summaryrefslogtreecommitdiff
path: root/sample_notebooks/SPANDANAARROJU/Chapter4.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'sample_notebooks/SPANDANAARROJU/Chapter4.ipynb')
-rw-r--r--[-rwxr-xr-x]sample_notebooks/SPANDANAARROJU/Chapter4.ipynb764
1 files changed, 211 insertions, 553 deletions
diff --git a/sample_notebooks/SPANDANAARROJU/Chapter4.ipynb b/sample_notebooks/SPANDANAARROJU/Chapter4.ipynb
index f4145c55..e9783bbb 100755..100644
--- a/sample_notebooks/SPANDANAARROJU/Chapter4.ipynb
+++ b/sample_notebooks/SPANDANAARROJU/Chapter4.ipynb
@@ -1,553 +1,211 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:e9b50f0b4ca0520935774156fedb1fdaaf2b2fd5241b8184a650d42b25d657cd"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "4: Interference"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 4.1, Page number 69"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "i=40; #angle of incidence(degrees)\n",
- "mew=1.2; #refractive index\n",
- "t=0.23; #thickness of the film(micro m)\n",
- "\n",
- "#Calculation\n",
- "i=i*math.pi/180; #angle of incidence(radian)\n",
- "r=math.asin(math.sin(i)/mew); #angle of refraction(radian)\n",
- "lambda1=(2*mew*t*math.cos(r))*10**3; #wavelength absent(nm) \n",
- "lambda2=lambda1/2;\n",
- "\n",
- "#Result\n",
- "print \"The wavelength absent is\",round(lambda1,1),\"nm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The wavelength absent is 466.1 nm\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 4.2, Page number 69"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "lambda1=400*10**-9; #wavelength 1(m)\n",
- "lambda2=600*10**-9; #wavelength 2(m)\n",
- "#2*t=n*lambda\n",
- "n=150; \n",
- "\n",
- "#Calculation \n",
- "t=((n*lambda2)/2)*10**6; #thickness of the air film(micro meter)\n",
- "\n",
- "#Result\n",
- "print \"The thickness of the air film is\",t,\"micro m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The thickness of the air film is 45.0 micro m\n"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 4.3, Page number 70"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "lamda=600*10**-9; #wavelength(m)\n",
- "mew=2;\n",
- "theta=0.025; #wedge-angle(degrees)\n",
- "\n",
- "#Calculation \n",
- "theta=theta*math.pi/180; #wedge-angle(radian)\n",
- "x=(lamda/(2*mew*math.sin(theta)))*10**2; #bandwidth(cm)\n",
- "\n",
- "#Result\n",
- "print \"The bandwidth is\",round(x,3),\"cm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The bandwidth is 0.034 cm\n"
- ]
- }
- ],
- "prompt_number": 10
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 4.4, Page number 70"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "xair=0.15; #bandwidth of air(cm)\n",
- "xliq=0.115; #bandwidth of liquid(cm)\n",
- "mewair=1; #refractive index of air\n",
- "\n",
- "#Calculation \n",
- "mewliq=(xair*mewair)/xliq; #refractive index of liquid\n",
- "\n",
- "#Result\n",
- "print \"The refractive index of liquid is\",round(mewliq,1)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The refractive index of liquid is 1.3\n"
- ]
- }
- ],
- "prompt_number": 12
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 4.5, Page number 70"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=9;\n",
- "lamda=589*10**-9; #wavelength of light used(m)\n",
- "R=0.95; #radius of curvature of lens(m)\n",
- "mew=1;\n",
- "\n",
- "#Calculation \n",
- "D=(math.sqrt((4*n*lamda*R)/mew))*10**2; #diameter of the ninth dark ring(m)\n",
- "\n",
- "#Result\n",
- "print \"The diameter of the ninth dark ring is\",round(D,2),\"cm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The diameter of the ninth dark ring is 0.45 cm\n"
- ]
- }
- ],
- "prompt_number": 15
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 4.6, Page number 70"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=0.055; #distance in fringe shift(mm)\n",
- "n=200; #number of fringes\n",
- "\n",
- "#Calculation \n",
- "lamda=((2*x)/n)*10**6; #wavelength(nm)\n",
- "\n",
- "#Result\n",
- "print \"The wavelength of light used is\",lamda,\"nm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The wavelength of light used is 550.0 nm\n"
- ]
- }
- ],
- "prompt_number": 17
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 4.7, Page number 70"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=50; #number of fringes\n",
- "lamda=500*10**-9; #wavelength of light used(m)\n",
- "mew=1.5; #refractive index of the plate\n",
- "\n",
- "#Calculation \n",
- "t=((n*lamda)/(2*(mew-1)))*10**6; #thickness of the plate(micro meter)\n",
- "\n",
- "#Result\n",
- "print \"The thickness of the plate is\",t,\"micro m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The thickness of the plate is 25.0 micro m\n"
- ]
- }
- ],
- "prompt_number": 20
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 4.8, Page number 70"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "lamda=550*10**-9; #wavelength(m)\n",
- "mew=1.38; #refractive index\n",
- "\n",
- "#Calculation \n",
- "t=(lamda/(4*mew))*10**9; #thickness(nm)\n",
- "\n",
- "#Result\n",
- "print \"The minimum thickness of the plate for normal incidence of light is\",round(t,3),\"nm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The minimum thickness of the plate for normal incidence of light is 99.638 nm\n"
- ]
- }
- ],
- "prompt_number": 23
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 4.9, Page number 70"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "i=35; #angle of incidence(degrees)\n",
- "mew=1.4; #refractive index\n",
- "n=50; \n",
- "lamda=459*10**-9; #wavelength(m)\n",
- "\n",
- "#Calculation \n",
- "i=i*math.pi/180; #angle of incidence(radian)\n",
- "r=math.asin(math.sin(i)/mew); #angle of refraction(radian)\n",
- "#2*mew*cos(r)=n*lambda\n",
- "#n(459)=(n+1)450\n",
- "t=(n*lamda/(2*mew*math.cos(r)))*10**6; #thickness of the film(micro meter)\n",
- "\n",
- "#Result\n",
- "print \"The thickness of the film is\",round(t,3),\"micro m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The thickness of the film is 8.985 micro m\n"
- ]
- }
- ],
- "prompt_number": 26
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 4.10, Page number 71"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "lamda=500*10**-9; #wavelength(m)\n",
- "x=0.07; #observed band width(cm)\n",
- "mew=1; #refractive index\n",
- "\n",
- "#Calculation \n",
- "theta=(math.asin(lamda/(2*mew*x)))*10**2; #wedge angle(radian)\n",
- "theta=theta*180/math.pi; #wedge angle(degrees)\n",
- "\n",
- "#Result\n",
- "print \"The wedge angle is\",round(theta,2),\"degrees\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The wedge angle is 0.02 degrees\n"
- ]
- }
- ],
- "prompt_number": 31
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 4.11, Page number 71"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "dair=0.42; #diameter of certain rings(cm)\n",
- "dliq=0.38; #diameter of rings when liquid is introduced(cm)\n",
- "\n",
- "#Calculation \n",
- "mew=dair**2/dliq**2; #refractive index of liquid\n",
- "\n",
- "#Result\n",
- "print \"The refravtive index of liquid is\",round(mew,2)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The refravtive index of liquid is 1.22\n"
- ]
- }
- ],
- "prompt_number": 33
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 4.12, Page number 71"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m=8; #eigth ring\n",
- "n=3; #third ring\n",
- "dm=0.4; #diameter of the eigth ring(cm)\n",
- "dn=0.2; #diameter of the third ring(cm)\n",
- "R=101; #Radius of curvature(cm)\n",
- "\n",
- "#Calculation \n",
- "lamda=(((dm**2)-(dn**2))/(4*R*(m-n))); #wavelength of light(cm) \n",
- "\n",
- "#Result\n",
- "print \"The wavelength of light used is\",round(lamda*10**5,4),\"*10**-5 cm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The wavelength of light used is 5.9406 *10**-5 cm\n"
- ]
- }
- ],
- "prompt_number": 39
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 4.13, Page number 71"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "mew=1.38; #refractive index of magnesium floride\n",
- "t=175; #thickness of coating of magnesium fluoride(nm)\n",
- "\n",
- "#Calculation \n",
- "lamda=4*t*mew; #wavelength(nm)\n",
- "\n",
- "#Result\n",
- "print \"The wavelength which has high transmission is\",lamda,\"nm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The wavelength which has high transmission is 966.0 nm\n"
- ]
- }
- ],
- "prompt_number": 41
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 4: Defects in Crystals"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 1, Page number 4.14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "equilibrium concentration of vacancy at 300K is 7.577 *10**5\n",
+ "equilibrium concentration of vacancy at 900K is 6.502 *10**19\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "N=6.023*10**26; #avagadro number\n",
+ "T1=1/float('inf'); #temperature 0K(K)\n",
+ "T2=300;\n",
+ "T3=900; #temperature(K)\n",
+ "k=1.38*10**-23; #boltzmann constant \n",
+ "deltaHv=120*10**3*10**3/N; #enthalpy(J/vacancy)\n",
+ "\n",
+ "#Calculation\n",
+ "#n1=N*math.exp(-deltaHv/(k*T1)); #equilibrium concentration of vacancy at 0K\n",
+ "#value of n1 cant be calculated in python, as the denominator is 0 and it shows float division error\n",
+ "n2=N*math.exp(-deltaHv/(k*T2)); #equilibrium concentration of vacancy at 300K \n",
+ "n3=N*math.exp(-deltaHv/(k*T3)); #equilibrium concentration of vacancy at 900K \n",
+ "\n",
+ "#Result\n",
+ "#print \"equilibrium concentration of vacancy at 0K is\",n1\n",
+ "print \"equilibrium concentration of vacancy at 300K is\",round(n2/10**5,3),\"*10**5\"\n",
+ "print \"equilibrium concentration of vacancy at 900K is\",round(n3/10**19,3),\"*10**19\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 2, Page number 4.15"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "fraction of vacancies at 1000 is 8.5 *10**-7\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "nbyN1=1*10**-10; #fraction of vacancies\n",
+ "T1=500+273;\n",
+ "T2=1000+273;\n",
+ "\n",
+ "#Calculation\n",
+ "lnx=T1*math.log(nbyN1)/T2;\n",
+ "x=math.exp(lnx); #fraction of vacancies at 1000\n",
+ "\n",
+ "#Result\n",
+ "print \"fraction of vacancies at 1000 is\",round(x*10**7,1),\"*10**-7\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 3, Page number 4.16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "concentration of schottky defects is 6.42 *10**11 per m**3\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "d=2.82*10**-10; #interionic distance(m)\n",
+ "T=300; #temperature(K)\n",
+ "k=1.38*10**-23; #boltzmann constant \n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "n=4; #number of molecules\n",
+ "deltaHs=1.971*e; #enthalpy(J)\n",
+ "\n",
+ "#Calculation\n",
+ "V=(2*d)**3; #volume of unit cell(m**3)\n",
+ "N=n/V; #number of ion pairs\n",
+ "x=deltaHs/(2*k*T);\n",
+ "n=N*math.exp(-x); #concentration of schottky defects(per m**3)\n",
+ "\n",
+ "#Result\n",
+ "print \"concentration of schottky defects is\",round(n*10**-11,2),\"*10**11 per m**3\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 4, Page number 4.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "concentration of schottky defects is 9.23 *10**12 per cm**3\n",
+ "amount of climb down by the dislocations is 0.1846 step or 0.3692 *10**-8 cm\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "N=6.026*10**23; #avagadro number \n",
+ "T=500; #temperature(K)\n",
+ "k=1.38*10**-23; #boltzmann constant \n",
+ "deltaHv=1.6*10**-19; #charge(coulomb)\n",
+ "V=5.55; #molar volume(cm**3)\n",
+ "nv=5*10**7*10**6; #number of vacancies\n",
+ "\n",
+ "#Calculation\n",
+ "n=N*math.exp(-deltaHv/(k*T))/V; #concentration of schottky defects(per m**3)\n",
+ "x=round(n/nv,4); #amount of climb down by the dislocations(step)\n",
+ "xcm=2*x*10**-8; #amount of climb down by the dislocations(cm)\n",
+ "\n",
+ "#Result\n",
+ "print \"concentration of schottky defects is\",round(n/10**12,2),\"*10**12 per cm**3\"\n",
+ "print \"amount of climb down by the dislocations is\",x,\"step or\",xcm*10**8,\"*10**-8 cm\" "
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}