diff options
Diffstat (limited to 'sample_notebooks/SumadhuriDamerla/Chapter_1_Passive.ipynb')
-rwxr-xr-x | sample_notebooks/SumadhuriDamerla/Chapter_1_Passive.ipynb | 370 |
1 files changed, 0 insertions, 370 deletions
diff --git a/sample_notebooks/SumadhuriDamerla/Chapter_1_Passive.ipynb b/sample_notebooks/SumadhuriDamerla/Chapter_1_Passive.ipynb deleted file mode 100755 index 916e874c..00000000 --- a/sample_notebooks/SumadhuriDamerla/Chapter_1_Passive.ipynb +++ /dev/null @@ -1,370 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Chapter 1 Passive Circuits" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 1.2.2, Pg.no.5" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The value of resistance R is 16.61 ohm\n", - "The value of resistance R3 is 66.82 ohm\n" - ] - } - ], - "source": [ - "import math\n", - "#given\n", - "Ro=50.0\n", - "ILdB=6.0 #T−type attenuator provide 6−dB insertion loss \n", - "#calculation\n", - "IL=10**-(ILdB/20) #Determination of R\n", - "R=Ro*(1-IL)/(1+IL)\n", - "R=round(R,2)\n", - "print 'The value of resistance R is',R,'ohm' \n", - "#Determination of R3\n", - "R3=(2*Ro*IL)/(1-(0.5)**2)\n", - "R3=round(R3,2)\n", - "print 'The value of resistance R3 is',R3,'ohm'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 1.2.3,Pg.no.7" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The value of resistance RA and RB is 150.5 ohm\n", - "The value of resistance RC is 37.35 ohm\n" - ] - } - ], - "source": [ - "import math\n", - "#given\n", - "Ro=50.0\n", - "ILdB=6.0\n", - "IL=10**-(ILdB/20) #Determination of RA and RB\n", - "RA=Ro*(1+IL)/(1-IL)\n", - "RA=round(RA,1)\n", - "print 'The value of resistance RA and RB is',RA,'ohm'\n", - "#Determination of RC\n", - "RC=Ro*(1-(IL)**2)/(2*IL)\n", - "RC=round(RC,2)\n", - "print 'The value of resistance RC is',RC,'ohm'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 1.2.4,Pg.no.9" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The value of resistance R1 is 1.0 ohm\n", - "The value of resistance R3 is 5624.0 ohm\n", - "The value of insertion loss is 0.12 decibels\n" - ] - } - ], - "source": [ - "import math\n", - "from math import log10\n", - "#given\n", - "Rs=75.0 #resistance\n", - "Rl=50.0 \n", - "#Determination of R1\n", - "R1=(Rs*(Rs-Rl))**(1/2)\n", - "R1=round(R1,2)\n", - "print 'The value of resistance R1 is',R1,'ohm'\n", - "#Determination of R3\n", - "R3=((Rs**2)-(R1**2))/R1\n", - "R3=round(R3,2)\n", - "print 'The value of resistance R3 is',R3,'ohm'\n", - "#Determination of insertion loss\n", - "IL=(R3*(Rs+R1))/((Rs+R1+R3)*(R3+R1)-(R3)**2)\n", - "ILdB=-20*log10(IL) #convertion of power in decibels\n", - "ILdB=round(ILdB,2)\n", - "print 'The value of insertion loss is',ILdB,'decibels'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 1.2.5,Pg.no.10" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The value of resistance R2 is 1.0 ohm\n", - "The value of resistance R3 is 2499.0 ohm\n", - "The value of insertion loss is 0.2 decibels\n" - ] - } - ], - "source": [ - "from math import log10\n", - "Rs=10.0\n", - "Rl=50.0 #Determination of R2\n", - "R2=(Rl*(Rl-Rs))**(1/2)\n", - "R2=round(R2,2)\n", - "print 'The value of resistance R2 is',R2,'ohm'\n", - "#Determination of R3\n", - "R3=((Rl**2)-(R2**2))/R2\n", - "R3=round(R3,2)\n", - "print 'The value of resistance R3 is',R3,'ohm'\n", - "#Determination of insertion loss\n", - "IL=(R3*(Rs+Rl))/((Rs+R3)*(R3+R2+Rl)-(R3)**2)\n", - "ILdB=-20*log10(IL) #convertion of power in decibels\n", - "ILdB=round(ILdB,1)\n", - "print 'The value of insertion loss is',ILdB,'decibels'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 1.5.1,Pg.no.21" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The value of self resonant freq is 60.2 MHz\n", - "The value of Q−factor is 31.4\n", - "The value of effective inductance is -5.79846400003e-12 uH\n", - "The value of effective Q−factor is -5.41522720497e+12\n" - ] - } - ], - "source": [ - "import math\n", - "C=7*10**-12\n", - "R=5.0\n", - "L=10**-6\n", - "f=25*10**6 \n", - "#Determination of self resonant freq of coil denoted as Fsr\n", - "Fsr=1/(2*3.14*(L*C)**0.5)\n", - "Fsr=Fsr/(10**6)\n", - "Fsr=round(Fsr,1)\n", - "print 'The value of self resonant freq is',Fsr,'MHz'\n", - "#Determination of Q−factor of coil , excluding self − capacitive effects\n", - "Q=(2*3.14*f*L)/R\n", - "print 'The value of Q−factor is',Q\n", - "#Determination of effective inductance\n", - "Leff=L/(1-(f/Fsr)**2)\n", - "Leff=Leff*(10**6)\n", - "#Leff=round(Leff,0)\n", - "print 'The value of effective inductance is',Leff,'uH'\n", - "#Determination of effective Q−factor\n", - "Qeff=Q*(1-(f/Fsr)**2)\n", - "Qeff=round(Qeff,0)\n", - "print 'The value of effective Q−factor is',Qeff" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 1.8.1,Pg.no.26" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The value of common resonant freq is 1e-06 Mrad/sec\n", - "The transfer impedance is -6.83732235918e-05 ohm\n" - ] - } - ], - "source": [ - "import cmath\n", - "#given\n", - "Lp=150*10**-6 #inductance\n", - "Ls=150*10**-6\n", - "Cp=470*10**-12 #capacitance\n", - "Cs=470*10**-12 #Lp=Ls=150 uH,Cp=Cs=470 pF\n", - "Q=85.0 #Q−factor for each ckt is 85\n", - "c=0.01 #Coeff of coupling is 0.01\n", - "Rl=5000.0 #Load resistance Rl=5000 ohm\n", - "r=75000.0 #Constant current source with internal resistance r=75 kohm\n", - "#calculations\n", - "#Determination of common resonant frequency\n", - "wo=1/((Lp*Cp)**(1/2))\n", - "wo=wo/(10**6)\n", - "print 'The value of common resonant freq is',wo,'Mrad/sec'\n", - "p=3.77*10**6\n", - "Z2=complex(62.9004,557.266) #Formula=Rl/(1+(p*j*Cs*Rl))\n", - "Z1=complex(4.2465,564.33) #Formula=r/(1+(p*j*Cp*r)) ;At resonance Zs=Zp=Z\n", - "z=complex(0,1)\n", - "Z=wo*Ls*(1/Q +z)\n", - "Zm=complex(0,p*c*Lp) #Determination of denominator\n", - "Dr=((Z+Z1)*(Z+Z2))-(Zm**2) \n", - "#Hence transfer impedance is given as\n", - "Zr= (Z1*Z2*Zm)/Dr\n", - "Z=Zr.real\n", - "#Z=round(Z,2)\n", - "#Zr.imag=round(Zr.imag,2)\n", - "print 'The transfer impedance is',Z,'ohm'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 1.10.1,Pg.no.34" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The value of common resonant freq is 169.56 Mrad/ sec\n", - "The value of Gl is 5.0 mSec\n", - "The value of alpha is 3.14\n", - "The value of effective load is 1.97 kohm\n", - "The value of tuning capacitance is 47.73 pF\n", - "The value of Rd is 1.85343097504e-05 kohm\n", - "The value of −3dB BW is 1.69 MHz\n" - ] - } - ], - "source": [ - "import math\n", - "C1=70*10**-12\n", - "C2=150*10**-12\n", - "Rl=200.0\n", - "Q=150.0\n", - "f=27*10**6\n", - "r=40000.0\n", - "#Determination of common resonant freq\n", - "wo=2*3.14*f\n", - "wo=wo/(10**6)\n", - "print 'The value of common resonant freq is',wo,'Mrad/ sec'\n", - "#Determination of Gl\n", - "Gl=1/Rl\n", - "G1=Gl*(10**3) \n", - "print'The value of Gl is',G1,'mSec'\n", - "#Checking the approxiamtion in denominator\n", - "ap=((wo*(C1+C2))/(Gl))**2\n", - "alpha=(C1+C2)/C1\n", - "alpha=round(alpha,2)\n", - "print 'The value of alpha is',alpha\n", - "#Determination of effective load\n", - "Reff=((alpha)**2)*Rl\n", - "Reff=Reff/(10**3)\n", - "Reff=round(Reff,2)\n", - "print 'The value of effective load is',Reff,'kohm' \n", - "#If effective load is much less than internal resistance hence tuning capacitance then\n", - "Cs=C1*C2/(C1+C2)\n", - "Cs=Cs*(10**12)\n", - "Cs=round(Cs,2)\n", - "print 'The value of tuning capacitance is',Cs,'pF'\n", - "#Determination of Rd\n", - "Rd=Q/(wo*Cs)\n", - "Rd=Rd/(10**3)\n", - "print 'The value of Rd is',Rd,'kohm'\n", - "#If Rd is much greater than Reff then −3dB bandwidth is given by\n", - "B=1/(2*3.14*C2*alpha*Rl)\n", - "B=B/(10**6)\n", - "B=round(B,2)\n", - "print 'The value of −3dB BW is',B,'MHz'" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.10" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} |