of line per unit length is : 0.62  W/m\n",
        "\n",
        "Rate of heat gain reducton is : 47.37   percent \n",
        "\n",
        "Temp. of the shield is :  213.38  C\n",
        "\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 10.9, Page number: 557"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "from numpy import mat\n",
      "from numpy.linalg import inv\n",
      "from sympy import solve, symbols\n",
      "\n",
      "#Variables\n",
      "T1=250  ;          #temp.of  surrounding,K      \n",
      "l1=1;              #width  of  strips,  m\n",
      "l2=2.4;            #distance  between  strips,m\n",
      "F12=0.2;           #view  factor  of  1  occupied  by  2.\n",
      "\n",
      "\n",
      "#Calculations\n",
      "A=mat('1  -0.14;-1,  10')  ;    #matrix  representation  for  solving  the  linear  equations,  for  black  surroundings\n",
      "B=mat('559.6;3182.5');          #matrix  representation  for  solving  the  linear  equations.\n",
      "X=inv(A)*B;\n",
      "\n",
      "\n",
      "Qn12=(X.item(0)-X.item(1))/(1/(0.9975*F12));            #net  heat  flow  from  1  to  2  for    black  surroundings.\n",
      " #since  each  strip  loses  heat  to  the  surrounding,Qnet1,  Qnet2  and  Qnet1-2  are  different.\n",
      " #  three  equations  will  be      \n",
      " #(1451-B1)/2.33  =  (B1-B2)/(1/0.2)+(B1-B3)/(1/0.8)......(1)\n",
      " #(459.B2)  =  (B2-B1)/(1/0.2)+(B2-B3)/(1/0.8)............(2)\n",
      " #0=(B3-B1)/(1/0.8)+(B3-B2)/(1/0.8).....................(3)\n",
      " #solving  these  equations,  we  get    the  values  of  B1,B2  and  B3.\n",
      "B1=987.7                                 #heat  flux  by  surface  1.\n",
      "B2=657.4                                 #heat  flux  by  surface  2.\n",
      "B3=822.6                                 #heat  flux  by  surface  3.\n",
      "qn12=(B1-B2)/(1/F12)+(B1-B3)/(1/(1-F12));#  net  heat  transfer  between  1  and  2  if  they  are  connected  by  an  insulated  diffuse  reflector  between  the  edges  on  both  sides.\n",
      "\n",
      "#Results\n",
      "print \"Net heat transfer between 1 and 2 if the surroundings are black is :\",round(Qn12,2),\"W/m^2\\n\"\n",
      "print \"Net heat transfer between 1 and 2 if they are connected by an insulated diffuse reflector between the edges on both sides is : \",qn12,\" W/m^2\\n\"\n",
      "\n",
      "x=symbols('x');\n",
      "x=solve(sigma*(x**4)-822.6,x);          #Solving for Temp. of the reflector.\n",
      "print \"Temperature of the reflector is : \",round(x[1],2),\" K\\n\"\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Net heat transfer between 1 and 2 if the surroundings are black is : 46.53 W/m^2\n",
        "\n",
        "Net heat transfer between 1 and 2 if they are connected by an insulated diffuse reflector between the edges on both sides is :  198.14  W/m^2\n",
        "\n",
        "Temperature of the reflector is : "
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " 347.06  K\n",
        "\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 10.10, Page number: 561"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "from numpy import array,dot\n",
      "from numpy.linalg import inv\n",
      "\n",
      "#Variables\n",
      "T1=773;                              #temp.of  two  sides  of  duct,K\n",
      "T2=373;                              #temperature  of  the  third  side,K\n",
      "e1=0.5;                              #emissivity  of  stainless  steel\n",
      "e2=0.15;                             #emissivity  of  copper\n",
      "a=5.67*10**-8;                       #stefan  constant\n",
      "f12=0.4;                             #view  factor  of  1  occupied  by  2.\n",
      "f21=0.67;                             #view  factor  of    2  occupied  by  1\n",
      "f13=0.6;                              #  view  factor  of  1  occupied  by  3\n",
      "f31=0.75;                             #view  factor  of  3  occupied  by  1\n",
      "f23=0.33;                             #view  factor  of  2  occupied  by  3\n",
      "f32=0.25;                             #view  factor  of  2  occupied  by  3\n",
      "\n",
      "#Calculations\n",
      "A=array(([1,  (-1+e2)*f12,  (e2-1)*f13],[(-1*e1*f21),  1,  (e1*-1*f23)],[(e1*-1*f31),  (e1*-1*f32),  1]));#matrix  method  to  solve  three  equations  to  find  radiosity\n",
      "B=array(([e2*a*T2**4],[e1*a*T1**4],[e1*a*T1**4]));      #matrix  method  to  solve  three  equations  to  find  radiosity\n",
      "X=dot(inv(A),B);                                       #solution  of  above  matrix  method\n",
      "Qn1=0.5*e2/(1-e2)*(a*T2**4-X.item(0));                #net  heat  transfer  to  the  copper  base  per  meter  of  the  length  of  the  duct,W/m\n",
      "Qn2=Qn1+2.6;\n",
      "\n",
      "#Result\n",
      "print \"Net heat transfer to the copper base per meter of length of the duct is : \",round(Qn2,2),\"W/m ,the -ve sign indicates that the copper base is gaining heat.\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Net heat transfer to the copper base per meter of length of the duct is :  -1294.01 W/m ,the -ve sign indicates that the copper base is gaining heat.\n",
        "\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 10.11, Page number: 573"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "\n",
      "#Variables\n",
      "T1=1473  ;                                #temp.of  gas,K      \n",
      "T2=573  ;                                 #temp  of  walls,K\n",
      "D1=0.4;                                   #diameter  of  combustor,  m\n",
      "a=5.67*10**-8;                            #stefan  boltzman  coefficient,W/(m**2*K**4)\n",
      "#we  have  Lo=D1=0.4m,  a  total  pressure  of  1  atm.,  pco2=0.2  atm.  ,  using  figure,  we  get  eg=0.098.\n",
      "eg=0.098;                                 #total  emittance\n",
      "\n",
      "#Calculations\n",
      "ag=(T1/T2)**0.5*(0.074);                  #total  absorptance\n",
      "#now  we  can  calculate  Qnetgas  to  wall.  for  these  problems  with  one  wall  surrounding  one  gas,  the  use  of  the  mean  beam  length  in  finding  eg  and  ag  accounts  for  all  geometric  effects  and  no  view  factor  is  required.  \n",
      "Qngw=math.pi*D1*a*(eg*T1**4-ag*T2**4)/1000;      #net  heat  radiated  to  the  walls,kW/m\n",
      "\n",
      "#Result\n",
      "print \"Net heat radiated to the walls is : \",round(Qngw,2),\"KW/m\\n\"\n",
      "#end"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Net heat radiated to the walls is :  31.96 KW/m\n",
        "\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 10.12, Page number: 577"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "from sympy import solve,symbols\n",
      "\n",
      "#Variables\n",
      "T1=291;                              #temp.of  sky,K      \n",
      "T2=308;                              #temp  of  air,K\n",
      "e1=0.9;                              #emissivity  0f  black  paint\n",
      "h=8;                                 #heat  transfer  coefficient,W/(m**2*K)\n",
      "P=600  ;                             #Solar radiation of roof, W/m**2             \n",
      "aacr=0.26;                           #heat  flux,W/m**2\n",
      "ablk=0.9;                            #heat  flux,W/m**2\n",
      "sigma=5.67*10**-8;                   #Stefen-Boltzman constant\n",
      "\n",
      "#Calculations-1\n",
      "#heat  loss  from  the  roof  to  the  inside  of  the  barn  will  lower  the  roof  temp.,  since  we  dont  have  enough  information  to  evaluate  the  loss,  we  can  make  an  upper  bound  on  roof  temp.  by  assuming  that  no  heat  is  transferred  to  the  interior.\n",
      "T=symbols('T');\n",
      "T=solve(((e1*sigma*(T**4-T1**4)+h*(T-T2))-ablk*P),T);\n",
      "Tn=T[1]\n",
      "\n",
      "#Result-1\n",
      "print \"For non-sensitive black paint, temp. of roof is:\",round(Tn)-273,\"degree C \\n\" \n",
      "\n",
      "#Calculations-2\n",
      " #for  white  acrylic  paint,  by  using  table,  e=0.9  and  absorptivity  is  0.26,Troof  \n",
      "T=symbols('T');\n",
      "T=solve(((e1*sigma*(T**4-T1**4)+h*(T-T2))-0.26*P),T);\n",
      "Tn=T[1]\n",
      "\n",
      "#Result-2\n",
      "print \"For acrylic paint temp. of the root is :\",round(Tn)-273,\"degree C \\n\\nThe white painted roof is only a few degrees warmer than the air.\\n\"\n",
      "#end\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "For non-sensitive black paint, temp. of roof is: 65.0 degree C \n",
        "\n",
        "For acrylic paint temp. of the root is :"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " 39.0 degree C \n",
        "\n",
        "The white painted roof is only a few degrees warmer than the air.\n",
        "\n"
       ]
      }
     ],
     "prompt_number": 13
    }
   ],
   "metadata": {}
  }
 ]
}