summaryrefslogtreecommitdiff
path: root/backup/Modern_Physics_version_backup/Chapter12.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'backup/Modern_Physics_version_backup/Chapter12.ipynb')
-rwxr-xr-xbackup/Modern_Physics_version_backup/Chapter12.ipynb632
1 files changed, 632 insertions, 0 deletions
diff --git a/backup/Modern_Physics_version_backup/Chapter12.ipynb b/backup/Modern_Physics_version_backup/Chapter12.ipynb
new file mode 100755
index 00000000..904fea62
--- /dev/null
+++ b/backup/Modern_Physics_version_backup/Chapter12.ipynb
@@ -0,0 +1,632 @@
+{
+ "metadata": {
+ "name": "Chapter12",
+ "signature": "sha256:a11a7c1ba314b90500bccd87a2a9d038a55aefe70077541468dd4c2624276146"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 12:Nuclear Structure and Reactivity"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.1, Page 375"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#initiation of variable\n",
+ "Z=2;A=4;N=A-Z; # Given values\n",
+ "\n",
+ "#result\n",
+ "print\"The following method of representing atoms is followed throughout the chapter\\n\\t\\t x,y,z\\n where x=atomic number y=mass number z= Neutron Number S=symbol of the atom\\n\\n\"\n",
+ "print\"The helium can be reperesented as He-- \",Z,A,N;\n",
+ "\n",
+ "#part b\n",
+ "Z=50.0;N=66.0;A=Z+N; # Given values and standard formulae\n",
+ "print\"The Tin can be reperesented as Sn-- \",Z,A,N;\n",
+ "\n",
+ "\n",
+ "#part c\n",
+ "A=235;N=143;Z=A-N;\n",
+ "print\"The Uranium can be reperesented as U-- \",Z,A,N;"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The following method of representing atoms is followed throughout the chapter\n",
+ "\t\t x,y,z\n",
+ " where x=atomic number y=mass number z= Neutron Number S=symbol of the atom\n",
+ "\n",
+ "\n",
+ "The helium can be reperesented as He-- 2 4 2\n",
+ "The Tin can be reperesented as Sn-- 50.0 116.0 66.0\n",
+ "The Uranium can be reperesented as U-- 92 235 143\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.2, Page 377"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#initiation of variable\n",
+ "r0=1.2; #standard value.\n",
+ "A=12.0; \n",
+ "r= r0*A**(1.0/3);\n",
+ "\n",
+ "#result\n",
+ "print\"The value of mean radius for C in fm is\",round(r,3);\n",
+ "\n",
+ "#part2\n",
+ "A=70.0; #given value\n",
+ "r= r0*A**(1.0/3);\n",
+ "\n",
+ "#result\n",
+ "print\"The value of mean radius for C in fm is\",round(r,3);\n",
+ "\n",
+ "#part3\n",
+ "A=209;\n",
+ "r= r0*A**(1.0/3);\n",
+ "\n",
+ "#result\n",
+ "print\"The value of mean radius for C in fm is\",round(r,3);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The value of mean radius for C in fm is 2.747\n",
+ "The value of mean radius for C in fm is 4.946\n",
+ "The value of mean radius for C in fm is 7.121\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.3, Page 379"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#initiation of variable\n",
+ "from math import pi\n",
+ "m=1.67*10**-27; r0=1.2*10**-15; v=4*pi*(r0**3)/3.0 #standard values of mass radius and volume\n",
+ "\n",
+ "#calculation\n",
+ "p=m/v; #density \n",
+ "\n",
+ "#result\n",
+ "print\"Density of typical nucleus in kg/m3 is %.0e\" %p;\n",
+ "\n",
+ "#part 2\n",
+ "r0=0.01;v=4*pi*(r0**3)/3.0;p=2.0*10**17; #/hypothetical values\n",
+ "m1=p*v; \n",
+ "\n",
+ "#result\n",
+ "print\"The mass of the hypothetical nucleus would be in Kg %.0e\" %m1;\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Density of typical nucleus in kg/m3 is 2e+17\n",
+ "The mass of the hypothetical nucleus would be in Kg 8e+11\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.4, Page 380"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#initiation of variable\n",
+ "N=30.0;Z=26.0;A=56.0;Mn=1.008665;Mp=1.007825;m=55.934939;c2=931.5; #given values and constants for case-1\n",
+ "B=((N*Mn)+(Z*Mp)-(m))*c2; #binding energy(per nucleon)\n",
+ "\n",
+ "#result\n",
+ "print\"Binding energy per nucleon for 26,56Fe30 in MeV is\",round(B/A,3);\n",
+ "\n",
+ "#part 2\n",
+ "N=146.0;Z=92.0;A=238.0;Mn=1.008665;Mp=1.007825;m=238.050785;c2=931.5; #given values and constants for case-2\n",
+ "B=((N*Mn)+(Z*Mp)-(m))*c2; #binding energy(per nucleon)\n",
+ "\n",
+ "#result\n",
+ "print\"Binding energy per nucleon for 26,56Fe30 in MeV is\",round(B/A,3);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Binding nergy per nucleon for 26,56Fe30 in MeV is 8.79\n",
+ "Binding nergy per nucleon for 26,56Fe30 in MeV is 7.57\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.5, Page 382"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#initiation of variable\n",
+ "from math import exp\n",
+ "t12=2.7*24*3600; #converting days into seconds\n",
+ "w=0.693/t12; #lambda\n",
+ "\n",
+ "#result\n",
+ "print\"The decay constant in sec is %.2e\" %w; \n",
+ "\n",
+ "#partb\n",
+ "print\"The decay constant is equal to probability of decay in one second hence %.2e\" %w;\n",
+ "\n",
+ "#partc\n",
+ "m=10**-6;Na=6.023*10**23; M=198.0; #given values and constants\n",
+ "N=m*Na/M; #number of atoms in the sample \n",
+ "Ao=w*N; #activity\n",
+ "\n",
+ "#result\n",
+ "print\"The activity was found out to be in Ci is %.2e\" %Ao,\"=0.244Ci\"; \n",
+ "\n",
+ "#partd\n",
+ "t=7*24*3600.0; #given time\n",
+ "A=Ao*exp(-w*t); #activity\n",
+ "\n",
+ "#result\n",
+ "print\"The activity after one week was found out to be in decays/sec %.1e\" %A;"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The decay constant in sec is 2.97e-06\n",
+ "The decay constant is equal to probability of decay in one second hence 2.97e-06\n",
+ "The activity was found out to be in Ci is 9.04e+09 =0.244Ci\n",
+ "The activity after one week was found out to be in decays/sec 1.5e+09\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.6, Page 384"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#initiation of variable\n",
+ "t1=4.55*10**9;t2=7.04*10**8; #given values of time at 2 different instants\n",
+ "\n",
+ "#calculation\n",
+ "age=t1/t2;\n",
+ "r=2**age;\n",
+ "\n",
+ "#result\n",
+ "print \"The original rock hence contained\",round(r,3),\"Na atoms of 235U where Na is the Avagadro''s Number=6.023*10^23\";"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The original rock hence contained 88.222 Na atoms of 235U where Na is the Avagadro''s Number=6.023*10^23\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.7, Page 385"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#initiation of variable\n",
+ "m236Ra=226.025403;\n",
+ "m222Rn=222.017571;\n",
+ "m4He=4.002603;c2=931.5; #mass of various elements and c2=c^2\n",
+ "\n",
+ "#calculation\n",
+ "Q=(m236Ra-m222Rn-m4He)*c2;#Q of the reaction\n",
+ "A=226.0 \n",
+ "K=((A-4)/A)*Q; #kinetic energy\n",
+ "\n",
+ "#result\n",
+ "print\"The kinetic energy of the alpha particle in Mev is\",round(K,3);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The kinetic energy of the alpha particle in Mev is 4.785\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.8, Page 387"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#initiation of variable\n",
+ "m226Ra=226.025403; #mass of various elements\n",
+ "m212Pb=211.991871;\n",
+ "m14c=14.003242;\n",
+ "c2=931.5; #value of c^2\n",
+ "\n",
+ "#calculation\n",
+ "Q=(m226Ra-m212Pb-m14c)*c2; #Q of the reaction\n",
+ "\n",
+ "#result\n",
+ "print\"The value of Q for 14c emission in MeV is\",round(Q,3);\n",
+ "print\"The probability of 14c emission is 10^-9 times that of an alpha particle since the energy barrier for 14c emission is nearly 3 times higher and thicker.\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The value of Q for 14c emission in MeV is 28.215\n",
+ "The probability of 14c emission is 10^-9 times that of an alpha particle since the energy barrier for 14c emission is nearly 3 times higher and thicker.\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.9, Page 389"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#initiation of variable\n",
+ "m23Ne=22.994465; #mass of various elements\n",
+ "m23Na=22.989768;\n",
+ "c2=931.5; #value of c^2\n",
+ "\n",
+ "#calculation\n",
+ "Q=(m23Ne-m23Na)*c2; #Q of the reaction\n",
+ "\n",
+ "#result\n",
+ "print \"Hence the maximum kinetic energy of the emitted electrons in MeV is\",round(Q,3);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Hence the maximum kinetic energy of the emitted electrons in MeV is 4.375\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.10, Page 390"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#initiation of variable\n",
+ "m40K=39.963999; #mass of various particles\n",
+ "m40Ca=39.962591;\n",
+ "c2=931.5; #value of c^2 in MeV\n",
+ "\n",
+ "#calculation\n",
+ "Qb1=(m40K-m40Ca)*c2; #Q value of the reaction\n",
+ "\n",
+ "#result\n",
+ "print\"The Q value for -VE beta emission in Mev in\",round(Qb1,3);\n",
+ "\n",
+ "#partb\n",
+ "m40K=39.963999; #mass of various particles\n",
+ "m40Ar=39.962384;\n",
+ "me=0.000549;\n",
+ "Qb2=(m40K-m40Ar-2*me)*c2; #Q value of the reaction\n",
+ "\n",
+ "#result\n",
+ "print\"The Q value for +VE beta emission in Mev in\",round(Qb2,3);\n",
+ "\n",
+ "#partc\n",
+ "m40K=39.963999;\n",
+ "m40Ar=39.962384;\n",
+ "\n",
+ "#calculation\n",
+ "Qec=(m40K-m40Ar)*c2;\n",
+ "\n",
+ "#result\n",
+ "print\"The Q value for +VE beta emission in Mev in\",round(Qec,3);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Q value for -VE beta emission in Mev in 1.312\n",
+ "The Q value for +VE beta emission in Mev in 0.482\n",
+ "The Q value for +VE beta emission in Mev in 1.504\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.11, Page 392"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#initiation of variable\n",
+ "Mg=12.000000; #mass of the carbon atom in amu\n",
+ "c2=931.5; \n",
+ "Eg=4.43; #given energy of gamma ray \n",
+ "Mex=Mg+(Eg/c2); #mass in excited state\n",
+ "Me=0.000549; #mass of an electron\n",
+ "\n",
+ "#calculation\n",
+ "Q=(12.018613-Mex-2*Me)*c2; #Q of the particle\n",
+ "\n",
+ "#result\n",
+ "print\"The maximum value of kinetic energy is in MeV\",round(Q,3);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The maximum value of kinetic energy is in MeV 11.885\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.12, Page 393"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#initiation of variable\n",
+ "m238U=238.050786; #mass of various quantities\n",
+ "m206Pb=205.974455;\n",
+ "m4He=4.002603;\n",
+ "c2=931.5; #constants\n",
+ "Na=6.023*10**23; #avagadro's number\n",
+ "\n",
+ "#calculation\n",
+ "Q=(m238U-m206Pb-8*m4He)*c2; \n",
+ "t12=(4.5)*10**9*(3.16*10**7); #half life years to seconds conversion\n",
+ "w=0.693/t12; # lambeda\n",
+ "NoD=(Na/238)*w; #number of decays\n",
+ "E=NoD*Q*(1.6*10**-19)*10**6; #rate of liberation of energy,converting MeV to eV\n",
+ "\n",
+ "#result\n",
+ "print\"Rate of energy liberation in W is %.0e\" %E;"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Rate of energy liberation in W is 1e-07\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.13, Page 395"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#initiation of variable\n",
+ "from math import log\n",
+ "R=0.5;t12=4.5*10**9; #value of radius and half-life \n",
+ "t1=(t12/0.693)*log(1+(1/R)); #age of rock 1\n",
+ "R=1.0;\n",
+ "t2=(t12/0.693)*log(1+(1/R)); #age of rock-2\n",
+ "R=2.0\n",
+ "t3=(t12/0.693)*log(1+(1/R)); #age of rock 3\n",
+ "\n",
+ "#result\n",
+ "print\"The ages of rock samples in years respectively are %.1e\"%t1,\" %.1e\" %t2,\" %.1e\" %t3;"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The ages of rock samples in years respectively are 7.1e+09 4.5e+09 2.6e+09\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.14, Page 397"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#initiation of variable\n",
+ "from math import log\n",
+ "P=2.0*10**14; V=2.0*10**-14; R=8.314; T=295.0;Na=6.023*10**23; #various constants and given values\n",
+ "\n",
+ "#calculation\n",
+ "n=P*V/(R*T); #ideal gas law\n",
+ "N=Na*n;f=10**-12 #avagadaro's number and fraction of carbon molecules\n",
+ "t12=5730*3.16*(10**7); #half life\n",
+ "A=(0.693/t12)*N*f; #activity\n",
+ "D1w=A*7*24*60*60; #decays per second\n",
+ "\n",
+ "#result\n",
+ "print\"the no. of decays per second is %.2e\" %A\n",
+ "print\"The no of decays per week is \",round(D1w);\n",
+ " \n",
+ " \n",
+ "#partb\n",
+ "c1=1420.0; #concentration at instant 1\n",
+ "c2=D1w; #concentration at instant 2\n",
+ "t12y=5730; #half life\n",
+ "t=t12y*log(c2/c1)/0.693; #age of the sample\n",
+ "\n",
+ "#result\n",
+ "print\"Age of the sample in years is\",round(t,3);\n",
+ "print\"the answer in the book is wrong\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the no. of decays per second is 3.76e-03\n",
+ "The no of decays pers week is 2274.0\n",
+ "Age of the sample in years is 3892.57\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file