diff options
Diffstat (limited to 'sample_notebooks/makarala shamukha venkatasahithi/Chapter_2_Nuclear_Sturcture_and.ipynb')
-rwxr-xr-x | sample_notebooks/makarala shamukha venkatasahithi/Chapter_2_Nuclear_Sturcture_and.ipynb | 234 |
1 files changed, 234 insertions, 0 deletions
diff --git a/sample_notebooks/makarala shamukha venkatasahithi/Chapter_2_Nuclear_Sturcture_and.ipynb b/sample_notebooks/makarala shamukha venkatasahithi/Chapter_2_Nuclear_Sturcture_and.ipynb new file mode 100755 index 00000000..505cf999 --- /dev/null +++ b/sample_notebooks/makarala shamukha venkatasahithi/Chapter_2_Nuclear_Sturcture_and.ipynb @@ -0,0 +1,234 @@ +{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2 Nuclear Sturcture and Radioactivity"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2_1 pgno:25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Half life of radioactive nuclide=t1/2=minutes 14.7674928978\n",
+ "\n",
+ "Time required for the activity to decrease to 25percent of the initial activity=t1=minutes 68.0335182976\n",
+ "\n",
+ "Time required for the activity to decrease to 10percent of the initial activity=t2=minutes 113.001227913\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import log\n",
+ "N0=3396.;#no. of counts per minute given by radioactive nuclide at a given time#\n",
+ "N=1000.;#no. of counts per minute given by radioactive nuclide one hour later#\n",
+ "thalf=0.693*60/(2.303*log(N0/N));#half life of nuclide in minutes#\n",
+ "print'Half life of radioactive nuclide=t1/2=minutes',thalf\n",
+ "t1=2.303*log(100/25)*thalf/0.693;#time required for the activity to decrease to 25% of the initial activity in minutes#\n",
+ "print'\\nTime required for the activity to decrease to 25percent of the initial activity=t1=minutes',t1\n",
+ "t2=2.303*log(100/10)*thalf/0.693;#time required for the activity to decrease to 10% of the initial activity in minutes#\n",
+ "print'\\nTime required for the activity to decrease to 10percent of the initial activity=t2=minutes',t2\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2_2 pgno:27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Half life of 226Ra molecule=t1/2=years 1584.62090409\n"
+ ]
+ }
+ ],
+ "source": [
+ "R=3.7*10**10;#no. of alpha particles per second emitted by 1g of 226Ra#\n",
+ "N=(6.023*10**23)/226;#no. of atoms of 226Ra#\n",
+ "yr=3.15*10**7;#no of seconds in a year#\n",
+ "thalf=0.693*N/(R*yr);#half life of 226Ra in years#\n",
+ "print'Half life of 226Ra molecule=t1/2=years',thalf#here the answer written in textbook is wrongly printed actual answer will be the one we are getting here#\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2_3 pgno:29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Weight of 1 Ci of 24Na=w=micrograms=1.13*10**-7grams 0.113352495089\n"
+ ]
+ }
+ ],
+ "source": [
+ "thalf=14.8*60*60;#half life of 24Na atom in seconds#\n",
+ "L=6.023*10**23;#Avagadro number#\n",
+ "v=3.7*10**10;#1 Ci of radioactivity in disintegrations per second#\n",
+ "w=(24*10**6*v*thalf)/(0.693*L);#weight of 1 Ci of 24Na in grams#\n",
+ "print'Weight of 1 Ci of 24Na=w=micrograms=1.13*10**-7grams',w\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2_4 pgno:30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "dM value of H atom=dM=amu 0.00239\n",
+ "\n",
+ "Binding energy of H atom=BE=MeV 2.22509\n"
+ ]
+ }
+ ],
+ "source": [
+ "Mp=1.00728;#mass of proton in amu#\n",
+ "Mn=1.00866;#mass of neutronin amu#\n",
+ "MH=2.01355;#isotopic mass of H atom in amu#\n",
+ "dM=((1*Mp)+(1*Mn)-MH);#dM value of H atom in amu#\n",
+ "print'dM value of H atom=dM=amu',dM\n",
+ "BE=dM*931;#binding energy of H atom in MeV#\n",
+ "print'\\nBinding energy of H atom=BE=MeV',BE\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2_5 pgno:32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Age of the specimen=t=%fyears 36120.0499843\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import log\n",
+ "N0=15.3;#decay rate of Contemporary Carbon in disintegrations/min/gram#\n",
+ "N=2.25;#decay rate of 14C specimen in disintegrtions/min/gram#\n",
+ "thalf=5670.;#half life of nuclide in years#\n",
+ "t=2.303*log(N0/N)*thalf/0.693;#Age of the specimen in years#\n",
+ "print'Age of the specimen=t=years',t#here the answer given in textbook is actually wrong we get twice that of the answer which is shown through execution#\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2_6 pgno:33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Here N0 and N must be in terms of Uranium.N is proportional to 1gram og Uranium\n",
+ "\n",
+ "N0 can be calculated from the given data.0.0453grams of 206Pb corresponds to 238*0.0453/206=0.0523grams of 238U,i.e 0.0453 grams of 206Pb must have been formed by the decaying of 0.523grams of 238U.\n",
+ "Since N is proportional to 1,N0 is proportional to 1.0523.\n",
+ "\n",
+ "Age of the mineral=t=years=7.62*10**8years 762356478.526\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import log\n",
+ "thalf=4.5*10**9;#half life of Uranium in years#\n",
+ "print'Here N0 and N must be in terms of Uranium.N is proportional to 1gram og Uranium'\n",
+ "print'\\nN0 can be calculated from the given data.0.0453grams of 206Pb corresponds to 238*0.0453/206=0.0523grams of 238U,i.e 0.0453 grams of 206Pb must have been formed by the decaying of 0.523grams of 238U.\\nSince N is proportional to 1,N0 is proportional to 1.0523.'\n",
+ "N0=1.0523;\n",
+ "N=1;\n",
+ "t=2.303*log(N0/N)*thalf/0.693;#Age of the mineral in years#\n",
+ "print'\\nAge of the mineral=t=years=7.62*10**8years',t#here also the answer given in textbook is wrong the one resulted through execution is the right one#\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
|