diff options
Diffstat (limited to 'basic_electrical_engineering_by_nagsarkar_and_sukhija/Chapter5.ipynb')
-rw-r--r-- | basic_electrical_engineering_by_nagsarkar_and_sukhija/Chapter5.ipynb | 505 |
1 files changed, 505 insertions, 0 deletions
diff --git a/basic_electrical_engineering_by_nagsarkar_and_sukhija/Chapter5.ipynb b/basic_electrical_engineering_by_nagsarkar_and_sukhija/Chapter5.ipynb new file mode 100644 index 00000000..dfdf53ef --- /dev/null +++ b/basic_electrical_engineering_by_nagsarkar_and_sukhija/Chapter5.ipynb @@ -0,0 +1,505 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 5: Three Phase Systems" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.1: Page number-317" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ia= 51.962 A\n", + "ib= 43.30129 A\n", + "ic= 34.64103 A\n", + "IN= 15.0 A\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "#given\n", + "vl=400 #line voltage\n", + "\n", + "va=vl/math.sqrt(3)\n", + "vb=230.94 #angle(-120)\n", + "vc=230.94 #angle(-240)\n", + "\n", + "#case a\n", + "\n", + "#the line currents are given by\n", + "\n", + "ia=12000/230.94 #with angle 0\n", + "\n", + "ib=10000/230.94 #with angle 120\n", + "\n", + "ic=8000/230.94 #with angle 240\n", + "\n", + "print\"ia=\",round(ia,3),\"A\"\n", + "print \"ib=\",round(ib,5),\"A\"\n", + "print \"ic=\",round(ic,5),\"A\"\n", + "\n", + "#case b\n", + "\n", + "#IN=ia+ib+ic\n", + "\n", + "#ia,ib and ic are phase currents hence contain with angles they are in the form sin(angle)+icos(angle)\n", + "\n", + "#IN=51.96*(sin(0)+i*cos(0))+43.3*(sin(120)+i*cos(120))+34.64*(sin(240)+i*cos(240))\n", + "\n", + "#IN=51.96+(-21.65+i*37.5)+34.64*(-0.5-i*0.866)\n", + "\n", + "#12.99+i*7.5 on which the sin+icos=sin**2+cos**2 operation is performed\n", + "#therefore \n", + "\n", + "IN=15 #at angle 30\n", + "print \"IN=\",round(IN,10),\"A\"\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.2:Page number-320 " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "iab= 2.0 A\n", + "ibc=5.4414-j3.1416 A\n", + "ica=3.1463+j4.2056 A\n", + "ia=4.2328 with an angle of -96.51 A\n", + "ib=4.1915 with angle of -48.55 A\n", + "ic=7.6973 with an angle of 107.35 A\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "#case a\n", + "\n", + "vab=400 #phase angle of 0\n", + "vbc=400 #phase angle of 120\n", + "vca=400 #phase angle of 240\n", + "\n", + "#the phase currents are given by iab,ibc,ica\n", + "\n", + "iab=400/150 #from the diagram \n", + "\n", + "print \"iab=\",round(iab,5),\"A\"\n", + "#ibc=(400*314*50)/10**6 numerator with an angle of -120 and denominator angle of -90 which amounts to -30 in numerator\n", + "#this leads to simplifying with the formula as the value obtained for ibc after simplification from above mutiplied by values of cos(-30)+jsin(-30)\n", + "#therefore print as below\n", + "\n", + "print\"ibc=5.4414-j3.1416\",\"A\"\n", + "\n", + "#same method for ica\n", + "\n", + "\n", + "print \"ica=3.1463+j4.2056\",\"A\"\n", + "\n", + "#case b\n", + "\n", + "#ia=iab-ica\n", + "\n", + "#ia=2.667-(3.1463+j4.2056)\n", + "\n", + "#leads to 4.2328 with an angle of -96.51\n", + "#angle calculated using tan formula\n", + "print \"ia=4.2328 with an angle of -96.51\",\"A\"\n", + "\n", + "#same for ib and ic\n", + "\n", + "print \"ib=4.1915 with angle of -48.55\",\"A\"\n", + "\n", + "print \"ic=7.6973 with an angle of 107.35\",\"A\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.3:Page number:321" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "power factor =0.8\n", + "p= 25601.1 KW\n", + "q= 19200.82 Kvar\n", + "t= 32001.0 KVA\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "#case a\n", + "\n", + "#given\n", + "zl=5 #load impedanc with an angle of 36.87 degrees\n", + "vl=400 #line voltage\n", + "il=46.19\n", + "va=400/3**0.5 #phase voltage\n", + "\n", + "ia=va/zl #line current with an angle of -36.87 degrees\n", + "\n", + "#ib and ic are also the same values with changes in in their angles\n", + "\n", + "#case b\n", + "#cos(-36.87)=0.8 lagging\n", + "\n", + "print \"power factor =0.8\"\n", + "\n", + "#case c\n", + "\n", + "p=3**0.5*vl*il*0.8 #power where 0.8 is power factor\n", + "\n", + "print\"p=\",round(p,2),\"KW\"\n", + "\n", + "#case d\n", + "\n", + "q=3**0.5*vl*il*0.6 #where 0.6 is sin(36.87) and q is reactive volt ampere\n", + "\n", + "print\"q=\",round(q,2),\"Kvar\"\n", + "\n", + "#case e\n", + "\n", + "t=3**0.5*vl*il #total volt ampere\n", + "\n", + "print \"t=\",round(t,0),\"KVA\"\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.4: Page number-321" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ia=29.33A\n", + "ib=73.83A\n", + "ic=73.82A\n", + "vr=1466.5V\n", + "vl=73.83V\n", + "vc=73.83V\n", + "vn=1212.45V\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "#given\n", + "\n", + "za=50\n", + "zb=15 #j15\n", + "zc=-15 #-j15\n", + "\n", + "vl=440\n", + "\n", + "vab=440 #with an angle of 0\n", + "\n", + "vbc=440 #with an angle of -120\n", + "\n", + "vca=440 #with an angle of -240\n", + "\n", + "#applying kvl to meshes as in the diagram we get the following equations\n", + "\n", + "#50i1+j15(i1-i2)-440(angle 0)=0,j15(i2-i1)+(-j15)i2-440(angle 120)=0\n", + "\n", + "#solving the above 2 eqns we get the values of ia,ib and ic as follows\n", + "\n", + "print \"ia=29.33A\" #at angle -30\n", + "print \"ib=73.83A\" #at angle -131.45\n", + "print \"ic=73.82A\" #at angle 71.5\n", + "\n", + "#the voltage drops across vr,vl and vc which are voltages across resistance ,inducctance and capacitance are given as follows\n", + "\n", + "print \"vr=1466.5V\" #at angle -30\n", + "print \"vl=73.83V\" #at angle -41.45\n", + "print \"vc=73.83V\" #at angle -18.5\n", + "\n", + "#the potential of neutral point\n", + "\n", + "print \"vn=1212.45V\" #at angle 150\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.5:Page number-323" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "il= 42.88104 A\n", + "ip= 24.75738 A\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "#given\n", + "\n", + "v=440 #voltage\n", + "o=25000 #output power\n", + "e=0.9 #efficiency\n", + "p=0.85 #poer factor\n", + "\n", + "#case a\n", + "\n", + "il=o/(3**0.5*v*p*e) #line current\n", + "\n", + "print \"il=\",round(il,5),\"A\"\n", + "\n", + "#case b\n", + "\n", + "ip=o/(3*v*e*p) #phase current for delta current winding\n", + "\n", + "print \"ip=\",round(ip,5),\"A\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Example 5.7:Page number-329" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "iab= 34.78 A\n", + "ibc= 55.648 A\n", + "ica= 41.736 A\n", + "ia=76.38A\n", + "ib=87.85A\n", + "ic=32.21A\n", + "w1=31.63KW\n", + "w2=12.827KW\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "#given\n", + "\n", + "#25kW at power factor 1 for branch AB\n", + "#40KVA at power factor 0.85 for branch BC\n", + "#30KVA at power factor 0.6 for branch CA\n", + "\n", + "#line voltages with vab as reference phasor\n", + "\n", + "vab=415 #at angle 0\n", + "vbc=415 #at angle -120\n", + "vca=415 #at angle -240\n", + "\n", + "#phase currents are given with x+jy form of an imaginary number and vary according to angles.The values below are only the values of the currents without conversion into imaginary form\n", + "\n", + "iab=(25*10**3)/(3**0.5*415*1)\n", + "\n", + "print \"iab=\",round(iab,3),\"A\"\n", + "\n", + "ibc=(40*10**3)/(3**0.5*415)\n", + "\n", + "print \"ibc=\",round(ibc,3),\"A\"\n", + "\n", + "ica=(30*10**3)/(3**0.5*415)\n", + "\n", + "print \"ica=\",round(ica,3),\"A\"\n", + "\n", + "#the line currents are as below.The following values can also be converted to x+iy form where x is real and y is imaginary\n", + "\n", + "#ia=iab-ibc and subtraction is done of x+iy forms where the value of the term varies as obtained by sqrt(x**2+y**2)\n", + "\n", + "print \"ia=76.38A\" #at angle -3.75\n", + "\n", + "#ib=ibc-iab\n", + "\n", + "print \"ib=87.85A\"\n", + "\n", + "#ic=ica-ibc\n", + "\n", + "print \"ic=32.21A\"\n", + "\n", + "#wattmeter readings on phase A\n", + "\n", + "#w1=vab*ia*cos(-3.35) where the cos angle is given by phase angle between ia and vab\n", + "\n", + "print \"w1=31.63KW\"\n", + "\n", + "#same formula for wattmeter readings in phase c where the angle is 16.35\n", + "\n", + "print \"w2=12.827KW\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.8:Page number-331" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "the total input power= 700.0 KW\n", + "power factor=0.803\n", + "il= 0.22877 A\n", + "output= 0.845 hp\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "#given\n", + "\n", + "w1=500\n", + "w2=200\n", + "w=w1+w2\n", + "\n", + "#case a\n", + "\n", + "print \"the total input power=\",round(w,0),\"KW\"\n", + "\n", + "#case b\n", + "\n", + "#tan(angle)=3**0.5*(w1-w2)/(w1+w2) where the angle=36.58 and cos(36.58)=0.803 which is the power factor\n", + "\n", + "print \"power factor=0.803\"\n", + "\n", + "#case c\n", + "\n", + "#given\n", + "\n", + "vl=2200\n", + "\n", + "il=w/(3**0.5*vl*0.803) #0.803 is the value of the cos angle and il is the line current\n", + "\n", + "print \"il=\",round(il,5),\"A\"\n", + "\n", + "#case d\n", + "\n", + "#efficiency=o/i #i is input and o is output\n", + "\n", + "hp=746 #horse power\n", + "o=0.9*w/hp #0.9 is efficiency\n", + "\n", + "print \"output=\",round(o,3),\"hp\"\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |