summaryrefslogtreecommitdiff
path: root/backup/Optical_Communiation_by_Anasuya_Kalavar_version_backup/chapter6.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'backup/Optical_Communiation_by_Anasuya_Kalavar_version_backup/chapter6.ipynb')
-rwxr-xr-xbackup/Optical_Communiation_by_Anasuya_Kalavar_version_backup/chapter6.ipynb252
1 files changed, 252 insertions, 0 deletions
diff --git a/backup/Optical_Communiation_by_Anasuya_Kalavar_version_backup/chapter6.ipynb b/backup/Optical_Communiation_by_Anasuya_Kalavar_version_backup/chapter6.ipynb
new file mode 100755
index 00000000..2383415f
--- /dev/null
+++ b/backup/Optical_Communiation_by_Anasuya_Kalavar_version_backup/chapter6.ipynb
@@ -0,0 +1,252 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:1a1f7133700fa452f49cfaeb319a776f69d7e64235d3f11f1abd2825b262e6e8"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "chapter6 - Optical sources"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.3.1, page 6-7 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from __future__ import division\n",
+ "x=0.07 \n",
+ "Eg=1.424+1.266*x+0.266*x**2 \n",
+ "lamda=1.24/Eg #computing wavelength\n",
+ "print \"Wavlength is %.3f micrometer.\" %lamda "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Wavlength is 0.819 micrometer.\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.3.2, page 6.12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "n=1.7 #refractive index\n",
+ "L=5*10**-2 #distance between mirror\n",
+ "c=3*10**8 #speed of light\n",
+ "lamda=0.45*10**-6 #wavelength\n",
+ "k=2*n*L/lamda #computing number of modes\n",
+ "delf=c/(2*n*L) #computing mode separation\n",
+ "delf=delf*10**-9 \n",
+ "print \"Number of modes are %.2e.\\nFrequency separation is %.2f GHz.\"%(k,delf) "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Number of modes are 3.78e+05.\n",
+ "Frequency separation is 1.76 GHz.\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.7.1, page 6-26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from __future__ import division\n",
+ "tr=50 #radiative recombination lifetime\n",
+ "tnr=85 #non-radiative recombination lifetime\n",
+ "h=6.624*10**-34 #plank's constant\n",
+ "c=3*10**8 #speed of light\n",
+ "q=1.6*10**-19 #charge of electron\n",
+ "i=35*10**-3 #current\n",
+ "lamda=0.85*10**-6 #wavelength\n",
+ "t=tr*tnr/(tr+tnr) #computing total recombination time\n",
+ "eta=t/tr #computing internal quantum efficiency\n",
+ "Pint=eta*h*c*i/(q*lamda) #computing internally generated power\n",
+ "Pint=Pint*10**3\n",
+ "print \"Total recombinaiton time is %.2f ns.\\nInternal quantum efficiency is %.3f.\\nInternally generated power is %.2f mW.\" %(t,eta,Pint) \n",
+ "#answer in the book for Internal quantum efficiency & Internally generated power is wrong."
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Total recombinaiton time is 31.48 ns.\n",
+ "Internal quantum efficiency is 0.630.\n",
+ "Internally generated power is 32.20 mW.\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.8.1, page 6-34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from numpy import sqrt, pi\n",
+ "f1=10*10**6 #frequency\n",
+ "f2=100*10**6\n",
+ "t=4*10**-9 \n",
+ "Pdc=280*10**-6 #optincal output power\n",
+ "w1=2*pi*f1 #computing omega\n",
+ "Pout1=Pdc*10**6/(sqrt(1+(w1*t)**2)) #computing output power\n",
+ "w2=2*pi*f2 #computing omega\n",
+ "Pout2=Pdc*10**6/(sqrt(1+(w2*t)**2)) #computing output power\n",
+ "print \"\"\"Ouput power at 10 MHz is %.2f microwatt.\n",
+ "Ouput power at 100 MHz is %.2f microwatt.\n",
+ "Conclusion when device is drive at higher frequency the optical power reduces.\"\"\" %(Pout1,Pout2) \n",
+ "BWopt = sqrt(3)/(2*pi*t) \n",
+ "BWelec = BWopt/sqrt(2) \n",
+ "BWopt=BWopt*10**-6 \n",
+ "BWelec=BWelec*10**-6 \n",
+ "print \"3 dB optical power is %.2f MHz.\\n3 dB electrical power is %.2f MHz.\" %(BWopt,BWelec) \n",
+ "#calculation error. In the book square term in the denominater is not taken.\n",
+ "#answers in the book are wrong."
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Ouput power at 10 MHz is 271.55 microwatt.\n",
+ "Ouput power at 100 MHz is 103.52 microwatt.\n",
+ "Conclusion when device is drive at higher frequency the optical power reduces.\n",
+ "3 dB optical power is 68.92 MHz.\n",
+ "3 dB electrical power is 48.73 MHz.\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.8.2, page 6-35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "n1=3.5 #refractive index\n",
+ "n=1 #refractive index of air\n",
+ "F=0.69 #transmission factor\n",
+ "eta = 100*(n1*(n1+1)**2)**-1 #computing eta\n",
+ "print \"eta external is %.1f percent i.e. small fraction of intrnally generated opticalpower is emitted from the device.\" %eta \n",
+ "r= 100*F*n**2/(4*n1**2) #computing ratio of Popt/Pint\n",
+ "print \"Popt/Pint is %.1f percent\" %r\n",
+ "#printing mistake at final answer."
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "eta external is 1.4 percent i.e. small fraction of intrnally generated opticalpower is emitted from the device.\n",
+ "Popt/Pint is 1.4 percent\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.8.3, page 6-39"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from numpy import log, exp\n",
+ "beta0=1.85*10**7 \n",
+ "T=293 #temperature\n",
+ "k=1.38*10**-23 #Boltzman constant\n",
+ "Ea=0.9*1.6*10**-19 \n",
+ "theta=0.65 #thershold\n",
+ "betar=beta0*exp(-Ea/(k*T)) \n",
+ "t=-log(theta)/betar \n",
+ "print \"Degradation rate is %.1e per hour.\\nOperating lifetime is %.1e hour.\" %(betar,t) \n",
+ "#answer in the book for Degradation rate & Operating lifetime is wrong."
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Degradation rate is 6.3e-09 per hour.\n",
+ "Operating lifetime is 6.8e+07 hour.\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file