summaryrefslogtreecommitdiff
path: root/basic_electrical_engineering_by_nagsarkar_and_sukhija/Chapter5.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'basic_electrical_engineering_by_nagsarkar_and_sukhija/Chapter5.ipynb')
-rw-r--r--basic_electrical_engineering_by_nagsarkar_and_sukhija/Chapter5.ipynb505
1 files changed, 505 insertions, 0 deletions
diff --git a/basic_electrical_engineering_by_nagsarkar_and_sukhija/Chapter5.ipynb b/basic_electrical_engineering_by_nagsarkar_and_sukhija/Chapter5.ipynb
new file mode 100644
index 00000000..dfdf53ef
--- /dev/null
+++ b/basic_electrical_engineering_by_nagsarkar_and_sukhija/Chapter5.ipynb
@@ -0,0 +1,505 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5: Three Phase Systems"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.1: Page number-317"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ia= 51.962 A\n",
+ "ib= 43.30129 A\n",
+ "ic= 34.64103 A\n",
+ "IN= 15.0 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#given\n",
+ "vl=400 #line voltage\n",
+ "\n",
+ "va=vl/math.sqrt(3)\n",
+ "vb=230.94 #angle(-120)\n",
+ "vc=230.94 #angle(-240)\n",
+ "\n",
+ "#case a\n",
+ "\n",
+ "#the line currents are given by\n",
+ "\n",
+ "ia=12000/230.94 #with angle 0\n",
+ "\n",
+ "ib=10000/230.94 #with angle 120\n",
+ "\n",
+ "ic=8000/230.94 #with angle 240\n",
+ "\n",
+ "print\"ia=\",round(ia,3),\"A\"\n",
+ "print \"ib=\",round(ib,5),\"A\"\n",
+ "print \"ic=\",round(ic,5),\"A\"\n",
+ "\n",
+ "#case b\n",
+ "\n",
+ "#IN=ia+ib+ic\n",
+ "\n",
+ "#ia,ib and ic are phase currents hence contain with angles they are in the form sin(angle)+icos(angle)\n",
+ "\n",
+ "#IN=51.96*(sin(0)+i*cos(0))+43.3*(sin(120)+i*cos(120))+34.64*(sin(240)+i*cos(240))\n",
+ "\n",
+ "#IN=51.96+(-21.65+i*37.5)+34.64*(-0.5-i*0.866)\n",
+ "\n",
+ "#12.99+i*7.5 on which the sin+icos=sin**2+cos**2 operation is performed\n",
+ "#therefore \n",
+ "\n",
+ "IN=15 #at angle 30\n",
+ "print \"IN=\",round(IN,10),\"A\"\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.2:Page number-320 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "iab= 2.0 A\n",
+ "ibc=5.4414-j3.1416 A\n",
+ "ica=3.1463+j4.2056 A\n",
+ "ia=4.2328 with an angle of -96.51 A\n",
+ "ib=4.1915 with angle of -48.55 A\n",
+ "ic=7.6973 with an angle of 107.35 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#case a\n",
+ "\n",
+ "vab=400 #phase angle of 0\n",
+ "vbc=400 #phase angle of 120\n",
+ "vca=400 #phase angle of 240\n",
+ "\n",
+ "#the phase currents are given by iab,ibc,ica\n",
+ "\n",
+ "iab=400/150 #from the diagram \n",
+ "\n",
+ "print \"iab=\",round(iab,5),\"A\"\n",
+ "#ibc=(400*314*50)/10**6 numerator with an angle of -120 and denominator angle of -90 which amounts to -30 in numerator\n",
+ "#this leads to simplifying with the formula as the value obtained for ibc after simplification from above mutiplied by values of cos(-30)+jsin(-30)\n",
+ "#therefore print as below\n",
+ "\n",
+ "print\"ibc=5.4414-j3.1416\",\"A\"\n",
+ "\n",
+ "#same method for ica\n",
+ "\n",
+ "\n",
+ "print \"ica=3.1463+j4.2056\",\"A\"\n",
+ "\n",
+ "#case b\n",
+ "\n",
+ "#ia=iab-ica\n",
+ "\n",
+ "#ia=2.667-(3.1463+j4.2056)\n",
+ "\n",
+ "#leads to 4.2328 with an angle of -96.51\n",
+ "#angle calculated using tan formula\n",
+ "print \"ia=4.2328 with an angle of -96.51\",\"A\"\n",
+ "\n",
+ "#same for ib and ic\n",
+ "\n",
+ "print \"ib=4.1915 with angle of -48.55\",\"A\"\n",
+ "\n",
+ "print \"ic=7.6973 with an angle of 107.35\",\"A\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.3:Page number:321"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "power factor =0.8\n",
+ "p= 25601.1 KW\n",
+ "q= 19200.82 Kvar\n",
+ "t= 32001.0 KVA\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#case a\n",
+ "\n",
+ "#given\n",
+ "zl=5 #load impedanc with an angle of 36.87 degrees\n",
+ "vl=400 #line voltage\n",
+ "il=46.19\n",
+ "va=400/3**0.5 #phase voltage\n",
+ "\n",
+ "ia=va/zl #line current with an angle of -36.87 degrees\n",
+ "\n",
+ "#ib and ic are also the same values with changes in in their angles\n",
+ "\n",
+ "#case b\n",
+ "#cos(-36.87)=0.8 lagging\n",
+ "\n",
+ "print \"power factor =0.8\"\n",
+ "\n",
+ "#case c\n",
+ "\n",
+ "p=3**0.5*vl*il*0.8 #power where 0.8 is power factor\n",
+ "\n",
+ "print\"p=\",round(p,2),\"KW\"\n",
+ "\n",
+ "#case d\n",
+ "\n",
+ "q=3**0.5*vl*il*0.6 #where 0.6 is sin(36.87) and q is reactive volt ampere\n",
+ "\n",
+ "print\"q=\",round(q,2),\"Kvar\"\n",
+ "\n",
+ "#case e\n",
+ "\n",
+ "t=3**0.5*vl*il #total volt ampere\n",
+ "\n",
+ "print \"t=\",round(t,0),\"KVA\"\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.4: Page number-321"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ia=29.33A\n",
+ "ib=73.83A\n",
+ "ic=73.82A\n",
+ "vr=1466.5V\n",
+ "vl=73.83V\n",
+ "vc=73.83V\n",
+ "vn=1212.45V\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#given\n",
+ "\n",
+ "za=50\n",
+ "zb=15 #j15\n",
+ "zc=-15 #-j15\n",
+ "\n",
+ "vl=440\n",
+ "\n",
+ "vab=440 #with an angle of 0\n",
+ "\n",
+ "vbc=440 #with an angle of -120\n",
+ "\n",
+ "vca=440 #with an angle of -240\n",
+ "\n",
+ "#applying kvl to meshes as in the diagram we get the following equations\n",
+ "\n",
+ "#50i1+j15(i1-i2)-440(angle 0)=0,j15(i2-i1)+(-j15)i2-440(angle 120)=0\n",
+ "\n",
+ "#solving the above 2 eqns we get the values of ia,ib and ic as follows\n",
+ "\n",
+ "print \"ia=29.33A\" #at angle -30\n",
+ "print \"ib=73.83A\" #at angle -131.45\n",
+ "print \"ic=73.82A\" #at angle 71.5\n",
+ "\n",
+ "#the voltage drops across vr,vl and vc which are voltages across resistance ,inducctance and capacitance are given as follows\n",
+ "\n",
+ "print \"vr=1466.5V\" #at angle -30\n",
+ "print \"vl=73.83V\" #at angle -41.45\n",
+ "print \"vc=73.83V\" #at angle -18.5\n",
+ "\n",
+ "#the potential of neutral point\n",
+ "\n",
+ "print \"vn=1212.45V\" #at angle 150\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.5:Page number-323"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "il= 42.88104 A\n",
+ "ip= 24.75738 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#given\n",
+ "\n",
+ "v=440 #voltage\n",
+ "o=25000 #output power\n",
+ "e=0.9 #efficiency\n",
+ "p=0.85 #poer factor\n",
+ "\n",
+ "#case a\n",
+ "\n",
+ "il=o/(3**0.5*v*p*e) #line current\n",
+ "\n",
+ "print \"il=\",round(il,5),\"A\"\n",
+ "\n",
+ "#case b\n",
+ "\n",
+ "ip=o/(3*v*e*p) #phase current for delta current winding\n",
+ "\n",
+ "print \"ip=\",round(ip,5),\"A\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 5.7:Page number-329"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "iab= 34.78 A\n",
+ "ibc= 55.648 A\n",
+ "ica= 41.736 A\n",
+ "ia=76.38A\n",
+ "ib=87.85A\n",
+ "ic=32.21A\n",
+ "w1=31.63KW\n",
+ "w2=12.827KW\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#given\n",
+ "\n",
+ "#25kW at power factor 1 for branch AB\n",
+ "#40KVA at power factor 0.85 for branch BC\n",
+ "#30KVA at power factor 0.6 for branch CA\n",
+ "\n",
+ "#line voltages with vab as reference phasor\n",
+ "\n",
+ "vab=415 #at angle 0\n",
+ "vbc=415 #at angle -120\n",
+ "vca=415 #at angle -240\n",
+ "\n",
+ "#phase currents are given with x+jy form of an imaginary number and vary according to angles.The values below are only the values of the currents without conversion into imaginary form\n",
+ "\n",
+ "iab=(25*10**3)/(3**0.5*415*1)\n",
+ "\n",
+ "print \"iab=\",round(iab,3),\"A\"\n",
+ "\n",
+ "ibc=(40*10**3)/(3**0.5*415)\n",
+ "\n",
+ "print \"ibc=\",round(ibc,3),\"A\"\n",
+ "\n",
+ "ica=(30*10**3)/(3**0.5*415)\n",
+ "\n",
+ "print \"ica=\",round(ica,3),\"A\"\n",
+ "\n",
+ "#the line currents are as below.The following values can also be converted to x+iy form where x is real and y is imaginary\n",
+ "\n",
+ "#ia=iab-ibc and subtraction is done of x+iy forms where the value of the term varies as obtained by sqrt(x**2+y**2)\n",
+ "\n",
+ "print \"ia=76.38A\" #at angle -3.75\n",
+ "\n",
+ "#ib=ibc-iab\n",
+ "\n",
+ "print \"ib=87.85A\"\n",
+ "\n",
+ "#ic=ica-ibc\n",
+ "\n",
+ "print \"ic=32.21A\"\n",
+ "\n",
+ "#wattmeter readings on phase A\n",
+ "\n",
+ "#w1=vab*ia*cos(-3.35) where the cos angle is given by phase angle between ia and vab\n",
+ "\n",
+ "print \"w1=31.63KW\"\n",
+ "\n",
+ "#same formula for wattmeter readings in phase c where the angle is 16.35\n",
+ "\n",
+ "print \"w2=12.827KW\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.8:Page number-331"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "the total input power= 700.0 KW\n",
+ "power factor=0.803\n",
+ "il= 0.22877 A\n",
+ "output= 0.845 hp\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#given\n",
+ "\n",
+ "w1=500\n",
+ "w2=200\n",
+ "w=w1+w2\n",
+ "\n",
+ "#case a\n",
+ "\n",
+ "print \"the total input power=\",round(w,0),\"KW\"\n",
+ "\n",
+ "#case b\n",
+ "\n",
+ "#tan(angle)=3**0.5*(w1-w2)/(w1+w2) where the angle=36.58 and cos(36.58)=0.803 which is the power factor\n",
+ "\n",
+ "print \"power factor=0.803\"\n",
+ "\n",
+ "#case c\n",
+ "\n",
+ "#given\n",
+ "\n",
+ "vl=2200\n",
+ "\n",
+ "il=w/(3**0.5*vl*0.803) #0.803 is the value of the cos angle and il is the line current\n",
+ "\n",
+ "print \"il=\",round(il,5),\"A\"\n",
+ "\n",
+ "#case d\n",
+ "\n",
+ "#efficiency=o/i #i is input and o is output\n",
+ "\n",
+ "hp=746 #horse power\n",
+ "o=0.9*w/hp #0.9 is efficiency\n",
+ "\n",
+ "print \"output=\",round(o,3),\"hp\"\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}