summaryrefslogtreecommitdiff
path: root/modern_physics_by_Satish_K._Gupta/chap30_1.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'modern_physics_by_Satish_K._Gupta/chap30_1.ipynb')
-rw-r--r--modern_physics_by_Satish_K._Gupta/chap30_1.ipynb235
1 files changed, 235 insertions, 0 deletions
diff --git a/modern_physics_by_Satish_K._Gupta/chap30_1.ipynb b/modern_physics_by_Satish_K._Gupta/chap30_1.ipynb
new file mode 100644
index 00000000..cf038d52
--- /dev/null
+++ b/modern_physics_by_Satish_K._Gupta/chap30_1.ipynb
@@ -0,0 +1,235 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:75345a10ab4b01b2d63b7c49ca20de9a23e8e81cbab11c7f6d702383f9b2feef"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 30 Structure Of Nucleus"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 30.1 Page no 840"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "A1=197\n",
+ "A2=107.0\n",
+ "\n",
+ "#Calculation\n",
+ "R=(A1/A2)**(0.3)\n",
+ "\n",
+ "#Result\n",
+ "print\"The ratio of the nuclear radii of the gold and silver isotope is\",round(R,3)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The ratio of the nuclear radii of the gold and silver isotope is 1.201\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 30.2 Page no 840"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "R=1.2*10**-15 #m\n",
+ "M=1.67*10**-27 #kg\n",
+ "P1=10**3 #kg m**-3\n",
+ "\n",
+ "#Calculation\n",
+ "import math\n",
+ "V=1.3*math.pi*(R**3)\n",
+ "P=M/V\n",
+ "A=P/P1\n",
+ "\n",
+ "#Result\n",
+ "print\"Nuclear matter is denser than water is\",round(A*10**-14,3),\"*10**14\",\"times\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Nuclear matter is denser than water is 2.366 10**14 times\n"
+ ]
+ }
+ ],
+ "prompt_number": 42
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 30.3 Page no 840"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "Mh=4.00150 #a.m.u.\n",
+ "Mp=1.00728 #a.m.u.\n",
+ "Mn=1.00867 #a.m.u.\n",
+ "W0=931.5 #MeV\n",
+ "\n",
+ "#Calculation\n",
+ "A=((2*Mp)+(2*Mn))-Mh\n",
+ "A1=A*W0\n",
+ "\n",
+ "#Result\n",
+ "print\"Binding energy of a-particle is\",round(A1,2),\"MeV\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Binding energy of a-particle is 28.32 MeV\n"
+ ]
+ }
+ ],
+ "prompt_number": 49
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 30.4 Page no 840"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "Mp=1.007275 #a.m.u.\n",
+ "Mn=1.008665 #a.m.u.\n",
+ "Mh=2.013553 #a.m.u.\n",
+ "S=2.0\n",
+ "U=931.5\n",
+ "\n",
+ "#Calculation\n",
+ "A=(Mp+Mn)-Mh\n",
+ "P=A/S\n",
+ "W=A*U\n",
+ "L=W/S\n",
+ "\n",
+ "#Result\n",
+ "print\"The mass defect is\",A,\"a.m.u.\" \n",
+ "print\"The packing fraction is\",P,\"a.m.u.\"\n",
+ "print\"The binding energy of deutron is\",round(W,2),\"MeV\"\n",
+ "print\"The binding energy of per nucleon of deutron is\",round(L,2),\"MeV\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The mass defect is 0.002387 a.m.u.\n",
+ "The packing fraction is 0.0011935 a.m.u.\n",
+ "The binding energy of deutron is 2.22 MeV\n",
+ "The binding energy of per nucleon of deutron is 1.11 MeV\n"
+ ]
+ }
+ ],
+ "prompt_number": 62
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 30.5 Page no 840"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "Mh=1.007825 #a.m.u.\n",
+ "Mn=1.008665 #a.m.u.\n",
+ "Mp=55.934939 #a.m.u.\n",
+ "Mb=208.980388 #a.m.u.\n",
+ "A=56.0\n",
+ "Z=26\n",
+ "S=931.5\n",
+ "A1=209.0\n",
+ "Z1=83\n",
+ "\n",
+ "#Calculation\n",
+ "W=A-Z\n",
+ "Q=((Z*Mh+W*Mn)-Mp)*S\n",
+ "R=Q/A\n",
+ "W1=A1-Z1\n",
+ "Q1=((Z1*Mh+W1*Mn)-Mb)*S\n",
+ "R1=Q1/A1\n",
+ "\n",
+ "#Result\n",
+ "print\"The binding energy of the nuclri of Fe is\",round(Q,2),\"MeV\"\n",
+ "print\"The binding energy of the nuclei of Bi is\",round(Q1,2),\"MeV\"\n",
+ "print\"Binding energy per nucleon of Fe is\",round(R,2),\"MeV\"\n",
+ "print\"Binding energy per nucleon of Bi is\",round(R1,3),\"MeV\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The binding energy of the nuclri of Fe is 492.26 MeV\n",
+ "The binding energy of the nuclei of Bi is 1640.26 MeV\n",
+ "Binding energy per nucleon of Fe is 8.79 MeV\n",
+ "Binding energy per nucleon of Bi is 7.848 MeV\n"
+ ]
+ }
+ ],
+ "prompt_number": 80
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file