summaryrefslogtreecommitdiff
path: root/sample_notebooks
diff options
context:
space:
mode:
Diffstat (limited to 'sample_notebooks')
-rw-r--r--sample_notebooks/Harshitgarg/Chapter_1-INTRODUCTION_TO_MECHANICS_OF_SOLIDS__2.ipynb380
-rw-r--r--sample_notebooks/KARTHIKEYAN S/CHAPTER_1.ipynb104
-rw-r--r--sample_notebooks/NityaL/Sample-Chapter_26.ipynb226
3 files changed, 710 insertions, 0 deletions
diff --git a/sample_notebooks/Harshitgarg/Chapter_1-INTRODUCTION_TO_MECHANICS_OF_SOLIDS__2.ipynb b/sample_notebooks/Harshitgarg/Chapter_1-INTRODUCTION_TO_MECHANICS_OF_SOLIDS__2.ipynb
new file mode 100644
index 00000000..696f0022
--- /dev/null
+++ b/sample_notebooks/Harshitgarg/Chapter_1-INTRODUCTION_TO_MECHANICS_OF_SOLIDS__2.ipynb
@@ -0,0 +1,380 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# example1.1 Page number 10\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " The resultant velocity : 21.54 km/hour\n",
+ "68.2 °\n"
+ ]
+ }
+ ],
+ "source": [
+ "#downstream direction as x\n",
+ "#direction across river as y\n",
+ "\n",
+ "from math import sqrt,atan,pi\n",
+ "\n",
+ "#variable declaration\n",
+ "\n",
+ "Vx= 8 #velocity of stream, km/hour\n",
+ "Vy=float(20) #velocity of boat,km/hour\n",
+ "\n",
+ "V=sqrt(pow(Vx,2)+pow(Vy,2)) #resultant velocity, km/hour\n",
+ "theta=Vy/Vx\n",
+ "\n",
+ "alpha= atan(theta)*180/pi #angle, degrees \n",
+ "\n",
+ "print \" The resultant velocity :\",round(V,2),\"km/hour\"\n",
+ "print round(alpha,2),\"°\"\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# example 1.2 Page number 10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "10.0 KN (to the left)\n",
+ "17.32 KN (downward)\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "\n",
+ "#components of force in horizontal and vertical components. \n",
+ "from math import cos,sin,pi\n",
+ "#variable declaration\n",
+ "\n",
+ "F= 20 #force in wire, KN\n",
+ "\n",
+ "#calculations\n",
+ "Fx= F*cos(60*pi/180) \n",
+ "Fy= F*sin(60*pi/180)\n",
+ "\n",
+ "print round(Fx,2),\"KN\" ,\"(to the left)\"\n",
+ "print round(Fy,2), \"KN\" ,\"(downward)\"\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# example 1.3 Page number 11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Component normal to the plane : 9.4 KN\n",
+ "Component parallel to the plane : 3.42 KN\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ " #The plane makes an angle of 20° to the horizontal. Hence the normal to the plane makes an angles of 70° to the horizontal i.e., 20° to the vertical\n",
+ "from math import cos,sin,pi\n",
+ "#variable declaration\n",
+ "W= 10 # black weighing, KN\n",
+ "\n",
+ "#calculations\n",
+ "\n",
+ "Nor= W*cos(20*pi/180) #Component normal to the plane\n",
+ "para= W*sin(20*pi/180) #Component parallel to the plane\n",
+ "\n",
+ "print \"Component normal to the plane :\",round(Nor,2),\"KN\"\n",
+ "print \"Component parallel to the plane :\",round(para,2) , \"KN\"\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# example 1.4 Page number 11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "F1= 100.0 N\n",
+ "F2= 200.0 N\n",
+ "theta= 63.9 °\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "#Let the magnitude of the smaller force be F. Hence the magnitude of the larger force is 2F\n",
+ "\n",
+ "from math import pi,sqrt, acos\n",
+ "#variable declaration\n",
+ "R1=260 #resultant of two forces,N\n",
+ "R2=float(180) #resultant of two forces if larger force is reversed,N\n",
+ "\n",
+ "\n",
+ "\n",
+ "#calculations\n",
+ "\n",
+ "F=sqrt((pow(R1,2)+pow(R2,2))/10)\n",
+ "F1=F\n",
+ "F2=2*F\n",
+ "theta=acos((pow(R1,2)-pow(F1,2)-pow(F2,2))/(2*F1*F2))*180/pi\n",
+ "\n",
+ "print \"F1=\",F1,\"N\"\n",
+ "print \"F2=\",F2,\"N\"\n",
+ "print \"theta=\",round(theta,1),\"°\"\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# example 1.5 Page number 12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "F1= 326.35 N\n",
+ "F2= 223.24 N\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "#Let ?ABC be the triangle of forces drawn to some scale\n",
+ "#Two forces F1 and F2 are acting at point A\n",
+ "#angle in degrees '°'\n",
+ "\n",
+ "from math import sin,pi\n",
+ " \n",
+ "#variabble declaration\n",
+ "cnv=pi/180\n",
+ "\n",
+ "BAC = 20*cnv #Resultant R makes angle with F1 \n",
+ " \n",
+ "ABC = 130*cnv \n",
+ "\n",
+ "ACB = 30*cnv \n",
+ "\n",
+ "R = 500 #resultant force,N\n",
+ "\n",
+ "#calculations\n",
+ "#sinerule\n",
+ "\n",
+ "F1=R*sin(ACB)/sin(ABC)\n",
+ "F2=R*sin(BAC)/sin(ABC)\n",
+ "\n",
+ "print \"F1=\",round(F1,2),\"N\"\n",
+ "print \"F2=\",round(F2,2),\"N\"\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# example 1.6 Page number 12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "theta= 78.13 °\n",
+ "alpha= 29.29 °\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "#Let ABC be the triangle of forces,'theta' be the angle between F1 and F2, and 'alpha' be the angle between resultant and F1 \n",
+ "\n",
+ "from math import sin,acos,asin,pi\n",
+ "\n",
+ "#variable declaration\n",
+ "cnv= 180/pi\n",
+ "F1=float(400) #all forces are in newtons,'N'\n",
+ "F2=float(260)\n",
+ "R=float(520)\n",
+ "\n",
+ "#calculations\n",
+ "\n",
+ "theta=acos((pow(R,2)-pow(F1,2)-pow(F2,2))/(2*F1*F2))*cnv\n",
+ "\n",
+ "alpha=asin(F2*sin(theta*pi/180)/R)*cnv\n",
+ "\n",
+ "print\"theta=\",round(theta,2),\"°\"\n",
+ "print \"alpha=\",round(alpha,2),\"°\"\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# example 1.7 Page number 13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "horizontal component= 2814.2 N\n",
+ "Vertical component = 1039.2 N\n",
+ "Component along crank = 507.1 N\n",
+ "Component normal to crank= 2956.8 N\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "#The force of 3000 N acts along line AB. Let AB make angle alpha with horizontal.\n",
+ "\n",
+ "from math import cos,sin,pi,asin,acos\n",
+ "\n",
+ "#variable declaration\n",
+ "F=3000 #force in newtons,'N'\n",
+ "BC=80 #length of crank BC, 'mm'\n",
+ "AB=200 #length of connecting rod AB ,'mm'\n",
+ "theta=60*pi/180 #angle b/w BC & AC\n",
+ "\n",
+ "#calculations\n",
+ "\n",
+ "alpha=asin(BC*sin(theta)/200)*180/pi\n",
+ "\n",
+ "HC=F*cos(alpha*pi/180) #Horizontal component \n",
+ "VC= F*sin(alpha*pi/180) #Vertical component \n",
+ "\n",
+ "#Components along and normal to crank\n",
+ "#The force makes angle alpha + 60 with crank.\n",
+ "alpha2=alpha+60\n",
+ "CAC=F*cos(alpha2*pi/180) # Component along crank \n",
+ "CNC= F*sin(alpha2*pi/180) #Component normal to crank \n",
+ "\n",
+ "\n",
+ "print \"horizontal component=\",round(HC,1),\"N\"\n",
+ "print \"Vertical component = \",round(VC,1),\"N\"\n",
+ "print \"Component along crank =\",round(CAC,1),\"N\"\n",
+ "print \"Component normal to crank=\",round(CNC,1),\"N\""
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/sample_notebooks/KARTHIKEYAN S/CHAPTER_1.ipynb b/sample_notebooks/KARTHIKEYAN S/CHAPTER_1.ipynb
new file mode 100644
index 00000000..8f5d99cb
--- /dev/null
+++ b/sample_notebooks/KARTHIKEYAN S/CHAPTER_1.ipynb
@@ -0,0 +1,104 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# CHAPTER 1:Fundmentals"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## EXAMPLE 1.1,PAGE NUMBER:3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Carnot COP= 6.0 (error)\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable Declaration\n",
+ "T_0=-5+273;\n",
+ "T_1=35+273;\n",
+ "\n",
+ "#Calculation\n",
+ "COP=(T_0)/(T_1-T_0);# Coefficient of performance\n",
+ "print \"Carnot COP=\",round(COP,2),\"(error)\"\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## EXAMPLE 1.2,PAGE NUMBER:4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The average specific heat capacity is 4.186 kJ/(kg K)\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable Declaration\n",
+ "T_f=80;# Final Temperature in °C\n",
+ "T_i=0;# Initial Temperature in °C\n",
+ "h_f=334.91;#The specific enthalpy of water in kJ/kg\n",
+ "\n",
+ "#Calculation\n",
+ "C=h_f/(T_f-T_i);# The average specifi c heat capacity in kJ/(kg K)\n",
+ "print \"The average specific heat capacity is\",round(C,3),\"kJ/(kg K)\"\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/sample_notebooks/NityaL/Sample-Chapter_26.ipynb b/sample_notebooks/NityaL/Sample-Chapter_26.ipynb
new file mode 100644
index 00000000..4ae1c760
--- /dev/null
+++ b/sample_notebooks/NityaL/Sample-Chapter_26.ipynb
@@ -0,0 +1,226 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 26:CHARGE AND MATTER"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Example 26.1 Magnitude of total charges in a copper penny"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Magnitude of the charges in coulombs is 133687.50000000003\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Example 1.1\n",
+ "\n",
+ "m =3.1 #mass of copper penny in grams\n",
+ "e =4.6*10** -18 #charge in coulombs\n",
+ "N0 =6*10**23 #avogadro’s number atoms / mole\n",
+ "M =64 #molecular weight of copper in gm/ mole\n",
+ "\n",
+ "#Calculation\n",
+ "N =( N0 * m ) / M #No. of copper atoms in penny\n",
+ "q = N * e # magnitude of the charges in coulombs\n",
+ "print (\" Magnitude of the charges in coulomb is \",q )"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Example 26.2 Separation between total positive and negative charges"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Separation between total positive and negative charges in meters is 5813776741.499454\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Example 2\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "F =4.5 #Force of attraction in nt\n",
+ "q =1.3*10**5 #total charge in coulomb\n",
+ "r = q * math.sqrt ((9*10**9) / F ) ;\n",
+ "print(\" Separation between total positive and negative charges in meters is \",r )"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Example 26.3 Force acting on charge q1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "X component of resultant force acting on q1 in nt is 2.0999999999999996\n",
+ "Y component of resultant force acting on q1 in nt is -1.5588457268119893\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Example 3\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "#given three charges q1,q2,q3\n",
+ "q1=-1.0*10**-6 #charge in coul\n",
+ "q2=+3.0*10**-6 #charge in coul\n",
+ "q3=-2.0*10**-6 #charge in coul\n",
+ "r12=15*10**-2 #separation between q1 and q2 in m\n",
+ "r13=10*10**-2 # separation between q1 and q3 in m\n",
+ "angle=math.pi/6 #in degrees\n",
+ "F12=(9.0*10**9)*q1*q2/(r12**2) #in nt\n",
+ "F13=(9.0*10**9)*q1*q3/(r13**2) #in nt\n",
+ "F12x=-F12 #ignoring signs of charges\n",
+ "F13x=F13*math.sin(angle);\n",
+ "F1x=F12x+F13x\n",
+ "F12y=0 #from fig.263\n",
+ "F13y=-F13*math.cos(angle);\n",
+ "F1y=F12y+F13y #in nt\n",
+ "print(\"X component of resultant force acting on q1 in nt is\",F1x)\n",
+ "print(\"Y component of resultant force acting on q1 in nt is\",F1y)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Example 26.4 Electrical and Gravitational force between two particles"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Coulomb force in nt is 8.202207191171238e-08\n",
+ "Gravitational force in nt is 3.689889640441438e-47\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Example 4\n",
+ "\n",
+ "r=5.3*10**-11 #distance between electron and proton in the hydrogen atom in meter\n",
+ "e=1.6*10**-19 #charge in coul\n",
+ "G=6.7*10**-11 #gravitatinal constant in nt-m2/kg2\n",
+ "m1=9.1*10**-31 #mass of electron in kg\n",
+ "m2=1.7*10**-27 #mass of proton in kg\n",
+ "F1=(9*10**9)*e*e/(r**2) #coulomb's law\n",
+ "F2=G*m1*m2/(r**2) #gravitational force\n",
+ "print(\"Coulomb force in nt is\",F1)\n",
+ "print(\"Gravitational force in nt is\",F2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Example 26.5 Repulsive force between two protons in a nucleus of iron"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Repulsive coulomb force F 14.4 nt\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Example 5\n",
+ "\n",
+ "r=4*10**-15 #separation between proton annd nucleus in iron in meters\n",
+ "q=1.6*10**-19 #charge in coul\n",
+ "F=(9*10**9)*(q**2)/(r**2) #coulomb's law\n",
+ "print(\"Repulsive coulomb force F \",F,'nt')"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}