diff options
Diffstat (limited to 'sample_notebooks/AnkitKumar/chapter6.ipynb')
-rwxr-xr-x | sample_notebooks/AnkitKumar/chapter6.ipynb | 295 |
1 files changed, 295 insertions, 0 deletions
diff --git a/sample_notebooks/AnkitKumar/chapter6.ipynb b/sample_notebooks/AnkitKumar/chapter6.ipynb new file mode 100755 index 00000000..ca369989 --- /dev/null +++ b/sample_notebooks/AnkitKumar/chapter6.ipynb @@ -0,0 +1,295 @@ +{ + "metadata": { + "name": "", + "signature": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Ch-6 Xrays" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex6.1 : Wavelength of X-rays: Pg: 156" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "h = 6.6e-034; # Planck's constant, J-s\n", + "V = 50000; # Potential difference, volts\n", + "c = 3e+08; # Velocity of light, m/s\n", + "e = 1.6e-019; # Charge of an electron, coulombs\n", + "L_1 = h*c/(e*V); # wavelength of X-rays, m\n", + "L = L_1/1e-010; # wavelength of X-rays, angstorm\n", + "print \"\\nThe shortest wavelength of X-rays = %6.4f angstorm\" % L" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "The shortest wavelength of X-rays = 0.2475 angstorm\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex6.2 : Planck's constant: Pg: 156" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "L = 24.7e-012; # Wavelength of X-rays, m\n", + "V = 50000; # Potential difference, volts\n", + "c = 3e+08; # Velocity of light, m/s\n", + "e = 1.6e-019; # Charge of an electron, coulombs\n", + "# Since e*V = h*c/L; # Energy required by an electron to move through a potential barrier of one volt, joules\n", + "# solving for h\n", + "h = e*V*L/c; # Planck's constant, Joule second\n", + "print \"h = %3.1e Js \" %h" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "h = 6.6e-34 Js \n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex6.3 : Short wavelength limit : Pg: 156" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "V = 50000; # Potential difference, volts\n", + "h = 6.624e-034; # Planck's constant, Js\n", + "c = 3e+08; # Velocity of light, m/s\n", + "e = 1.6e-019; # Charge of an electron, coulombs\n", + "# Since e*V = h*c/L; # Energy required by an electron to move through a potential barrier of one volt, joules\n", + "# solving for L\n", + "L = h*c/(e*V); # Short wavelength limit of X-ray, m\n", + "print \"Short wavelength limit of X-ray = %6.4f angstorm\" %(L/1E-10)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Short wavelength limit of X-ray = 0.2484 angstorm\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex6.4 : Wavelength limit of X-rays : Pg: 157" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "V = 20000; # Potential difference, volt\n", + "h = 6.624e-034; # Planck's constant, Js\n", + "c = 3e+08; # Velocity of light, m/s\n", + "e = 1.6e-019; # Charge of an electron, coulombs\n", + "# Since e*V = h*c/L; # Energy required by an electron to move through a potential barrier of one volt, joules\n", + "# solving for L\n", + "L = h*c/(e*V); # Wavelength limit of X-rays, m\n", + "print \"Short wavelength limit of X-ray = %6.4f angstorm\" % (L/1E-010);" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Short wavelength limit of X-ray = 0.6210 angstorm\n" + ] + } + ], + "prompt_number": 16 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex6.5 : Minimum voltage of an X-ray tube : Pg: 157" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "h = 6.625e-034; # Planck's constant, Js\n", + "c = 3e+08; # Velocity of light, m/s\n", + "e = 1.6e-019; # Charge of an electron, coulombs\n", + "L = 1e-010; # Wavelength of X-rays, m\n", + "# Since e*V = h*c/L; # Energy required by an electron to move through a potential barrier of one volt, joules\n", + "# solving for V\n", + "V = h*c/(L*e); # Potential difference, volts\n", + "print \"The minimum voltage of an X-ray tube = %5.2f kV\"%(V/1e+03);" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The minimum voltage of an X-ray tube = 12.42 kV\n" + ] + } + ], + "prompt_number": 17 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex6.5 : Minimum voltage of an X-ray tube : Pg: 157" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "h = 6.625e-034; # Planck's constant, Js\n", + "c = 3e+08; # Velocity of light, m/s\n", + "e = 1.6e-019; # Charge of an electron, coulombs\n", + "L = 1e-010; # Wavelength of X-rays, m\n", + "# Since e*V = h*c/L; # Energy required by an electron to move through a potential barrier of one volt, joules\n", + "# solving for V\n", + "V = h*c/(L*e); # Potential difference, volts\n", + "print \"The minimum voltage of an X-ray tube = %5.2f kV\"%( V/1e+03)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The minimum voltage of an X-ray tube = 12.42 kV\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex6.6 : Minimum wavelength emitted by an X-ray tube : Pg: 157" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "h = 6.625e-034; # Planck's constant, Js\n", + "c = 3e+08; # Velocity of light, m/s\n", + "e = 1.6e-019; # Charge of an electron, coulombs\n", + "V = 4.5e+04; # Accelerating potential of X-ray tube, volt\n", + "# Since e*V = h*c/L_min; # Energy required by an electron to move through a potential barrier of one volt, joules\n", + "# solving for L_min\n", + "L_min = h*c/(V*e); # Minimum wavelength emitted by an X-ray tube, m\n", + "print \"The minimum wavelength emitted by the X-ray tube = %5.3f angstrom\"%(L_min/1e-010);" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The minimum wavelength emitted by the X-ray tube = 0.276 angstrom\n" + ] + } + ], + "prompt_number": 20 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex6.7: Critical voltage for stimualted emission : Pg: 158" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "h = 6.625e-034; # Planck's constant, Js\n", + "c = 3e+08; # Velocity of light, m/s\n", + "e = 1.6e-019; # Charge of an electron, coulombs\n", + "L_k = 0.178e-010; # Wavelength of k absorption egde of X-rays, m\n", + "# Since e*V_critical = h*c/L; # Energy required by an electron to move through a potential barrier of one volt, joules\n", + "# solving for V_critical\n", + "V_critical = h*c/(L_k*e); # Crtical voltage for stimulated enission, volt\n", + "print \"The critical voltage for stimulated emission = %4.1f kV\"%(V_critical/1e+03);" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The critical voltage for stimulated emission = 69.8 kV\n" + ] + } + ], + "prompt_number": 21 + } + ], + "metadata": {} + } + ] +} |