diff options
Diffstat (limited to 'sample_notebooks/ajinkyakhair/chapter2_8f8MyfH.ipynb')
-rw-r--r-- | sample_notebooks/ajinkyakhair/chapter2_8f8MyfH.ipynb | 337 |
1 files changed, 0 insertions, 337 deletions
diff --git a/sample_notebooks/ajinkyakhair/chapter2_8f8MyfH.ipynb b/sample_notebooks/ajinkyakhair/chapter2_8f8MyfH.ipynb deleted file mode 100644 index 5bd122ad..00000000 --- a/sample_notebooks/ajinkyakhair/chapter2_8f8MyfH.ipynb +++ /dev/null @@ -1,337 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:74a00fabf3de3a229499fd336c46d9a546ea42ad7cb4fbe98a92a6ea72f21fa8" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 2: Bonding in Solids" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.1,Page number 62" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Given Data\n", - "epsilon_0 = 8.854*10**-12; # Absolute electrical permittivity of free space, F/m\n", - "e = 1.6*10**-19; # Energy equivalent of 1 eV, eV/J\n", - "r = 3.147*10**-10; # Nearest neighbour distance for KCl, m\n", - "n = 9.1; # Repulsive exponent of KCl\n", - "A = 1.748; # Madelung constant for lattice binding energy\n", - "E = A*e**2/(4*math.pi*epsilon_0*r)*(n-1)/n/e; # Binding energy of KCl, eV\n", - "print\"The binding energy of KCl = \",round(E,4),\"eV\";\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The binding energy of KCl = 7.10982502818 eV\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.2,Page number 62" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Given Data\n", - "\n", - "epsilon_0 = 8.854*10**-12; # Absolute electrical permittivity of free space, F/m\n", - "N = 6.023*10**23; # Avogadro's number\n", - "e = 1.6*10**-19; # Energy equivalent of 1 eV, eV/J\n", - "a0 = 5.63*10**-10; # Lattice parameter of NaCl, m\n", - "r0 = a0/2; # Nearest neighbour distance for NaCl, m\n", - "n = 8.4; # Repulsive exponent of NaCl\n", - "A = 1.748; # Madelung constant for lattice binding energy\n", - "E = A*e**2/(4*pi*epsilon_0*r0)*(n-1)/n/e; # Binding energy of NaCl, eV\n", - "print\"The binding energy of NaCl = \",round(E*N*e/(4.186*1000),4),\"kcal/mol\" ;\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The binding energy of NaCl = 181.1005 kcal/mol\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.3,Page number 62" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Given Data\n", - "\n", - "epsilon_0 = 8.854*10**-12; # Absolute electrical permittivity of free space, F/m\n", - "N = 6.023*10**23; # Avogadro's number\n", - "e = 1.6*10**-19; # Energy equivalent of 1 eV, eV/J\n", - "E = 162.9*10**3; # Binding energy of KCl, cal/mol\n", - "n = 8.6; # Repulsive exponent of KCl\n", - "A = 1.747; # Madelung constant for lattice binding energy\n", - "# As lattice binding energy, E = A*e**2/(4*%pi*epsilon_0*r0)*(n-1)/n, solving for r0\n", - "r0 = A*N*e**2/(4*pi*epsilon_0*E*4.186)*(n-1)/n; # Nearest neighbour distance of KCl, m\n", - "print\"The nearest neighbour distance of KCl = \",round(r0*10**10,4),\"angstorm\";\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The nearest neighbour distance of KCl = 3.1376 angstorm\n" - ] - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.4,Page number 63" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Given Data\n", - "\n", - "epsilon_0 = 8.854*10**-12; # Absolute electrical permittivity of free space, F/m\n", - "N = 6.023*10**23; # Avogadro's number\n", - "e = 1.6*10**-19; # Energy equivalent of 1 eV, eV/J\n", - "E = 152*10**3; # Binding energy of CsCl, cal/mol\n", - "n = 10.6; # Repulsive exponent of CsCl\n", - "A = 1.763; # Madelung constant for lattice binding energy\n", - "\n", - "# As lattice binding energy, E = A*e**2/(4*pi*epsilon_0*r0)*(n-1)/n, solving for r0\n", - "r0 = A*N*e**2/(4*pi*epsilon_0*E*4.186)*(n-1)/n; # Nearest neighbour distance of CsCl, m\n", - "print\"The nearest neighbour distance of CsCl = \",round(r0*10**10,4),\"angstrom\";\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The nearest neighbour distance of CsCl = 3.4776 angstrom\n" - ] - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.5,Page number 63" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Given Data\n", - "\n", - "epsilon_0 = 8.854*10**-12; # Absolute electrical permittivity of free space, F/m\n", - "N = 6.023*10**23; # Avogadro's number\n", - "e = 1.6*10**-19; # Energy equivalent of 1 eV, eV/J\n", - "r0 = 6.46*10**-10; # Nearest neighbour distance of NaI\n", - "E = 157.1*10**3; # Binding energy of NaI, cal/mol\n", - "A = 1.747; # Madelung constant for lattice binding energy\n", - "\n", - "# As lattice binding energy, E = -A*e**2/(4*pi*epsilon_0*r0)*(n-1)/n, solving for n\n", - "n = 1/(1+(4.186*E*4*pi*epsilon_0*r0)/(N*A*e**2)); # Repulsive exponent of NaI\n", - "print\"\\nThe repulsive exponent of NaI = \",round(n,4);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "\n", - "The repulsive exponent of NaI = 0.363\n" - ] - } - ], - "prompt_number": 15 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.6,Page number 63" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Given Data\n", - "\n", - "e = 1.6*10**-19; # Energy equivalent of 1 eV, eV/J\n", - "a0 = 2.8158*10**-10; # Nearest neighbour distance of solid\n", - "A = 1.747; # Madelung constant for lattice binding energy\n", - "n = 8.6; # The repulsive exponent of solid\n", - "c = 2; # Structural factor for rocksalt\n", - "# As n = 1 + (9*c*a0**4)/(K0*e**2*A), solving for K0\n", - "K0 = 9*c*a0**4/((n-1)*e**2*A); # Compressibility of solid, metre square per newton\n", - "print\"The compressibility of the solid = \", \"{0:.3e}\".format(K0),\"metre square per newton\";" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The compressibility of the solid = 3.329e-01 metre square per newton\n" - ] - } - ], - "prompt_number": 18 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.7,Page number 69" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Given Data\n", - "\n", - "chi_diff = 1; # Electronegativity difference between the constituent of elements of solid\n", - "percent_ion = 100*(1-math.e**(-(0.25*chi_diff**2))); # Percentage ionic character present in solid given by Pauling\n", - "print\"The percentage ionic character present in solid = \",round(percent_ion,2),\"percent \";\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The percentage ionic character present in solid = 22.12 percent \n" - ] - } - ], - "prompt_number": 20 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.8,Page number 69" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Given Data\n", - "\n", - "Eh_GaAs = 4.3; # Homopolar gap of GaAs compound, eV\n", - "C_GaAs = 2.90; # Ionic gap of GaAs compound, eV\n", - "Eh_CdTe = 3.08; # Homopolar gap of CdTe compound, eV\n", - "C_CdTe = 4.90; # Ionic gap of CdTe compound, eV\n", - "\n", - "fi_GaAs = C_GaAs**2/(Eh_GaAs**2 + C_GaAs**2);\n", - "fi_CdTe = C_CdTe**2/(Eh_CdTe**2 + C_CdTe**2);\n", - "print\"The fractional ionicity of GaAs = \",round(fi_GaAs,4);\n", - "print\"The fractional ionicity of CdTe = \",round(fi_CdTe,4);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The fractional ionicity of GaAs = 0.3126\n", - "The fractional ionicity of CdTe = 0.7168\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file |