summaryrefslogtreecommitdiff
path: root/sample_notebooks/srikanthgugloth
diff options
context:
space:
mode:
Diffstat (limited to 'sample_notebooks/srikanthgugloth')
-rwxr-xr-xsample_notebooks/srikanthgugloth/Chapter2.ipynb1124
1 files changed, 1124 insertions, 0 deletions
diff --git a/sample_notebooks/srikanthgugloth/Chapter2.ipynb b/sample_notebooks/srikanthgugloth/Chapter2.ipynb
new file mode 100755
index 00000000..d4e7a3ad
--- /dev/null
+++ b/sample_notebooks/srikanthgugloth/Chapter2.ipynb
@@ -0,0 +1,1124 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:e4425378c6999e9724676588b0097c2038f3833cd503390f3d7cf7bb3508521f"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter2-Introduction"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "##input from given graph\n",
+ "##calculation of initial accleration\n",
+ "ia=18/4.\n",
+ "## calculation of final accleration\n",
+ "fa=-18/10.\n",
+ "decel=-(fa)##calculation of deceleration\n",
+ "##calculation of total distance covered\n",
+ "d=0.5*(4.*18.)+(8.*18.)+0.5*(10.*18.)##area under velocity time graph\n",
+ "##output\n",
+ "print\"%s %.2f %s\"%(\"\\n the initial acceleration is \",ia,\" m/s^2\")\n",
+ "print\"%s %.2f %s\"%(\"\\n the final acceleration is \",decel,\" m/s^2\")\n",
+ "print\"%s %.2f %s\"%(\"\\n the distance covered is is \",d,\" m\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ " the initial acceleration is 4.50 m/s^2\n",
+ "\n",
+ " the final acceleration is 1.80 m/s^2\n",
+ "\n",
+ " the distance covered is is 270.00 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "##input\n",
+ "v=0. ##car stops => final velocity=0\n",
+ "u=29. ##initial velocity\n",
+ "t=11. ##time \n",
+ "##calculation of acceleration\n",
+ "a=(v-u)/t##eqn of uniformly accelerated body\n",
+ "##calculating distance travelled during this period\n",
+ "d=(v+u)*t*0.5##eqn of uniformly accelerated body\n",
+ "##output\n",
+ "print\"%s %.2f %s\"%(\"the accleration is \",a,\" ms^-2 \")\n",
+ "print\"%s %.2f %s\"%(\"\\nthe distance travelled is \",d,\" m\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the accleration is -2.64 ms^-2 \n",
+ "\n",
+ "the distance travelled is 159.50 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "##input\n",
+ "v=120. ##velocity\n",
+ "a=75 ##accleration\n",
+ "##ca.lculation of time\n",
+ "t=2.*v/(a*math.cos(45/57.3))##eqn of uniformly accelerated body\n",
+ "##output\n",
+ "print\"%s %.2f %s\"%(\"the time taken is \",t,\" s\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the time taken is 4.53 s\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg28"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "##input\n",
+ "f1=50.\n",
+ "f2=50.\n",
+ "##calculation of net force\n",
+ "f=f1+f2 ## the two forces act in same direction\n",
+ "##output\n",
+ "print\"%s %.2f %s\"%(\"the resultant force is \",f,\" N\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the resultant force is 100.00 N\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "##input\n",
+ "vc=25. ##velocity of car\n",
+ "va=10. ##velocity of wind\n",
+ "va1=15. ##velocity of wind westward\n",
+ "##calculation\n",
+ "v1=vc+va##resultant velocity for a tail of wind\n",
+ "v2=vc-va##when wind blows westward at 10 m/s^resultant velocity \n",
+ "v3=vc-va1##resultant velocity when wind blows westward at 15m/s^2\n",
+ "##output\n",
+ "print\"%s %.2f %s\"%(\"1. the resultant velocity of wind is \",v1,\" ms^-1 eastwards \")\n",
+ "print\"%s %.2f %s\"%(\"\\n2. the resultant velocity of wind is \",v2,\" ms^-1 westwards \")\n",
+ "print\"%s %.2f %s\"%(\"\\n3. the resultant velocity of wind is \",v3,\" ms^-1westwards \")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "1. the resultant velocity of wind is 35.00 ms^-1 eastwards \n",
+ "\n",
+ "2. the resultant velocity of wind is 15.00 ms^-1 westwards \n",
+ "\n",
+ "3. the resultant velocity of wind is 10.00 ms^-1westwards \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##input\n",
+ "v=30. ##velocity of speedboat\n",
+ "vw=40. ##velocity of wind\n",
+ "##calculation\n",
+ "x=(30./40.)##angle between original velocity of boat and resultant velocity\n",
+ "y=math.atan(x)*(57.3)##applying trigonometry\n",
+ "b=90.+y##bearing of boat\n",
+ "##output\n",
+ "print\"%s %.2f %s\"%(\"the bearing of speedboat is \",b,\" deg\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the bearing of speedboat is 126.87 deg\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8-pg32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#input\n",
+ "f1=6. ##tension on string AB\n",
+ "f2=6. ##tension on string BC\n",
+ "##calculation of tension\n",
+ "t=2.*f1*math.sin(55/57.3)## the resultant tension is the diagonal of rhombus formed\n",
+ "##output\n",
+ "print\"%s %.2f %s\"%(\"/n the resultant tension is \",t,\" N\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "/n the resultant tension is 9.83 N\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10-pg33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##input magnitude of forces\n",
+ "f1=40.\n",
+ "f2=50.\n",
+ "##calculation\n",
+ "d=50**2+40**2+2.*50.*40.*math.cos(50./57.3)##finding the diagonal\n",
+ "r=50**2+40**2+2.*50.*(40.)*math.cos(130./57.3)##reversing the side and finding diagonlprint\"%s %.2f %s\"%(\"the resultant is %3.3f\",d1)\n",
+ "r1=math.sqrt(r)##resultant sum\n",
+ "d1=math.sqrt(d)## resultant when smaller force is subtracted from larger\n",
+ "##output\n",
+ "print\"%s %.2f %s\"%(\"1. the resultant sum is \",d1,\" N\")\n",
+ "print\"%s %.2f %s\"%(\"\\n 2. the resultant when smaller force is subtracted from larger is \",r1,\" N\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "1. the resultant sum is 81.68 N\n",
+ "\n",
+ " 2. the resultant when smaller force is subtracted from larger is 39.11 N\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11-pg34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##input\n",
+ "v=380.##velocity\n",
+ "##calculation\n",
+ "vh=v*math.cos(60./57.3)##horizontal component\n",
+ "vv=v*math.sin(60./57.3)##vertical component\n",
+ "##output\n",
+ "print\"%s %.2f %s\"%(\"the horizontal component is \",vh,\" ms**-1\")\n",
+ "print\"%s %.2f %s\"%(\"\\nthe vertical component is \",vv,\" ms**-1\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the horizontal component is 190.03 ms**-1\n",
+ "\n",
+ "the vertical component is 329.07 ms**-1\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12-pg34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##input\n",
+ "fc=50.##force applied by magnet\n",
+ "x=90.-20. ##angle of force\n",
+ "##calculation\n",
+ "fb=fc*math.sin(70./57.3)##force due to b\n",
+ "fa=fc*math.cos(70./57.3)##force due to a\n",
+ "##output\n",
+ "print\"%s %.2f %s\"%(\"the force due to b is \",fb,\" N\")\n",
+ "print\"%s %.2f %s\"%(\"\\nthe force due to b is \",fa,\" N\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the force due to b is 46.98 N\n",
+ "\n",
+ "the force due to b is 17.11 N\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex13-pg35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##input\n",
+ "m1=1.\n",
+ "v1=25.\n",
+ "m2=2.\n",
+ "v2=0.\n",
+ "##calculation\n",
+ "v=(m1*v1)+(m2*v2)##applying princilpe of conservation of linear momentum\n",
+ "v4=v/(m1+m2)\n",
+ "##output\n",
+ "print\"%s %.2f %s\"%(\"the velocity with which both will move is \",v4,\" ms^-1\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the velocity with which both will move is 8.33 ms^-1\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex14-pg35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##input\n",
+ "m1=1.##mass of object 1\n",
+ "v1=25.##velocity of object 1\n",
+ "m2=2.##mass of object 2\n",
+ "v2=0.##body at rest,velocity =0\n",
+ "v3=10.\n",
+ "##caclulation\n",
+ "u=((m1*v1)+(m2*v2)-(m2*v3))/2.##applying princilpe of conservation of linear momentum\n",
+ "##output\n",
+ "print\"%s %.2f %s\"%(\"\\n the value of u is \",-u,\" ms^-1\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ " the value of u is -2.50 ms^-1\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex15-pg36"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##input\n",
+ "m=2.##mass\n",
+ "r=4.##radius\n",
+ "v=6.##uniform speed\n",
+ "##calculation\n",
+ "w=v/r##angular velocity\n",
+ "f=m*r*w*w##centripetal force\n",
+ "##output\n",
+ "print\"%s %.2f %s\"%(\"the angular velocity is \",w,\" rads^-1\")\n",
+ "print\"%s %.2f %s\"%(\"\\n the centripetal force is \",f,\" N\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the angular velocity is 1.50 rads^-1\n",
+ "\n",
+ " the centripetal force is 18.00 N\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex16-pg37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##input\n",
+ "m=140.##mass\n",
+ "v=8.##speed\n",
+ "r=5.##radius\n",
+ "g=9.8##acceleration due to gravity\n",
+ "##calculation\n",
+ "t=((m*v**2/5.)**2)+(140.*9.8)**2 ##applying parallelogram of vectors\n",
+ "t1=math.sqrt(t)\n",
+ "##output\n",
+ "print\"%s %.2f %s\"%(\"the tension in arm is \",t1,\" N\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the tension in arm is 2256.91 N\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex17-pg38"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##input\n",
+ "v=15.##velocity\n",
+ "m=70.##mass\n",
+ "r=50.##radius\n",
+ "##calculation\n",
+ "x=v*v/(r*10.)##applying parallelogram of vectors,then for equilibrium\n",
+ "y=math.atan(x)*57.3\n",
+ "r1=(m*10.)/math.cos(y/57.3)\n",
+ "##output\n",
+ "print\"%s %.2f %s\"%(\"the inclination is \",y,\" deg\")\n",
+ "print\"%s %.2f %s\"%(\"\\n the reaction is \",r1,\" N\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the inclination is 24.23 deg\n",
+ "\n",
+ " the reaction is 767.61 N\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex18-pg39"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##input\n",
+ "r=5500.##radius\n",
+ "g1=6.7*10**-11\n",
+ "g=7##acceleration due to gravity\n",
+ "##calculation of mean density\n",
+ "p=3.*g/(4.*math.pi*r*10**3*g1)##mean density\n",
+ "##output\n",
+ "print\"%s %.2f %s\"%(\"the mean density of planet is \",p,\" kgm^-3\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the mean density of planet is 4534.94 kgm^-3\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex19-pg40"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##input\n",
+ "m=5.*10**24##mass of earth\n",
+ "g1=6.7*10**-11\n",
+ "##calculation\n",
+ "r=((6.7*10**-11.*5.*10**24*(3600.*24.)**2)/(4.*math.pi**2))**(1./3.)##orbit radius\n",
+ "v=(2.*math.pi*r)/(3600.*24.)##linear velocity\n",
+ "##output\n",
+ "print\"%s %.2f %s\"%(\"the orbit radius is \",r,\"\")\n",
+ "print\"%s %.2f %s\"%(\"\\n the linear velocity is \",v,\" ms^-1\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the orbit radius is 39863080.05 \n",
+ "\n",
+ " the linear velocity is 2898.92 ms^-1\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex20-pg41"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##input\n",
+ "v=3.*10**5##orbit speed\n",
+ "r=4.6*10**20##distance\n",
+ "g1=6.7*10**-11\n",
+ "##calculation of mass\n",
+ "m=v*v*r/g1 ##Newtons law\n",
+ "##output\n",
+ "print\"%s %.2e %s\"%(\"the mass is \",m,\" kg\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the mass is 6.18e+41 kg\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex21-pg42"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##input\n",
+ "v=0.6##speed\n",
+ "m=0.3##mass\n",
+ "##calculation\n",
+ "e=0.75*m*v*v##total kinetic energy is kinetic energy+moment of inertia\n",
+ "##output\n",
+ "print\"%s %.2f %s\"%(\"the total kinetic energy is \",e,\" J\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the total kinetic energy is 0.08 J\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex22-pg43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##input\n",
+ "t1=34.\n",
+ "u=0.##starts from rest\n",
+ "x=3.##distance to move\n",
+ "##calculation\n",
+ "t=(3.*3./(10.*math.sin(t1)))**0.5##from law of conservation of energy\n",
+ "##output\n",
+ "print\"%s %.2f %s\"%(\"the time taken is \",t,\" s\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the time taken is 1.30 s\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex23-pg43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##input\n",
+ "i1=53.##inertia when it spins with panels carrying solar cells\n",
+ "i2=37.##inertia about axis of rotation\n",
+ "##calculation\n",
+ "r=i1/i2##law of conservation of angular momentum\n",
+ "##output\n",
+ "print\"%s %.2f %s\"%(\"the ratio of angular velocities is\",r,\"\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the ratio of angular velocities is 1.43 \n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex25-pg45"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##input\n",
+ "f=9.##frequency\n",
+ "x=0.##at midpoint of stroke x=0\n",
+ "##calculation\n",
+ "t=1./f\n",
+ "a=-4.*math.pi**2*f**2*x##acceleration for shm\n",
+ "v=2.*math.pi*f*0.05##velocity for shm\n",
+ "a1=-4.*math.pi**2*9**2*0.05##acceleration at amplitude\n",
+ "v1=0.##velocity at amplitude is 0\n",
+ "##output\n",
+ "print\"%s %.2f %s\"%(\"the period of oscillation is \",t,\" s^-1\")\n",
+ "print\"%s %.2f %s\"%(\"\\n the velocity at midpoint of stroke is \",v,\" ms^-1\")\n",
+ "print\"%s %.2f %s\"%(\"\\n the acceleration at midpoint of stroke is \",a,\" ms^-2\")\n",
+ "\n",
+ "print\"%s %.2f %s\"%(\"\\n the velocity at amplitude is \",v1,\" ms^-1\")\n",
+ "print\"%s %.2f %s\"%(\"\\n the acceleration at amplitude is \",a1,\" ms^-2\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the period of oscillation is 0.11 s^-1\n",
+ "\n",
+ " the velocity at midpoint of stroke is 2.83 ms^-1\n",
+ "\n",
+ " the acceleration at midpoint of stroke is -0.00 ms^-2\n",
+ "\n",
+ " the velocity at amplitude is 0.00 ms^-1\n",
+ "\n",
+ " the acceleration at amplitude is -159.89 ms^-2\n"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex26-pg47"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##input\n",
+ "g=10.\n",
+ "t=0.3##period of shm\n",
+ "##calculation\n",
+ "x=g*t**2/(4.*math.pi**2)##for shm maximum amplitude\n",
+ "##output\n",
+ "print\"%s %.2f %s\"%(\"the maximum amplitude for bead to be in contact is \",x,\" m\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the maximum amplitude for bead to be in contact is 0.02 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex27-pg48"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##input\n",
+ "p1=2.3##period of pendulum\n",
+ "p2=3.1##period when pendulum is lengthened\n",
+ "##calculation\n",
+ "g=4.*math.pi**2/(p2**2-p1**2)##acceleration of free fall\n",
+ "l=p1**2*g/(4.*math.pi**2)##length of pendulum\n",
+ "##output\n",
+ "print\"%s %.2f %s\"%(\"the acceleration of free fall is \",g,\" m/s^2\")\n",
+ "print\"%s %.2f %s\"%(\"\\n the length of pendulum is \",l,\" m\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the acceleration of free fall is 9.14 m/s^2\n",
+ "\n",
+ " the length of pendulum is 1.22 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex28-pg49"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##INPUT DATA\n",
+ "f=55. ##frequency\n",
+ "a=7.*10**-3 ##amplitude\n",
+ "\n",
+ "\n",
+ "##calculation\n",
+ "a=(-2.*math.pi*f)**2*a\n",
+ "\n",
+ "##output\n",
+ "print\"%s %.2f %s\"%(\"the acceleration of the body when it is at its maximum displacement from its zero position is \",a,\" ms^-2\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the acceleration of the body when it is at its maximum displacement from its zero position is 835.96 ms^-2\n"
+ ]
+ }
+ ],
+ "prompt_number": 25
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex29-pg50"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##input\n",
+ "f=55.##frequency\n",
+ "amp=7.*10**-3##amplitude\n",
+ "m=1.2##mass\n",
+ "##calculation\n",
+ "e=0.5*m*4.*math.pi**2*f**2*amp**2##maximum pe occurs at zero position\n",
+ "##output\n",
+ "print\"%s %.2f %s\"%(\"the maximum pe is \",e,\" J\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the maximum pe is 3.51 J\n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex30-pg51"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##input\n",
+ "l=6.5##length\n",
+ "m=0.06##mass of wire\n",
+ "m1=10##mass attached\n",
+ "g=9.8##acceleration due to gravity\n",
+ "e=2.1*10**11##youngs modulus\n",
+ "ro=8.*10**3##density of steel\n",
+ "##calculation\n",
+ "e1=m1*g*ro*l*l/(e*m)##extension caused \n",
+ "pe=0.5*g*m1*e1##potential energy \n",
+ "##output\n",
+ "print\"%s %.2e %s\"%(\"the extension caused is \",e1,\" m\")\n",
+ "print\"%s %.2f %s\"%(\"\\n the potential energy is \",pe,\" J\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the extension caused is 2.63e-03 m\n",
+ "\n",
+ " the potential energy is 0.13 J\n"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex31-pg52"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##input\n",
+ "w=250.*10**3\n",
+ "s=0.00003##strain\n",
+ "a=0.04##area\n",
+ "w1=320.*10**3\n",
+ "##calculation\n",
+ "e=w/(a*s)##youngs module\n",
+ "st=w1/a##stress\n",
+ "##output\n",
+ "print\"%s %.2f %s\"%(\"the youngs modulus is \",e,\" N/m^2\")\n",
+ "print\"%s %.2f %s\"%(\"\\n the stress is \",st,\" N/m^2\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the youngs modulus is 208333333333.33 N/m^2\n",
+ "\n",
+ " the stress is 8000000.00 N/m^2\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex32-pg53"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##input\n",
+ "m=40.##mass\n",
+ "g=9.8##acceleration due to gravity\n",
+ "E=2*10**11##youngs modulus\n",
+ "##calculation\n",
+ "t1=m*g/5.##principle of momentum\n",
+ "t2=4*m*g/5. ##principle of momentum\n",
+ "d=4.*(t2-t1)/(4.*math.pi*10**-6*E)##difference in length\n",
+ "##output\n",
+ "print\"%s %.2e %s\"%(\"the difference is \",d,\" m\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the difference is 3.74e-04 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 29
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file