summaryrefslogtreecommitdiff
path: root/backup/Modern_Physics_version_backup/Chapter3.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'backup/Modern_Physics_version_backup/Chapter3.ipynb')
-rwxr-xr-xbackup/Modern_Physics_version_backup/Chapter3.ipynb298
1 files changed, 0 insertions, 298 deletions
diff --git a/backup/Modern_Physics_version_backup/Chapter3.ipynb b/backup/Modern_Physics_version_backup/Chapter3.ipynb
deleted file mode 100755
index 72876741..00000000
--- a/backup/Modern_Physics_version_backup/Chapter3.ipynb
+++ /dev/null
@@ -1,298 +0,0 @@
-{
- "metadata": {
- "name": "Chapter3"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter 3:The particle like properties of electromagnetic radiation"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 3.1 Page 69"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#initiation of variable\n",
- "from math import sin,pi\n",
- "w=0.250; theta=26.3;n=1 # n=1 for hydrogen atom and rest all are given values\n",
- "\n",
- "#calculation\n",
- "d=n*w/(2*sin(theta*pi/180)); # bragg's law\n",
- "\n",
- "#result\n",
- "print \"Hence the atomic spacing in nm is\",round(d,3);"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Hence the atomic spacing in nm is 0.282\n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 3.2 Page 73"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#initiation of variable\n",
- "from math import pi,sin\n",
- "I=120.0;r=0.1*10**-9;Eev=2.3 #I-intensity in W/m^2 r in m & E in electron volt\n",
- "A=pi*r**2;K=1.6*10**-19; # A=area and K is conversion factor from ev to joules\n",
- "\n",
- "#calculation\n",
- "t= Eev*K/(I*A); #time interval\n",
- "\n",
- "#result\n",
- "print \"The value of time interval was found out to be in sec is\",round(t,3);\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The value of time interval was found out to be in sec is 0.098\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 3.3 Page 76"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#initiation of variable\n",
- "from math import pi,sin\n",
- "w=650.0*10**-9;h=6.63*10**-34;c=3*10**8; #given values and constant taken in comfortable units\n",
- "\n",
- "#calculation\n",
- "E=h*c/w; \n",
- "E1=E/(1.6*10**-19);\n",
- "\n",
- "#result\n",
- "print \"The Energy of the electron in J \",E,\"which is equivalent to in eV is \", round(E1,3);\n",
- "print \"The momentum of electron is p=E/c i.e is \", round(E1,3);\n",
- "\n",
- "#part b\n",
- "E2=2.40; #given energy of photon.\n",
- "\n",
- "#calculation\n",
- "w2=h*c*10**9/(E2*1.6*10**9); #converting the energy in to eV and nm \n",
- "\n",
- "#result\n",
- "print \"The wavelength of the photon in m is\",round(w2*10**28,0)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The Energy of the electron in J 3.06e-19 which is equivalent to in eV is 1.912\n",
- "The momentum of electron is p=E/c i.e is 1.912\n",
- "The wavelength of the photon in m is 518.0\n"
- ]
- }
- ],
- "prompt_number": 8
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 3.4 Page 78"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#initiation of variable\n",
- "hc=1240.0; phi=4.52 #both the values are in eV\n",
- "\n",
- "#calcualtion\n",
- "w1=hc/phi; \n",
- "\n",
- "#result\n",
- "print \"The cutoff wavelength of the tungsten metal in nm is \",round(w1,3);\n",
- "\n",
- "#part b\n",
- "w2=198.0; #given value of wavelength \n",
- "\n",
- "#calculation\n",
- "Kmax=(hc/w2)-phi;\n",
- "\n",
- "#result\n",
- "print 'The max value of kinetic energy in eV is',round(Kmax,3);\n",
- "\n",
- "#part c\n",
- "Vs=Kmax;\n",
- "\n",
- "#result\n",
- "print \"The numerical value of the max kinetic energy is same as stopping potential in volts.Hence in V is\",round(Vs,3);"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The cutoff wavelength of the tungsten metal in fnm is 274.336\n",
- "The max value of kinetic energy in eV is 1.743\n",
- "The numerical value of the max kinetic energy is same as stopping potential in volts.Hence in V is 1.743\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 3.5 Page 80"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#initiation of variable\n",
- "T1=293.0; Kw=2.898*10**-3;\n",
- "\n",
- "#calculation\n",
- "w1=Kw/T1;\n",
- "\n",
- "#result\n",
- "print \"The wavelength at which emits maximum radiation in um. is\",round(w1*10**6,3);\n",
- "\n",
- "#part b\n",
- "w2=650.0*10**-9; \n",
- "T2=Kw/w2;\n",
- "\n",
- "#result\n",
- "print 'The temperature of the object must be raised to in K. is',round(T2,3);\n",
- "\n",
- "#part c\n",
- "x=(T2/T1)**4; \n",
- "\n",
- "#result\n",
- "print \"Thus the thermal radiation at higher temperature in times the room (lower) tempertaure. is\",round(x,3);"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The wavelength at which emits maximum radiation in um. is 9.891\n",
- "The temperature of the object must be raised to in K. is 4458.462\n",
- "Thus the thermal radiation at higher temperature in times the room (lower) tempertaure. is 53612.939\n"
- ]
- }
- ],
- "prompt_number": 8
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 3.6 Page 82"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#initiation of variable\n",
- "#part a\n",
- "from math import cos, sin, pi,atan\n",
- "w1=0.24;wc=0.00243;theta=60.0; #given values w=wavelength(lambeda)\n",
- "\n",
- "#calculation\n",
- "w2=w1+(wc*(1-cos(theta*pi/180))); \n",
- "\n",
- "#result\n",
- "print \"The wavelength of x-rays after scattering in nm is\",round(w2,5);\n",
- "\n",
- "#part b;\n",
- "hc=1240;\n",
- "E2=hc/w2;E1=hc/w1; \n",
- "\n",
- "#result\n",
- "print \"The energy of scattered x-rays in eV is\",round(E2,3);\n",
- "\n",
- "#part c\n",
- "K= E1-E2; #The kinetic energy is the difference in the energy before and after the collision;\n",
- "\n",
- "print \"The kinetic energy of the x-rays in eV is\",round(K,3);\n",
- "\n",
- "#part d\n",
- "phi2=atan(E2*sin(theta*pi/180)/(E1-E2*cos(theta*pi/180)))\n",
- "\n",
- "#result\n",
- "print \"The direction of the scattered eletron in degrees is\",round(phi2*180/pi,3);"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The wavelength of x-rays after scattering in nm is 0.24121\n",
- "The energy of scattered x-rays in eV is 5140.642\n",
- "The kinetic energy of the x-rays in eV is 26.025\n",
- "The direction of the scattered eletron in degrees is 59.749\n"
- ]
- }
- ],
- "prompt_number": 9
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file