summaryrefslogtreecommitdiff
path: root/sample_notebooks/ajinkyakhair
diff options
context:
space:
mode:
Diffstat (limited to 'sample_notebooks/ajinkyakhair')
-rw-r--r--sample_notebooks/ajinkyakhair/chapter2_8f8MyfH.ipynb337
1 files changed, 337 insertions, 0 deletions
diff --git a/sample_notebooks/ajinkyakhair/chapter2_8f8MyfH.ipynb b/sample_notebooks/ajinkyakhair/chapter2_8f8MyfH.ipynb
new file mode 100644
index 00000000..5bd122ad
--- /dev/null
+++ b/sample_notebooks/ajinkyakhair/chapter2_8f8MyfH.ipynb
@@ -0,0 +1,337 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:74a00fabf3de3a229499fd336c46d9a546ea42ad7cb4fbe98a92a6ea72f21fa8"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 2: Bonding in Solids"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.1,Page number 62"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Given Data\n",
+ "epsilon_0 = 8.854*10**-12; # Absolute electrical permittivity of free space, F/m\n",
+ "e = 1.6*10**-19; # Energy equivalent of 1 eV, eV/J\n",
+ "r = 3.147*10**-10; # Nearest neighbour distance for KCl, m\n",
+ "n = 9.1; # Repulsive exponent of KCl\n",
+ "A = 1.748; # Madelung constant for lattice binding energy\n",
+ "E = A*e**2/(4*math.pi*epsilon_0*r)*(n-1)/n/e; # Binding energy of KCl, eV\n",
+ "print\"The binding energy of KCl = \",round(E,4),\"eV\";\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The binding energy of KCl = 7.10982502818 eV\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2,Page number 62"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Given Data\n",
+ "\n",
+ "epsilon_0 = 8.854*10**-12; # Absolute electrical permittivity of free space, F/m\n",
+ "N = 6.023*10**23; # Avogadro's number\n",
+ "e = 1.6*10**-19; # Energy equivalent of 1 eV, eV/J\n",
+ "a0 = 5.63*10**-10; # Lattice parameter of NaCl, m\n",
+ "r0 = a0/2; # Nearest neighbour distance for NaCl, m\n",
+ "n = 8.4; # Repulsive exponent of NaCl\n",
+ "A = 1.748; # Madelung constant for lattice binding energy\n",
+ "E = A*e**2/(4*pi*epsilon_0*r0)*(n-1)/n/e; # Binding energy of NaCl, eV\n",
+ "print\"The binding energy of NaCl = \",round(E*N*e/(4.186*1000),4),\"kcal/mol\" ;\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The binding energy of NaCl = 181.1005 kcal/mol\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.3,Page number 62"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Given Data\n",
+ "\n",
+ "epsilon_0 = 8.854*10**-12; # Absolute electrical permittivity of free space, F/m\n",
+ "N = 6.023*10**23; # Avogadro's number\n",
+ "e = 1.6*10**-19; # Energy equivalent of 1 eV, eV/J\n",
+ "E = 162.9*10**3; # Binding energy of KCl, cal/mol\n",
+ "n = 8.6; # Repulsive exponent of KCl\n",
+ "A = 1.747; # Madelung constant for lattice binding energy\n",
+ "# As lattice binding energy, E = A*e**2/(4*%pi*epsilon_0*r0)*(n-1)/n, solving for r0\n",
+ "r0 = A*N*e**2/(4*pi*epsilon_0*E*4.186)*(n-1)/n; # Nearest neighbour distance of KCl, m\n",
+ "print\"The nearest neighbour distance of KCl = \",round(r0*10**10,4),\"angstorm\";\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The nearest neighbour distance of KCl = 3.1376 angstorm\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.4,Page number 63"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Given Data\n",
+ "\n",
+ "epsilon_0 = 8.854*10**-12; # Absolute electrical permittivity of free space, F/m\n",
+ "N = 6.023*10**23; # Avogadro's number\n",
+ "e = 1.6*10**-19; # Energy equivalent of 1 eV, eV/J\n",
+ "E = 152*10**3; # Binding energy of CsCl, cal/mol\n",
+ "n = 10.6; # Repulsive exponent of CsCl\n",
+ "A = 1.763; # Madelung constant for lattice binding energy\n",
+ "\n",
+ "# As lattice binding energy, E = A*e**2/(4*pi*epsilon_0*r0)*(n-1)/n, solving for r0\n",
+ "r0 = A*N*e**2/(4*pi*epsilon_0*E*4.186)*(n-1)/n; # Nearest neighbour distance of CsCl, m\n",
+ "print\"The nearest neighbour distance of CsCl = \",round(r0*10**10,4),\"angstrom\";\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The nearest neighbour distance of CsCl = 3.4776 angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.5,Page number 63"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Given Data\n",
+ "\n",
+ "epsilon_0 = 8.854*10**-12; # Absolute electrical permittivity of free space, F/m\n",
+ "N = 6.023*10**23; # Avogadro's number\n",
+ "e = 1.6*10**-19; # Energy equivalent of 1 eV, eV/J\n",
+ "r0 = 6.46*10**-10; # Nearest neighbour distance of NaI\n",
+ "E = 157.1*10**3; # Binding energy of NaI, cal/mol\n",
+ "A = 1.747; # Madelung constant for lattice binding energy\n",
+ "\n",
+ "# As lattice binding energy, E = -A*e**2/(4*pi*epsilon_0*r0)*(n-1)/n, solving for n\n",
+ "n = 1/(1+(4.186*E*4*pi*epsilon_0*r0)/(N*A*e**2)); # Repulsive exponent of NaI\n",
+ "print\"\\nThe repulsive exponent of NaI = \",round(n,4);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ "The repulsive exponent of NaI = 0.363\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.6,Page number 63"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Given Data\n",
+ "\n",
+ "e = 1.6*10**-19; # Energy equivalent of 1 eV, eV/J\n",
+ "a0 = 2.8158*10**-10; # Nearest neighbour distance of solid\n",
+ "A = 1.747; # Madelung constant for lattice binding energy\n",
+ "n = 8.6; # The repulsive exponent of solid\n",
+ "c = 2; # Structural factor for rocksalt\n",
+ "# As n = 1 + (9*c*a0**4)/(K0*e**2*A), solving for K0\n",
+ "K0 = 9*c*a0**4/((n-1)*e**2*A); # Compressibility of solid, metre square per newton\n",
+ "print\"The compressibility of the solid = \", \"{0:.3e}\".format(K0),\"metre square per newton\";"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The compressibility of the solid = 3.329e-01 metre square per newton\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.7,Page number 69"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Given Data\n",
+ "\n",
+ "chi_diff = 1; # Electronegativity difference between the constituent of elements of solid\n",
+ "percent_ion = 100*(1-math.e**(-(0.25*chi_diff**2))); # Percentage ionic character present in solid given by Pauling\n",
+ "print\"The percentage ionic character present in solid = \",round(percent_ion,2),\"percent \";\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The percentage ionic character present in solid = 22.12 percent \n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.8,Page number 69"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Given Data\n",
+ "\n",
+ "Eh_GaAs = 4.3; # Homopolar gap of GaAs compound, eV\n",
+ "C_GaAs = 2.90; # Ionic gap of GaAs compound, eV\n",
+ "Eh_CdTe = 3.08; # Homopolar gap of CdTe compound, eV\n",
+ "C_CdTe = 4.90; # Ionic gap of CdTe compound, eV\n",
+ "\n",
+ "fi_GaAs = C_GaAs**2/(Eh_GaAs**2 + C_GaAs**2);\n",
+ "fi_CdTe = C_CdTe**2/(Eh_CdTe**2 + C_CdTe**2);\n",
+ "print\"The fractional ionicity of GaAs = \",round(fi_GaAs,4);\n",
+ "print\"The fractional ionicity of CdTe = \",round(fi_CdTe,4);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The fractional ionicity of GaAs = 0.3126\n",
+ "The fractional ionicity of CdTe = 0.7168\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file