diff options
Diffstat (limited to 'sample_notebooks/nishumittal/chapter2_1.ipynb')
-rwxr-xr-x | sample_notebooks/nishumittal/chapter2_1.ipynb | 306 |
1 files changed, 306 insertions, 0 deletions
diff --git a/sample_notebooks/nishumittal/chapter2_1.ipynb b/sample_notebooks/nishumittal/chapter2_1.ipynb new file mode 100755 index 00000000..cacd8a20 --- /dev/null +++ b/sample_notebooks/nishumittal/chapter2_1.ipynb @@ -0,0 +1,306 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:d284e33c3a44645a717587479459459fbad97c0b83247c27d3e8959966515278"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 2 Transport Phenomena in semiconductors"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.1 Page no 22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "n=10**20\n",
+ "q=1.6*10**-19\n",
+ "u=800\n",
+ "e=1\n",
+ "\n",
+ "#Calculation\n",
+ "J=n*q*u*e\n",
+ "\n",
+ "#Result\n",
+ "print\"Electron current density is \",J*10**-4,\"*10**4 A/cm**2\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Electron current density is 1.28 *10**4 A/cm**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2 Page no 27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "Nd=10**12 #/cm**3\n",
+ "ni=10**10 #/cm**3\n",
+ "Nd1=10**18\n",
+ "\n",
+ "#Calculation\n",
+ "import math\n",
+ "n=Nd+math.sqrt(Nd+4*(ni**2))/2.0\n",
+ "n1=Nd1+math.sqrt(Nd1+4*(ni**2))/2.0\n",
+ "\n",
+ "#Result\n",
+ "print\"(a) free electron at 10**12 is \", round(n*10**-12,2),\"*10**12 /cm**3\",\"and hole density is p=9.999*10**7 /cm**3\"\n",
+ "print\"(b) free electron at 10**18 is \",round(n1*10**-18,2),\"*10**18 /cm**3\",\"and hole density is p=10**2 /cm**3\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a) free electron at 10**12 is 1.01 *10**12 /cm**3 and hole density is p=9.999*10**7 /cm**3\n",
+ "(b) free electron at 10**18 is 1.0 *10**18 /cm**3 and hole density is p=10**2 /cm**3\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.3 Page no 29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "K=6.02*10**23 #atoms/mole\n",
+ "b=72.6 #g\n",
+ "c=5.32 #g/cm**3\n",
+ "n=2.5*10**13 #cm**3\n",
+ "q=1.60*10**-19 #C\n",
+ "un=3800 #cm**2/V-s\n",
+ "up=1800 #cm**2/V-s\n",
+ "ni=2.5*10**13\n",
+ "Nd=4.41*10**14\n",
+ "x=1.60*10**-19\n",
+ "n1=4.41*10**22 #electron/cm**3\n",
+ "\n",
+ "#Calculation\n",
+ "C=K*(1/b)*c\n",
+ "A=n*q*(un+up)\n",
+ "R=1/A\n",
+ "p=ni**2/Nd\n",
+ "A1=Nd*x*un\n",
+ "R1=1/A1\n",
+ "A2=n1*x*un\n",
+ "X=A2/A1\n",
+ "\n",
+ "#Result\n",
+ "print\"(a) Concentration of atoms in germanium is \", round(C*10**-22,2) *10**22,\"atoms/cm**3\"\n",
+ "print\"(b) resistivity of intrinsic germanium at 300 degree K is \", round(R,1),\"ohm-cm\"\n",
+ "print\"(c) Resistivity is \", round(R1,2),\"ohm-cm\"\n",
+ "print\"(d) Ratio of conductivity is \",X"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a) Concentration of atoms in germanium is 4.41e+22 atoms/cm**3\n",
+ "(b) resistivity of intrinsic germanium at 300 degree K 44.6 ohm-cm\n",
+ "(c) Resistivity is 3.73 ohm-cm\n",
+ "(d) Ratio of conductivity is 100000000.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 53
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.5 Page no 35 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "g=5*10**21\n",
+ "t=2*10**-6 #/cm**3\n",
+ "\n",
+ "#Calculation\n",
+ "p=g*t\n",
+ "\n",
+ "#Result\n",
+ "print\"Hole density in the semiconductor is \", p,\"/cm**3\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Hole density in the semiconductor is 1e+16 /cm**3\n"
+ ]
+ }
+ ],
+ "prompt_number": 56
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.7 Page no 40"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "un=1200 #cm**2/V-s\n",
+ "n0=10.0**18 #/cm**3\n",
+ "ni=10**10 #/cm**3\n",
+ "up=500 #cm**2/V-s\n",
+ "t=2*10**-6 #S\n",
+ "K=5*10**15 #/cm**3\n",
+ "K1=8.620*10**-5 #eV/degree K\n",
+ "q=1.602*10**-19 #C\n",
+ "T=50\n",
+ "Lp=51.0*10**-4\n",
+ "p0=100\n",
+ "Dn=31.2\n",
+ "x=0\n",
+ "\n",
+ "#Calculation\n",
+ "import math\n",
+ "p0=ni**2/n0\n",
+ "Dp=(((K1*T)/q)*up)*10**-18\n",
+ "Jp=((q*Dp)/Lp)*(K-p0)*math.exp(x/Lp)\n",
+ "Lp=math.sqrt(Dp*t)\n",
+ "Jn=-((Dn/Dp)*Jp)*math.exp(x/Lp)\n",
+ "Jn1=((Dn/Dp-1)*Jp)*math.exp(x/Lp)\n",
+ "Jp1=((K*up)/(n0*un))*(Dn/Dp-1)*Jp\n",
+ "\n",
+ "#Result\n",
+ "print\"The drift current density for holes is \", round(Jp1,4),\"exp(-x/Lp)\",\"A/cm**2\"\n",
+ "print\"The diffusion current density for holes is \",round(Jp,2),\"exp(-x/Lp)\",\"A/cm**2\"\n",
+ "print\"The diffusion current density for electrons is \",round(Jn,2),\"exp(-x/Lp)\",\"A/cm**2\"\n",
+ "print\"The drift current density for electrons is \",round(Jn1,2),\"exp(-x/Lp)\",\"A/cm**2\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The drift current density for holes is 0.0058 exp(-x/Lp) A/cm**2\n",
+ "The diffusion current density for holes is 2.11 exp(-x/Lp) A/cm**2\n",
+ "The diffusion current density for electrons is -4.9 exp(-x/Lp) A/cm**2\n",
+ "The drift current density for electrons is 2.79 exp(-x/Lp) A/cm**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 37
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.8 Page no 41"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "ni=1.5*10**10 #/cm**3\n",
+ "Nd=10**18 #/cm**3\n",
+ "Na=10**14\n",
+ "Vt=2.4*10**18\n",
+ "Na1=10**15\n",
+ "Na2=10**16\n",
+ "Na3=10**17\n",
+ "Na4=10**18\n",
+ "Na5=10**19\n",
+ "\n",
+ "#Calculation\n",
+ "import math\n",
+ "V0=Vt*(math.log(Na*Nd)/ni**2)\n",
+ "V01=Vt*(math.log(Na1*Nd)/ni**2)\n",
+ "V02=Vt*(math.log(Na2*Nd)/ni**2)\n",
+ "V03=Vt*(math.log(Na3*Nd)/ni**2)\n",
+ "V04=Vt*(math.log(Na4*Nd)/ni**2)\n",
+ "V05=Vt*(math.log(Na5*Nd)/ni**2)\n",
+ "\n",
+ "#Result\n",
+ "print\"Contact potential across the junction is \"\n",
+ "print round(V0,2),\"\\n\", round(V01,2),\"\\n\" ,round(V02,2),\"\\n\" ,round(V03,2),\"\\n\",round(V04,1),\"\\n\",round(V05,0)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Contact potential across the junction is \n",
+ "0.79 \n",
+ "0.81 \n",
+ "0.84 \n",
+ "0.86 \n",
+ "0.9 \n",
+ "1.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 31
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file |