summaryrefslogtreecommitdiff
path: root/sample_notebooks/AnkitKumar/chapter6.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'sample_notebooks/AnkitKumar/chapter6.ipynb')
-rwxr-xr-xsample_notebooks/AnkitKumar/chapter6.ipynb295
1 files changed, 295 insertions, 0 deletions
diff --git a/sample_notebooks/AnkitKumar/chapter6.ipynb b/sample_notebooks/AnkitKumar/chapter6.ipynb
new file mode 100755
index 00000000..ca369989
--- /dev/null
+++ b/sample_notebooks/AnkitKumar/chapter6.ipynb
@@ -0,0 +1,295 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Ch-6 Xrays"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.1 : Wavelength of X-rays: Pg: 156"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "h = 6.6e-034; # Planck's constant, J-s\n",
+ "V = 50000; # Potential difference, volts\n",
+ "c = 3e+08; # Velocity of light, m/s\n",
+ "e = 1.6e-019; # Charge of an electron, coulombs\n",
+ "L_1 = h*c/(e*V); # wavelength of X-rays, m\n",
+ "L = L_1/1e-010; # wavelength of X-rays, angstorm\n",
+ "print \"\\nThe shortest wavelength of X-rays = %6.4f angstorm\" % L"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ "The shortest wavelength of X-rays = 0.2475 angstorm\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.2 : Planck's constant: Pg: 156"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "L = 24.7e-012; # Wavelength of X-rays, m\n",
+ "V = 50000; # Potential difference, volts\n",
+ "c = 3e+08; # Velocity of light, m/s\n",
+ "e = 1.6e-019; # Charge of an electron, coulombs\n",
+ "# Since e*V = h*c/L; # Energy required by an electron to move through a potential barrier of one volt, joules\n",
+ "# solving for h\n",
+ "h = e*V*L/c; # Planck's constant, Joule second\n",
+ "print \"h = %3.1e Js \" %h"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "h = 6.6e-34 Js \n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.3 : Short wavelength limit : Pg: 156"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "V = 50000; # Potential difference, volts\n",
+ "h = 6.624e-034; # Planck's constant, Js\n",
+ "c = 3e+08; # Velocity of light, m/s\n",
+ "e = 1.6e-019; # Charge of an electron, coulombs\n",
+ "# Since e*V = h*c/L; # Energy required by an electron to move through a potential barrier of one volt, joules\n",
+ "# solving for L\n",
+ "L = h*c/(e*V); # Short wavelength limit of X-ray, m\n",
+ "print \"Short wavelength limit of X-ray = %6.4f angstorm\" %(L/1E-10)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Short wavelength limit of X-ray = 0.2484 angstorm\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.4 : Wavelength limit of X-rays : Pg: 157"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "V = 20000; # Potential difference, volt\n",
+ "h = 6.624e-034; # Planck's constant, Js\n",
+ "c = 3e+08; # Velocity of light, m/s\n",
+ "e = 1.6e-019; # Charge of an electron, coulombs\n",
+ "# Since e*V = h*c/L; # Energy required by an electron to move through a potential barrier of one volt, joules\n",
+ "# solving for L\n",
+ "L = h*c/(e*V); # Wavelength limit of X-rays, m\n",
+ "print \"Short wavelength limit of X-ray = %6.4f angstorm\" % (L/1E-010);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Short wavelength limit of X-ray = 0.6210 angstorm\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.5 : Minimum voltage of an X-ray tube : Pg: 157"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "h = 6.625e-034; # Planck's constant, Js\n",
+ "c = 3e+08; # Velocity of light, m/s\n",
+ "e = 1.6e-019; # Charge of an electron, coulombs\n",
+ "L = 1e-010; # Wavelength of X-rays, m\n",
+ "# Since e*V = h*c/L; # Energy required by an electron to move through a potential barrier of one volt, joules\n",
+ "# solving for V\n",
+ "V = h*c/(L*e); # Potential difference, volts\n",
+ "print \"The minimum voltage of an X-ray tube = %5.2f kV\"%(V/1e+03);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The minimum voltage of an X-ray tube = 12.42 kV\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.5 : Minimum voltage of an X-ray tube : Pg: 157"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "h = 6.625e-034; # Planck's constant, Js\n",
+ "c = 3e+08; # Velocity of light, m/s\n",
+ "e = 1.6e-019; # Charge of an electron, coulombs\n",
+ "L = 1e-010; # Wavelength of X-rays, m\n",
+ "# Since e*V = h*c/L; # Energy required by an electron to move through a potential barrier of one volt, joules\n",
+ "# solving for V\n",
+ "V = h*c/(L*e); # Potential difference, volts\n",
+ "print \"The minimum voltage of an X-ray tube = %5.2f kV\"%( V/1e+03)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The minimum voltage of an X-ray tube = 12.42 kV\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.6 : Minimum wavelength emitted by an X-ray tube : Pg: 157"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "h = 6.625e-034; # Planck's constant, Js\n",
+ "c = 3e+08; # Velocity of light, m/s\n",
+ "e = 1.6e-019; # Charge of an electron, coulombs\n",
+ "V = 4.5e+04; # Accelerating potential of X-ray tube, volt\n",
+ "# Since e*V = h*c/L_min; # Energy required by an electron to move through a potential barrier of one volt, joules\n",
+ "# solving for L_min\n",
+ "L_min = h*c/(V*e); # Minimum wavelength emitted by an X-ray tube, m\n",
+ "print \"The minimum wavelength emitted by the X-ray tube = %5.3f angstrom\"%(L_min/1e-010);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The minimum wavelength emitted by the X-ray tube = 0.276 angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.7: Critical voltage for stimualted emission : Pg: 158"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "h = 6.625e-034; # Planck's constant, Js\n",
+ "c = 3e+08; # Velocity of light, m/s\n",
+ "e = 1.6e-019; # Charge of an electron, coulombs\n",
+ "L_k = 0.178e-010; # Wavelength of k absorption egde of X-rays, m\n",
+ "# Since e*V_critical = h*c/L; # Energy required by an electron to move through a potential barrier of one volt, joules\n",
+ "# solving for V_critical\n",
+ "V_critical = h*c/(L_k*e); # Crtical voltage for stimulated enission, volt\n",
+ "print \"The critical voltage for stimulated emission = %4.1f kV\"%(V_critical/1e+03);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The critical voltage for stimulated emission = 69.8 kV\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}