summaryrefslogtreecommitdiff
path: root/sample_notebooks/Raj Kumar/ch3.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'sample_notebooks/Raj Kumar/ch3.ipynb')
-rw-r--r--sample_notebooks/Raj Kumar/ch3.ipynb398
1 files changed, 398 insertions, 0 deletions
diff --git a/sample_notebooks/Raj Kumar/ch3.ipynb b/sample_notebooks/Raj Kumar/ch3.ipynb
new file mode 100644
index 00000000..30e9780e
--- /dev/null
+++ b/sample_notebooks/Raj Kumar/ch3.ipynb
@@ -0,0 +1,398 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter No. 3 : Microwave Vaccum Tube Devices"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.5.1 Page 3-39"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Plasma frequency = 9.95e+08 rad/s\n",
+ "Reduced plasma frequency = 5.97e+08 rad/s\n",
+ "The induced current in the output cavity = 3.44e+07 A \n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from math import sqrt,pi\n",
+ "\n",
+ "#Given : \n",
+ "V0=10##kV\n",
+ "I0=0.7##A\n",
+ "f=4##GHz\n",
+ "Beta0=1##unitless\n",
+ "Beta1=1##unitless\n",
+ "rho_0=5*10**-5##per cm**3\n",
+ "V1=2##V\n",
+ "Rsh=10##kohm\n",
+ "Rsh1=5##kohm\n",
+ "K=1.759*10**11##constant\n",
+ "epsilon_0=8.884*10**-12##constant\n",
+ "omega_p=sqrt(K*rho_0/epsilon_0)##rad/s\n",
+ "print \"Plasma frequency = %.2e rad/s\"%omega_p\n",
+ "R=0.6##ohm\n",
+ "omega_q=R*omega_p##rad/s\n",
+ "print \"Reduced plasma frequency = %.2e rad/s\"%omega_q\n",
+ "omega=2*pi*f*10**9##rad/s\n",
+ "Ih=1/8*(I0/104*omega/omega_q)**3*121*(Rsh*1000)**2\n",
+ "print \"The induced current in the output cavity = %.2e A \"%Ih"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.5.2 Page 3-40"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Input power = 6.00 W\n",
+ "Output power = 1.36 W\n",
+ "Efficiency = 22.74 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from math import sqrt,pi\n",
+ "\n",
+ "#Given : \n",
+ "n=2##mode\n",
+ "V=300##Volt\n",
+ "I0=20##mA\n",
+ "V1=40##Volt\n",
+ "Pdc=V*I0*10**-3##W\n",
+ "print \"Input power = %.2f W\"%Pdc\n",
+ "J1Xdash=1.25#\n",
+ "Pac=2*V*I0*10**-3*J1Xdash/(2*n*pi-pi/2)##W\n",
+ "print \"Output power = %.2f W\"%Pac\n",
+ "Eta=Pac/Pdc*100##%\n",
+ "print \"Efficiency = %.2f %%\"%Eta"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.5.3 Page 3-40"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Electron velocity = 1.78e+07 m/s\n",
+ "dc transit time of electrons = 113.02 sec\n",
+ "Plasma frequency = 9.95e+08 rad/s\n",
+ "Reduced plasma frequency = 5.97e+08 rad/s\n",
+ "The induced current in the output cavity = 5.20e+08 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from math import sqrt,pi\n",
+ "\n",
+ "#Given : \n",
+ "V=900##V\n",
+ "I0=30##mA\n",
+ "f=8##GHz\n",
+ "l=1##mm\n",
+ "d=4##cm\n",
+ "Rsh=49##ohm\n",
+ "V0=0.593*10**6*sqrt(V)##m/s\n",
+ "print \"Electron velocity = %.2e m/s\"%V0\n",
+ "omega=2*pi*f*10**9##rad/s\n",
+ "theta0=omega*d*10**-2/V0##sec\n",
+ "print \"dc transit time of electrons = %.2f sec\"%theta0\n",
+ "\n",
+ "Beta0=1##unitless\n",
+ "Beta1=1##unitless\n",
+ "rho_0=5*10**-5##per cm**3\n",
+ "V1=2##V\n",
+ "\n",
+ "Rsh1=5##Kohm\n",
+ "K=1.759*10**11##constant\n",
+ "epsilon_0=8.884*10**-12##constant\n",
+ "omega_p=sqrt(K*rho_0/epsilon_0)##rad/s\n",
+ "print \"Plasma frequency = %.2e rad/s\"%omega_p\n",
+ "R=0.6##ohm\n",
+ "omega_q=R*omega_p##rad/s\n",
+ "print \"Reduced plasma frequency = %.2e rad/s\"%omega_q\n",
+ "omega=2*pi*f*10**9##rad/s\n",
+ "Ih=1/8*(I0/104*omega/omega_q)**3*121*Rsh**2\n",
+ "print \"The induced current in the output cavity = %.2e A\"%Ih"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.5.4 Page 3-41"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Plasma frequency = 9.95e+08 rad/s\n",
+ "Reduced plasma frequency = 5.97e+08 rad/s\n",
+ "The induced current in the output cavity = 1101.20 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from math import sqrt,pi\n",
+ "\n",
+ "#Given : \n",
+ "V=500##V\n",
+ "Rsh=20##Kohm\n",
+ "fr=8##GHz\n",
+ "d=1##mm\n",
+ "n=2##mode\n",
+ "e=1.759*10**11##constant\n",
+ "VR=1/8*1/(2*pi*fr*10**9*d*10**-3)**2*(2*n*pi-pi/2)**2\n",
+ "\n",
+ "\n",
+ "I0=0.7##A\n",
+ "\n",
+ "Beta0=1##unitless\n",
+ "Beta1=1##unitless\n",
+ "rho_0=5*10**-5##per cm**3\n",
+ "V1=2##V\n",
+ "\n",
+ "Rsh1=5##Kohm\n",
+ "K=1.759*10**11##constant\n",
+ "epsilon_0=8.884*10**-12##constant\n",
+ "omega_p=sqrt(K*rho_0/epsilon_0)##rad/s\n",
+ "print \"Plasma frequency = %.2e rad/s\"%omega_p\n",
+ "R=0.6##ohm\n",
+ "omega_q=R*omega_p##rad/s\n",
+ "print \"Reduced plasma frequency = %.2e rad/s\"%omega_q\n",
+ "omega=2*pi*f*10**9##rad/s\n",
+ "Ih=1/8*(I0/104*omega/omega_q)**3*121*Rsh**2\n",
+ "print \"The induced current in the output cavity = %.2f A\"%Ih"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.5.5 Page 3-42"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Cut-off voltage = 5.07 KV\n",
+ "Plasma frequency = 9.95e+08 rad/s\n",
+ "Reduced plasma frequency = 5.97e+08 rad/s\n",
+ "The induced current in the output cavity = 34.41 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from math import sqrt,pi\n",
+ "\n",
+ "#Given : \n",
+ "a=0.15##m\n",
+ "b=0.45##m\n",
+ "B0_bar=1.2##mWb/m**2\n",
+ "V=600##V\n",
+ "e=1.759*10**11##constant\n",
+ "Vc=e*(B0_bar*10**-3)**2*b**2/8*(1-a**2/b**2)**2##V\n",
+ "print \"Cut-off voltage = %.2f KV\"%(Vc/1000)\n",
+ "Bc=sqrt(8*600)/e**2/45/(1-a**2/b**2)##mWb/m**2\n",
+ "\n",
+ "I0=0.7##A\n",
+ "f=4##GHz\n",
+ "Beta0=1##unitless\n",
+ "Beta1=1##unitless\n",
+ "rho_0=5*10**-5##per cm**3\n",
+ "V1=2##V\n",
+ "Rsh=10##Kohm\n",
+ "Rsh1=5##Kohm\n",
+ "K=1.759*10**11##constant\n",
+ "epsilon_0=8.884*10**-12##constant\n",
+ "omega_p=sqrt(K*rho_0/epsilon_0)##rad/s\n",
+ "print \"Plasma frequency = %.2e rad/s\"%omega_p\n",
+ "R=0.6##ohm\n",
+ "omega_q=R*omega_p##rad/s\n",
+ "print \"Reduced plasma frequency = %.2e rad/s\"%omega_q\n",
+ "omega=2*pi*f*10**9##rad/s\n",
+ "Ih=1/8*(I0/104*omega/omega_q)**3*121*Rsh**2\n",
+ "print \"The induced current in the output cavity = %.2f A\"%Ih"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.5.14 Page 3-48"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Beam coupling coefficient, Beta1=Beta2= 0.93\n",
+ "DC transit angle in drift space = 40.21 radian\n",
+ "Input cavity voltage = 98.75 V\n",
+ "Voltage Gain = 12.81 dB\n",
+ "Power Efficiency = 23.28 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from math import sqrt,pi,sin,log10\n",
+ "\n",
+ "#Given : \n",
+ "f=4##GHz\n",
+ "Vo=1##kV\n",
+ "Io=22##mA\n",
+ "d=1##mm\n",
+ "L=3##cm\n",
+ "Gsh=0.55*10**-4##mho\n",
+ "Gt=0.3*10**-4##mho\n",
+ "mu_o=0.593*10**6*sqrt(Vo*10**3)##m/sec\n",
+ "theta_g=2*pi*f*10**9*(d*10**-3)/mu_o##rad\n",
+ "Beta1=sin(theta_g/2)/(theta_g/2)#\n",
+ "Beta2=Beta1#\n",
+ "print \"Beam coupling coefficient, Beta1=Beta2= %.2f\"%Beta1\n",
+ "theta_o=2*pi*f*10**9*(L*10**-2)/mu_o##rad\n",
+ "print \"DC transit angle in drift space = %.2f radian\"%theta_o\n",
+ "X=1.84;J1X=0.582##for max output\n",
+ "V1=2*(Vo*10**3)*X/Beta1/theta_o##V\n",
+ "print \"Input cavity voltage = %.2f V\"%V1\n",
+ "Av=Beta1**2*theta_o*J1X*Io*10**-3/X/(Vo*10**3)/Gsh#\n",
+ "AvdB=20*log10(Av)##dB\n",
+ "print \"Voltage Gain = %.2f dB\"%AvdB\n",
+ "V2=Av*V1##V\n",
+ "Eta=Beta2*(Io*10**-3)*J1X*V2/(Io*10**-3)/(Vo*10**3)*100# %\n",
+ "print \"Power Efficiency = %.2f %%\"%Eta"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.5.15 Page 3-49"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Power gain = 33.76 dB\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from math import sqrt,pi\n",
+ "\n",
+ "#Given : \n",
+ "Vo=10##kV\n",
+ "Io=500##mA\n",
+ "Zo=25##ohm\n",
+ "f=4##GHz\n",
+ "l=20##cm\n",
+ "mu_o=0.593*10**6*sqrt(Vo*10**3)##m/sec\n",
+ "omega=2*pi*f*10**9##rad/s\n",
+ "N=(l/100)*omega/(2*pi*mu_o)#\n",
+ "C=(Io*10**-3*Zo/(4*Vo*10**3))**(1/3)#\n",
+ "Ap=-9.54+47.3*N*C##dB\n",
+ "print \"Power gain = %.2f dB\"%Ap"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}