diff options
Diffstat (limited to 'sample_notebooks/InnamuriBhavitha/Chapter_1.ipynb')
-rwxr-xr-x | sample_notebooks/InnamuriBhavitha/Chapter_1.ipynb | 234 |
1 files changed, 234 insertions, 0 deletions
diff --git a/sample_notebooks/InnamuriBhavitha/Chapter_1.ipynb b/sample_notebooks/InnamuriBhavitha/Chapter_1.ipynb new file mode 100755 index 00000000..3369137f --- /dev/null +++ b/sample_notebooks/InnamuriBhavitha/Chapter_1.ipynb @@ -0,0 +1,234 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 1 CRYSTAL STRUCTURES" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1_4 pgno:22" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a= 1.0\n", + "r=a/2 = 0.5\n", + "Volume of one atom ,v=((4∗%pi∗(rˆ3))/3)= 0.523598775598\n", + "Total Volume of the cube ,V=aˆ3 = 1.0\n", + "Fp(S.C)=(v∗100/V)= 52.3598775598\n" + ] + } + ], + "source": [ + "#exa 1.4\n", + "from math import pi\n", + "a=1.\n", + "print \"a= \",a # initializing value of lattice constant(a)=1.\n", + "r=a/2.\n", + "print \"r=a/2 = \",r # initializing value of radius of atom for simple cubic .\n", + "v=((4*pi*(r**3))/3)\n", + "print \"Volume of one atom ,v=((4∗%pi∗(rˆ3))/3)= \",v # calcuation . \n", + "V=a**3\n", + "print \"Total Volume of the cube ,V=aˆ3 = \",V # calcuation .\n", + "Fp=(v*100/V)\n", + "print \"Fp(S.C)=(v∗100/V)= \",Fp,# calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1_5 pgno:24" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a= 1.0\n", + "Radius of the atoms,r=(sqrt(3)∗(aˆ2/4)) = 0.433012701892\n", + "Volume of two atom,v=((4∗pi∗(rˆ3))/3)∗2 = 0.680174761588\n", + "Total Volume of the cube ,V=aˆ3 = 1.0\n", + "Fp(B.C.C)=(v∗100/V)= 68.0174761588 %\n" + ] + } + ], + "source": [ + "#exa 1.5\n", + "from math import sqrt\n", + "a=1.\n", + "print \"a= \",a # initializing value of lattice constant(a)=1.\n", + "r=(sqrt(3)*(a**2/4))\n", + "print \"Radius of the atoms,r=(sqrt(3)∗(aˆ2/4)) = \",r # initializing value of radius of atom for BCC.\n", + "v=((4*pi*(r**3))/3)*2\n", + "print \"Volume of two atom,v=((4∗pi∗(rˆ3))/3)∗2 = \",v # calcuation \n", + "V=a**3\n", + "print \"Total Volume of the cube ,V=aˆ3 = \",V # calcuation .\n", + "Fp=(v*100/V)\n", + "print \"Fp(B.C.C)=(v∗100/V)= \",Fp,\"%\" # calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## example 1_6 pgno:25" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a= 1\n", + "Radius of the atom,r=(a/(2∗sqrt(2)))= 0.353553390593\n", + "Volume of the four atom,v=(((4∗pi∗(rˆ3))/3)∗4)= 0.740480489693\n", + "Total volume of the cube ,V=aˆ3= 2\n", + "Fp(F.C.C)=(v∗100/V)= 37.0240244847 %\n" + ] + } + ], + "source": [ + "#exa 1.6\n", + "a=1\n", + "print \"a= \",a # initializing value of lattice constant(a)=1.\n", + "r=(a/(2*sqrt(2)))\n", + "print \"Radius of the atom,r=(a/(2∗sqrt(2)))= \",r # initializing value of radius of atom for FCC .\n", + "v=(((4*pi*(r**3))/3)*4)\n", + "print \"Volume of the four atom,v=(((4∗pi∗(rˆ3))/3)∗4)= \",v # calcuation \n", + "V=a^3\n", + "print \"Total volume of the cube ,V=aˆ3= \",V # calcuation .\n", + "Fp=(v*100/V)\n", + "print \"Fp(F.C.C)=(v∗100/V)= \",Fp,\"%\" # calculation\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## example 1_8 pgno:26" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a= 1\n", + "Radius of the atom , r=(sqrt (3)∗a/8))= 0.216506350946\n", + "v=(((4∗pi∗(rˆ3))/3)∗8) = 0.340087380794\n", + "V=aˆ3= 2\n", + "Fp(Diamond)=(v∗100/V) = 17.0043690397 %\n" + ] + } + ], + "source": [ + "#Exa 1.8 \n", + "a=1\n", + "print \"a= \",a # initializing value of lattice constant(a)=1.\n", + "r=((sqrt(3)*a/8))\n", + "print \"Radius of the atom , r=(sqrt (3)∗a/8))= \",r # initializing value of radius of atom for diamond .\n", + "v=(((4*pi*(r**3))/3)*8)\n", + "print \"v=(((4∗pi∗(rˆ3))/3)∗8) = \",v # calcuation .\n", + "V=a^3\n", + "print \"V=aˆ3= \",V # calcuation .\n", + "Fp=(v*100/V)\n", + "print \"Fp(Diamond)=(v∗100/V) = \",Fp,\"%\" # calculation\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## example 1_9 pgno:28" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a = 5e-08 cm\n", + "Radius of the atom,r=(sqrt(3)∗(a/4))= 2.16506350946e-08\n", + "Volume of the two atoms ,v=((4∗pi∗(rˆ3))/3)∗2= 8.50218451985e-23\n", + "Total Volume of the cube ,V=aˆ3 = 1.25e-22\n", + "Fp(B.C.C)=(v∗100/V) = 68.0174761588 %\n" + ] + } + ], + "source": [ + "#exa 1.9\n", + "a=5*10**-8\n", + "print \"a = \",a,\" cm\" # initializing value of lattice constant .\n", + "r=(sqrt(3)*(a/4))\n", + "print \"Radius of the atom,r=(sqrt(3)∗(a/4))= \",r # initializing value of radius of atom for BCC.\n", + "v=((4*pi*(r**3))/3)*2\n", + "print \"Volume of the two atoms ,v=((4∗pi∗(rˆ3))/3)∗2= \",v # calcuation .\n", + "V=a**3\n", + "print \"Total Volume of the cube ,V=aˆ3 = \",V # calcuation .\n", + "Fp=(v*100/V)\n", + "print \"Fp(B.C.C)=(v∗100/V) = \",Fp,\"%\" # calculation" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |