1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"UNIT-2:Application of Sound Waves"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:2.1,Page no:41"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Calculate reverberation time\n",
"\n",
"#Variable declaration\n",
"v=3000 #volume in metre cube.\n",
"theta=0.2 #theta in owu(open window unit).\n",
"s=1850 #area in metre cube.\n",
"\n",
"#Calculation\n",
"a=theta*s #calculating total absorbtion of surface.\n",
"T=(0.165*v)/a #calculating T using Sabine formula\n",
"\n",
"#Result\n",
"print\"Reverberation time of Room = \",round(T,2) ,\"sec\" \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Reverberation time of Room = 1.34 sec\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:2.2,Page no:41"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Calculate average absorbing power\n",
"\n",
"#Variable declaration\n",
"v=120000 #volume in metre cube.\n",
"t=1.5 #time in second.\n",
"s=25000 #area in metre cube.\n",
"\n",
"#Calculation\n",
"a=(0.16*v)/(t*s) #using Sabine formula for calculating a\n",
"\n",
"#Variable declaration\n",
"print\"Average Absorbing Power of Surface = \",a,\"o w u\" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Average Absorbing Power of Surface = 0.512 o w u\n"
]
}
],
"prompt_number": 39
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:2.3,Page no:42"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Reverberation time of cinema hall\n",
"\n",
"#Variable declaration\n",
"v=6000.0 #Volume in metre cube.\n",
"a=20.0 #surface absorbtion in owu(open window unit).\n",
"\n",
"#Calculation\n",
"T=(0.165*v)/(a) #calculating T using Sabine Formula.\n",
"\n",
"#Result\n",
"print\"Reverberation Time = \",T,\"sec\"\n",
"print\"\\nNOTE:Calculation mistake in book\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Reverberation Time = 49.5 sec\n",
"\n",
"NOTE:Calculation mistake in book\n"
]
}
],
"prompt_number": 37
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:2.4,Page no:42"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Reverberation time with persons\n",
"\n",
"#Variable declaration\n",
"v=3500 #volume in metre cube.\n",
"n1=370-300 #no. of audience on wooden seats.\n",
"n2=300-70 #no. of empty wooden seats.\n",
"\n",
"#Calculation\n",
"a1s1=0.04*60 #absorption due to wooden doors.\n",
"a2s2=0.03*700 #absorption due to plastered walls.\n",
"a3s3=0.06*50 #absorption due to glass work.\n",
"a4s4=4.2*370 #absorption due to audience on spungy and wooden \n",
"#seats.\n",
"a5s5=2*230 #absorption due to empty seats.\n",
"sum=a1s1+a2s2+a3s3+a4s4+a5s5 #total absorption of cinema hall.\n",
"T=(0.165*v)/sum #calculating T using Sabine Formula.\n",
"\n",
"#Result\n",
"print\"Reverberation Time = \",round(T,2),\"sec\" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Reverberation Time = 0.28 sec\n"
]
}
],
"prompt_number": 40
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:2.5,Page no:49"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Frequency of ultrasonics\n",
"\n",
"import math\n",
"\n",
"#Variable declaration\n",
"l=10 #length in centimetres.\n",
"Y=20*10**11 #Young's Modulus in dyne/cm square.\n",
"R=8 #Density in gram/cc\n",
"\n",
"#Calculation\n",
"n=(1.0/(2*l))*math.sqrt(Y/R) #calculating frequency of vibration using \n",
"#young's modulus.\n",
"\n",
"#Result\n",
"print\"Frequency of vibration=\",n,\"Hz\" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Frequency of vibration= 25000.0 Hz\n"
]
}
],
"prompt_number": 28
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:2.6,Page no:50"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Fundamental frequency of vibration\n",
"\n",
"import math\n",
"\n",
"#Variable declaration\n",
"t=0.1 #thickness in centimetre.\n",
"Y=8.75*10**11 #Young's Modulus in dyne/cm square.\n",
"R=2.654 #Density in gram/cm square.\n",
"\n",
"#Calculation\n",
"n=(1/(2*t))*math.sqrt(Y/R) #calculating frequency using Young's modulus.\n",
"\n",
"#Result\n",
"print\"Frequency of Vibration=\",round(n),\"Hz\" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Frequency of Vibration= 2870936.0 Hz\n"
]
}
],
"prompt_number": 26
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:2.7,Page no:50"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Speed of sound wave in water\n",
"\n",
"#Variable declaration\n",
"K=2.026*10**9 #Bulk Modulus in N/m square.\n",
"R=10**3 #Density in Kg/m cube.\n",
"\n",
"#Calculation\n",
"V=math.sqrt(K/R) #Calculating speed using Bulk Modulus.\n",
"\n",
"#Result\n",
"print\"Velocity of sound waves in water = \",round(V,2),\"m/sec\" \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Velocity of sound waves in water = 1423.38 m/sec\n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:2.8,Page no:51"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Speed of ultrasonic wave in air\n",
"\n",
"import math\n",
"\n",
"#Variable declaration\n",
"Y=1.41 #Young's Modulus.\n",
"R=1.293*10**-3 #Density of air in g/centimetre cube.\n",
"P=76*13.6*980 #atmospheric pressure in dyne/cm square.\n",
"\n",
"#Calculation\n",
"V=math.sqrt((Y*P)/R) #calculating speed using young's modulus.\n",
"\n",
"#Result\n",
"print\"Speed of ultrasonic wave in air at n.t.p=\",round(V*10**-2,1),\"m/sec\" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Speed of ultrasonic wave in air at n.t.p= 332.4 m/sec\n"
]
}
],
"prompt_number": 16
}
],
"metadata": {}
}
]
}
|