summaryrefslogtreecommitdiff
path: root/sample_notebooks
diff options
context:
space:
mode:
Diffstat (limited to 'sample_notebooks')
-rw-r--r--sample_notebooks/Raj Kumar/Ch5.ipynb402
1 files changed, 402 insertions, 0 deletions
diff --git a/sample_notebooks/Raj Kumar/Ch5.ipynb b/sample_notebooks/Raj Kumar/Ch5.ipynb
new file mode 100644
index 00000000..5863ba1d
--- /dev/null
+++ b/sample_notebooks/Raj Kumar/Ch5.ipynb
@@ -0,0 +1,402 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5 - Vectors & Matrices"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex5.2 Pg 103"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 52,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "u+v = [[ 3 -2 4]]\n",
+ "5*u = [[ 10 15 -20]]\n",
+ "-v = [[-1 5 -8]]\n",
+ "2*u-3*v = [[ 1 21 -32]]\n",
+ "dot product of the two vectors, k = u.v = [[-45]]\n",
+ "norm or length of the vector u = 5.3852\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from numpy import mat\n",
+ "from numpy.linalg import det\n",
+ "from numpy import mat, add, dot, multiply, inner\n",
+ "u=mat([[2,3,-4]])\n",
+ "v=mat([[1,-5,8]])\n",
+ "print \"u+v = \",add(u,v)\n",
+ "print \"5*u = \",multiply(5,u)\n",
+ "print \"-v = \",multiply(-1,v)\n",
+ "print \"2*u-3*v = \",add(multiply(2,u),multiply(-3,v))\n",
+ "print 'dot product of the two vectors, k = u.v = ',inner(u,v)\n",
+ "from numpy.linalg import norm\n",
+ "l=norm(u)# \n",
+ "print 'norm or length of the vector u = ',round(l,4)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex5.3 Pg 104 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "2*u-3*v =\n",
+ "[[ 1]\n",
+ " [ 9]\n",
+ " [-2]]\n",
+ "The dot product of the two vectors u and v is: [[20]]\n",
+ "norm or length of the vector u = 7.0711\n"
+ ]
+ }
+ ],
+ "source": [
+ "u=mat([[5],[3],[-4]])\n",
+ "v=mat([[3],[-1],[-2]])\n",
+ "print \"2*u-3*v =\\n\",add(multiply(2,u),multiply(-3,v))\n",
+ "print 'The dot product of the two vectors u and v is:', sum(multiply(u,v))\n",
+ "l=norm(u)#\n",
+ "print 'norm or length of the vector u = ',round(l,4)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex5.5 Pg 105"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The addition of the two matrices A and B is:\n",
+ "[[ 5 4 11]\n",
+ " [ 1 1 -2]]\n",
+ "\n",
+ "The multiplication of a vector with a scalar is:\n",
+ "[[ 3 -6 9]\n",
+ " [ 0 12 15]]\n",
+ "\n",
+ "2*A-3*B = \n",
+ "[[-10 -22 -18]\n",
+ " [ -3 17 31]]\n"
+ ]
+ }
+ ],
+ "source": [
+ "A=mat([[1,-2,3],[0,4,5]])\n",
+ "B=mat([[4,6,8],[1,-3,-7]])\n",
+ "k=add(A,B)\n",
+ "print 'The addition of the two matrices A and B is:\\n',k\n",
+ "m=multiply(3,A)\n",
+ "print '\\nThe multiplication of a vector with a scalar is:\\n',m\n",
+ "p=add(multiply(2,A),multiply(-3,B))\n",
+ "print \"\\n2*A-3*B = \\n\",p"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex5.6 Pg 106"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "product of a and b is : [[8]]\n",
+ "product of p and q is: [[32]]\n"
+ ]
+ }
+ ],
+ "source": [
+ "a=mat([[7,-4,5]])\n",
+ "b=mat([[3,2,-1]])\n",
+ "k=inner(a,b)\n",
+ "print 'product of a and b is : ',k\n",
+ "p=mat([[6,-1,8,3]])\n",
+ "q=mat([[4,-9,-2,5]])\n",
+ "l=inner(p,q)\n",
+ "print 'product of p and q is:',l"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex5.7 Pg 107"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "A*B = \n",
+ "[[ 17 -6 14]\n",
+ " [ -1 2 -14]]\n",
+ "A*B = \n",
+ "[[ 5 2]\n",
+ " [15 10]]\n",
+ "B*A = \n",
+ "[[23 34]\n",
+ " [-6 -8]]\n",
+ "matrix mulitplication is not commutative since AB may not be equal to BA\n"
+ ]
+ }
+ ],
+ "source": [
+ "A=mat([[1 ,3],[2, -1]])\n",
+ "B=mat([[2, 0, -4],[5, -2, 6]])\n",
+ "print \"A*B = \\n\", dot(A,B)\n",
+ "A=mat([[1, 2],[3, 4]])\n",
+ "B=mat([[5, 6],[0, -2]])\n",
+ "print \"A*B = \\n\",dot(A,B)\n",
+ "print \"B*A = \\n\", dot(B,A)\n",
+ "print 'matrix mulitplication is not commutative since AB may not be equal to BA'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex5.8 Pg 109"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 47,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "for the function f(x)=2x**2-3x+5,f(A) is :\n",
+ "[[ 16. -18.]\n",
+ " [-27. 61.]]\n",
+ "for the function g(x)=x**2+3x-10,g(A) is\n",
+ "[[ 0. 0.]\n",
+ " [ 0. 0.]]\n"
+ ]
+ }
+ ],
+ "source": [
+ "from numpy import identity as idt\n",
+ "A=mat([[1, 2],[3, -4]])\n",
+ "A2=dot(A,A) #multiplying A by itself\n",
+ "A3=dot(A2,A)\n",
+ "f=add(add(multiply(2,A2),multiply(-3,A)),multiply(5,idt(2)))\n",
+ "print 'for the function f(x)=2x**2-3x+5,f(A) is :\\n',f\n",
+ "g=add(add(A2,multiply(3,A)),multiply(-10,idt(2)))\n",
+ "print 'for the function g(x)=x**2+3x-10,g(A) is\\n',g"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex5.9 Pg 110"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 50,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "A*b = \n",
+ "[[1 0 0]\n",
+ " [0 1 0]\n",
+ " [0 0 1]]\n",
+ "since A*B is identity matrix,A and B are invertible and inverse of each other\n"
+ ]
+ }
+ ],
+ "source": [
+ "A=mat([[1 ,0 ,2],[2 ,-1, 3],[4, 1, 8]])\n",
+ "B=mat([[-11, 2 ,2],[-4, 0 ,1],[6, -1, -1]])\n",
+ "print \"A*b = \\n\",dot(A,B)\n",
+ "print 'since A*B is identity matrix,A and B are invertible and inverse of each other'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex5.10 Pg 111"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 53,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "determinant of A 7.0\n",
+ "determinant of B 16.0\n",
+ "determinant of C -81.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "A=mat([[5 ,4],[2, 3]])\n",
+ "print 'determinant of A',det(A)\n",
+ "B=mat([[2, 1],[-4, 6]])\n",
+ "print 'determinant of B',det(B)\n",
+ "C=mat([[2, 1, 3],[4, 6, -1],[5 ,1 ,0]])\n",
+ "print 'determinant of C',det(C)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex5.13 Pg 115"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 60,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "x = [[ 2.]]\n",
+ "y = [[-1.]]\n",
+ "z = [[ 3.]]\n"
+ ]
+ }
+ ],
+ "source": [
+ "A=mat([[1, 2, 1],[2, 5, -1],[3, -2, -1]]) #left hand side of the system of equations\n",
+ "B=mat([[3] ,[-4] ,[5]]) #right hand side or the constants in the equations\n",
+ "from numpy import divide\n",
+ "from numpy.linalg import solve\n",
+ "X=divide(A,B) # #unique solution for the system of equations\n",
+ "X = solve(A, B)\n",
+ "print \"x = \",X[0]\n",
+ "print \"y = \",X[1]\n",
+ "print \"z = \",X[2]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex5.14 Pg 116"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 64,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Inverse of A = \n",
+ "[[-11. 2. 2.]\n",
+ " [ -4. 0. 1.]\n",
+ " [ 6. -1. -1.]]\n"
+ ]
+ }
+ ],
+ "source": [
+ "A=mat([[1 ,0 ,2],[2, -1, 3],[4, 1, 8]])\n",
+ "A_inv = A**-1\n",
+ "print \"Inverse of A = \\n\", A_inv"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}