summaryrefslogtreecommitdiff
path: root/sample_notebooks/harikagunturu/harikagunturu_version_backup/Chapter_4.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'sample_notebooks/harikagunturu/harikagunturu_version_backup/Chapter_4.ipynb')
-rwxr-xr-xsample_notebooks/harikagunturu/harikagunturu_version_backup/Chapter_4.ipynb666
1 files changed, 666 insertions, 0 deletions
diff --git a/sample_notebooks/harikagunturu/harikagunturu_version_backup/Chapter_4.ipynb b/sample_notebooks/harikagunturu/harikagunturu_version_backup/Chapter_4.ipynb
new file mode 100755
index 00000000..de7d514c
--- /dev/null
+++ b/sample_notebooks/harikagunturu/harikagunturu_version_backup/Chapter_4.ipynb
@@ -0,0 +1,666 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4 Angle Modulation"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 4.1.A page.no: 286"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "12000 the new deviation( in Hz)\n"
+ ]
+ }
+ ],
+ "source": [
+ "Freq_dev=6; #Frequency Deviation in kHz\n",
+ "Vm=3; #Modulating Voltage in V\n",
+ "Dev=Freq_dev*10**3/Vm; \n",
+ "# for Vm=6V\n",
+ "Vm=6;\n",
+ "Freq_dev_new=Dev*Vm;\n",
+ "print Freq_dev_new,\"the new deviation( in Hz)\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 4.1 page.no: 287"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Instantaneous Frequency(in Hz) at (t=0.4 ms)N = 100290.574948\n",
+ "Maximum Phase Deviation (in rad) = 3\n",
+ "MAximum Frequency Deiation (in Hz)= 300.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import pi,cos\n",
+ "\n",
+ "t1=0.4;# time in ms\n",
+ "Ang_Freq =2*pi*10**5 +3*2*pi*100*cos(2*pi*100*(t1*10**(-3)));\n",
+ "Freq=Ang_Freq/(2*pi);\n",
+ "#change in answer due to calculation error in book\n",
+ "print \"Instantaneous Frequency(in Hz) at (t=0.4 ms)N = \",Freq\n",
+ "Max_pha_Dev=3; #max(3sin(2∗pi∗100t))\n",
+ "print \"Maximum Phase Deviation (in rad) = \",Max_pha_Dev\n",
+ "Max_fre_Dev=6*pi*100; #max(6∗pi∗100∗cos(2∗pi∗100t))\n",
+ "print \"MAximum Frequency Deiation (in Hz)= \",Max_fre_Dev/(2*pi)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 4.2.A page.no: 287"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Power Dissipated (in W) is 9.375\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import pi,sqrt\n",
+ "\n",
+ "Wc=8*10**(8);# Angular Frequency of Carrier Signal\n",
+ "fc=Wc/(2*pi);\n",
+ "Wm=1300;#Angular Frequency of Message Signal\n",
+ "fm=Wm/(2*pi);\n",
+ "B=3;#Modulation Index\n",
+ "R=12;\n",
+ "Vc_rms=15/sqrt(2);\n",
+ "Max_dev=B*fm;\n",
+ "Power=Vc_rms**(2)/R;\n",
+ "print \"Power Dissipated (in W) is \",Power"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 4.2 page.no: 287"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Peak Frequency Deviation(in Hz) is 12000\n",
+ "modulation index 8.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "a=3;#amplitude in volts\n",
+ "Dev_sen=4;# deviation sensitivity in KHz/volts\n",
+ "fm=1.5;# frequency modulating signal in KHz\n",
+ "f=Dev_sen*10**(3)*3;#peak frequency deviation\n",
+ "B=f/(fm*10**3);\n",
+ "print \"Peak Frequency Deviation(in Hz) is \",f\n",
+ "print \"modulation index \",B"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 4.3.A page.no: 289"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The Bandwidth (in Hz) is 72000\n"
+ ]
+ }
+ ],
+ "source": [
+ "fm=3; #Modulating Frequency in kHZ\n",
+ "Max_Dev=18; #MAximum Deviation in kHz\n",
+ "B=Max_Dev/fm; # modulation index 7\n",
+ "J=12;#from Bessel Table , for B=6\n",
+ "Bw=fm*J*2*10**(3);\n",
+ "print \"The Bandwidth (in Hz) is \",Bw"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 4.3 page.no: 289"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Peak Phase Deviation( in rad) 8.75\n"
+ ]
+ }
+ ],
+ "source": [
+ "Dev_sen=3.5 # Deviation Sensitivity in rad/volt\n",
+ "a=2.5; #amplitude in volts\n",
+ "B=a*Dev_sen; # Peak Phase Deviation\n",
+ "print \"Peak Phase Deviation( in rad) \",B"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 4.4.A page.no: 290"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Maximum Frequency Deviation (in Hz) is 18000\n",
+ "Modulation Index is 5.99985864877\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import pi\n",
+ "\n",
+ "Wm=18850;#Angular Frequency of message signal\n",
+ "fm=Wm/(2*pi);\n",
+ "a=3;# amplitude of message signal\n",
+ "Dev_sen=6;#Deviation Sensitivity in kHz/V\n",
+ "Max_Freq_Dev=a*Dev_sen*10**(3);\n",
+ "B=Max_Freq_Dev/(fm);\n",
+ "print \"Maximum Frequency Deviation (in Hz) is \",Max_Freq_Dev\n",
+ "print \"Modulation Index is \",B"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 4.4 page.no: 291"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Deviation Sensitivity(in kHz/V) 1333\n",
+ "Modulation Index is 4\n",
+ "Deviation Sensitivity for 5V (in Hz) 6665\n",
+ "Modulation index 6\n",
+ "Deviation Sensitivity for 10V (in Hz) 13330\n",
+ "Modulation index is 33\n"
+ ]
+ }
+ ],
+ "source": [
+ "a=3; #amplitude in Volts\n",
+ "Dev=4;# Deviation in kHz\n",
+ "fm=1;# modulating frequency in kHz\n",
+ "Dev_sen=Dev*10**(3)/a; #Deviation Sensitivity\n",
+ "B=Dev/fm; # Modulation Index\n",
+ "print \"Deviation Sensitivity(in kHz/V) \",Dev_sen\n",
+ "print \"Modulation Index is \",B\n",
+ "#a)\n",
+ "a=5;\n",
+ "Dev_sen_1=a*Dev_sen;\n",
+ "B=Dev_sen_1/(fm*10**(3));\n",
+ "print \"Deviation Sensitivity for 5V (in Hz) \",Dev_sen_1\n",
+ "print \"Modulation index\",B\n",
+ "#b)\n",
+ "a=10;\n",
+ "fm=400;\n",
+ "Dev_sen_2=a*Dev_sen;\n",
+ "B=Dev_sen_2/fm;\n",
+ "print \"Deviation Sensitivity for 10V (in Hz) \",Dev_sen_2\n",
+ "print \"Modulation index is \",B"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 4.5.A page.no: 291"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "for B=2, The number of significant frequencies are 6\n",
+ "They are J1,J2,J3,J4,J5 and J6\n",
+ "Their amplitudes with carriers are \n",
+ "they are (in V) 1.792 4.616 2.824 1.032 0.272 0.056 0.008\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"for B=2, The number of significant frequencies are 6\"\n",
+ "print \"They are J1,J2,J3,J4,J5 and J6\"\n",
+ "print \"Their amplitudes with carriers are \"\n",
+ "J0= 0.224*8;\n",
+ "J1= 0.577*8;\n",
+ "J2= 0.353*8;\n",
+ "J3= 0.129*8;\n",
+ "J4= 0.034*8;\n",
+ "J5= 0.007*8;\n",
+ "J6= 0.001*8;\n",
+ "print\"they are (in V)\",J0,J1,J2,J3,J4,J5,J6"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 4.5 page.no: 292"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Bandwidth required (in Hz) 24000\n",
+ "According to Carsons rule , Bandwidth (in Hz) 36000\n"
+ ]
+ }
+ ],
+ "source": [
+ "fm=3; #Modulating Frequency in kHZ\n",
+ "Max_dev=15;# Maximum Deviatin in kHZ\n",
+ "B=Max_dev/fm; \n",
+ "J=8; # Bessel table , the highest J coefficient\n",
+ "BW=J*fm*10**(3);#Bandwidth in kHz\n",
+ "BW1=2*(fm+Max_dev)*10**(3);# According to carson rule , BAndwidth\n",
+ "print \"Bandwidth required (in Hz) \",BW\n",
+ "print \"According to Carsons rule , Bandwidth (in Hz) \",BW1"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 4.6.A page.no: 292"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Minimum Bandwidth (in Hz) is 72000\n",
+ "Approximate Minimum Bandwidth is 36000\n"
+ ]
+ }
+ ],
+ "source": [
+ "Max_Freq_Dev=12; #Maximum Frequency Deviation in kHZ\n",
+ "fm=6; #Modulating frquency in kHz\n",
+ "B=Max_Freq_Dev/fm;# Modulation index 7\n",
+ "J=6;#From Bessel Table , for B=2\n",
+ "Bw=2*J*6*10**(3);\n",
+ "BW_carson=2*(fm + Max_Freq_Dev)*10**(3);\n",
+ "print \"Minimum Bandwidth (in Hz) is \",Bw\n",
+ "print \"Approximate Minimum Bandwidth is \",BW_carson"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 4.6.A page.no: 283"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "For B=5 from the Bessel table ,The Bessel Function is taken upto J9\n",
+ "Hence the average power of the modulated signal (in W) is 9.936\n",
+ "Hence, the average power of the modulated signal is equal to \n",
+ "unmodulated carrier power\n"
+ ]
+ }
+ ],
+ "source": [
+ "a=10; #Amplitude in V\n",
+ "Pt=a*(0.18**2 +2*(0.33**2+0.05**2+0.36**2+0.39**2+0.26**2+0.13**2+0.05**2+0.02**2+0.01**2))\n",
+ "print \"For B=5 from the Bessel table ,The Bessel Function is taken upto J9\"\n",
+ "print \"Hence the average power of the modulated signal (in W) is \",Pt\n",
+ "print \"Hence, the average power of the modulated signal is equal to \"\n",
+ "print \"unmodulated carrier power\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 4.7.A page.no: 294"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Unmodulated Power Carrier ( in W) = 1\n",
+ "Total Power in modulated wave(in W)= 1.06767573333\n",
+ "Power in the modulated wave is equal to \n",
+ "power in the unmodulated wave \n"
+ ]
+ }
+ ],
+ "source": [
+ "a=8;# amplitude in V\n",
+ "r=30; # resistance in ohms\n",
+ "Pc_unmodulated=a**2/(2*r);\n",
+ "Pt=1.792**2/(2*30)+2*(4.616)**2/(2*30)+2*(2.824**2)/(2*30) +2*(1.032) **2/(2*30) +2*(0.272) **2/(2*30) +2*(0.056)**2/(2*30)+2*(0.008)**2/(2*30);\n",
+ "# change in answer due to approximations in the book\n",
+ "print \"Unmodulated Power Carrier ( in W) = \",Pc_unmodulated\n",
+ "print \"Total Power in modulated wave(in W)= \",Pt\n",
+ "print \"Power in the modulated wave is equal to \"\n",
+ "print \"power in the unmodulated wave \" \n",
+ "#\"Small error due to rounded off values in Bessel functions\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 4.7 page.no: 295"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "the Phase Modulation Function = 12.0*sin(3000.0*pi*t)\n",
+ "The Modulated Wave Function = 12.0*sin(3000.0*pi*t) + 8*cos(20000*pi*t)\n"
+ ]
+ }
+ ],
+ "source": [
+ "from sympy import symbols,sin,cos\n",
+ "\n",
+ "t,pi=symbols('t,pi') \n",
+ "Pha_dev=3.; #Phase Deviation constant in rad/V 6\n",
+ "# Phase Modulation Function\n",
+ "Pha_function=Pha_dev*4*sin(2.*pi*1.5*10**3*t);\n",
+ "Mod_wave=8*cos(2*pi*10**4*t)+Pha_function\n",
+ "print \"the Phase Modulation Function = \",Pha_function\n",
+ "print \"The Modulated Wave Function = \",Mod_wave"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 4.8 page.no: 295"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The outputs of the balanced modulator for these parameters\n",
+ "are same as the inputs \n",
+ "They remain unaltered \n",
+ "At the output of the Multiplier , \n",
+ "Fc(in kHz)= 9600 , Fm(in kHz)= 10 , B= 6.0\n",
+ "Frequency Deviation ( in kHz)= 60\n"
+ ]
+ }
+ ],
+ "source": [
+ "initial_Freq_Dev=5; # frequency in kHz\n",
+ "B_initial=0.5; #modulation index\n",
+ "fm_initial=10;# message signal frequency in kHz\n",
+ "fc_initial=800; # carrier frequency in kHz\n",
+ "print \"The outputs of the balanced modulator for these parameters\"\n",
+ "print \"are same as the inputs \"\n",
+ "print \"They remain unaltered \"\n",
+ "#at the output of the multiplier 14\n",
+ "m=12;# multiplication factor\n",
+ "final_Freq_Dev=initial_Freq_Dev*m;\n",
+ "B_final=0.5*m;\n",
+ "fm_final=10; #modulating signal remains unaltered\n",
+ "fc_final=800*m;\n",
+ "print \"At the output of the Multiplier , \"\n",
+ "print \"Fc(in kHz)= \",fc_final,\", Fm(in kHz)= \",fm_final,\", B= \",B_final\n",
+ "print \"Frequency Deviation ( in kHz)= \",final_Freq_Dev"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 4.9.A page.no: 296"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "a) MAster Oscillator Centre Frequency(in MHz) = 4.008\n",
+ "b) Frequency Deviation at the output of modulator(in KHz)= 2.4\n",
+ "c)Devaition ratio at the output of modulator 0.24\n",
+ "d)deviation ratio at power amplifier 6.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "ft=100.2; #final carrier frequency in MHz\n",
+ "Freq_Dev_ft=60.;# Frequency Deviation in KHz at power amplifier\n",
+ "fm=10.;#modulating frequency in KHz\n",
+ "m=25.;#multiplication factor\n",
+ "#a)\n",
+ "fc=ft/25.;\n",
+ "#b)\n",
+ "Freq_Dev=Freq_Dev_ft/25;\n",
+ "#c)\n",
+ "B=Freq_Dev/fm;\n",
+ "#d)\n",
+ "Bt=B*m;\n",
+ "print \"a) MAster Oscillator Centre Frequency(in MHz) = \",fc\n",
+ "print \"b) Frequency Deviation at the output of modulator(in KHz)= \",Freq_Dev\n",
+ "print \"c)Devaition ratio at the output of modulator \",B\n",
+ "print \"d)deviation ratio at power amplifier\",Bt"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 4.10.A page.no: 297"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "a) Frequency Deviation(in Hz)= 5954.92965855\n",
+ "b) Devaition Ratio= 5.95492965855\n",
+ "c) Phase Deviation( in rad)= 8\n",
+ "d) Bandwidth( in Hz)= 13909.8593171\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import pi\n",
+ "\n",
+ "#f(t)=5cos(Wc∗t+3sin(2000∗t)+5sin(2000∗pi∗t)) 5\n",
+ "fm=2000*pi/(2*pi); #bandwidth is the highest frequency component\n",
+ "#a) \n",
+ "Freq_dev=(6000+10000*pi)/(2*pi); 11\n",
+ "#b)\n",
+ "B=Freq_dev/fm; \n",
+ "#c)\n",
+ "Phase_dev=8;#Highest value of[3sin(2000t)+5sin(2000∗ pi∗t)]\n",
+ "#d)\n",
+ "Bw= 2*(fm+Freq_dev);\n",
+ "print \"a) Frequency Deviation(in Hz)= \",Freq_dev\n",
+ "print \"b) Devaition Ratio= \",B\n",
+ "print \"c) Phase Deviation( in rad)= \",Phase_dev\n",
+ "print \"d) Bandwidth( in Hz)= \",Bw"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.10"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}