diff options
Diffstat (limited to 'backup/Modern_Physics_version_backup/Chapter10.ipynb')
-rwxr-xr-x | backup/Modern_Physics_version_backup/Chapter10.ipynb | 181 |
1 files changed, 181 insertions, 0 deletions
diff --git a/backup/Modern_Physics_version_backup/Chapter10.ipynb b/backup/Modern_Physics_version_backup/Chapter10.ipynb new file mode 100755 index 00000000..5deacf9f --- /dev/null +++ b/backup/Modern_Physics_version_backup/Chapter10.ipynb @@ -0,0 +1,181 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:e4e2027717708d18dd95ce338ad24e83f0d7666653044656429dafb0b39af784" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 10:Statistical Physics" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 10.2 Page 307" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#initiation of variable\n", + "from math import sqrt\n", + "#The solution is purely theoretical and involves a lot of approximations.\n", + "print\"The value of shift in frequency was found out to be delf=7.14*fo*10^-7*sqrt(T) for a star composing of hydrogen atoms at a temperature T.\";\n", + "T=6000.0; #temperature for sun\n", + "delf=7.14*10**-7*sqrt(T);#change in frequency\n", + "\n", + "#result\n", + "print\"The value of frequency shift for sun(at 6000 deg. temperature) comprsing of hydrogen atoms is\",delf,\" times the frequency of the light.\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of shift in frequency was found out to be delf=7.14*fo*10^-7*sqrt(T) for a star composing of hydrogen atoms at a temperature T.\n", + "The value of frequency shift for sun(at 6000 deg. temperature) comprsing of hydrogen atoms is 5.53062021838e-05 times the frequency of the light.\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 10.3 Page 309" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#initiation of variable\n", + "from math import sqrt,pi, exp, log\n", + "kT=0.0252;E=10.2 # at room temperature, kT=0.0252 standard value and given value of E\n", + "\n", + "#calculation\n", + "n2=2;n1=1; g2=2*(n2**2);g1=2*(n1**2); #values for ground and excited states\n", + "t=(g2/g1)*exp(-E/kT); #fraction of atoms\n", + "\n", + "#result\n", + "print\"The number of hydrogen atoms required is %.1e\" %(1.0/t),\" which weighs %.0e\" %((1/t)*(1.67*10**-27)),\"Kg\"\n", + "\n", + "#partb\n", + "t=0.1/0.9;k=8.65*10**-5 #fracion of atoms in case-2 is given\n", + "T=-E/(log(t/(g2/g1))*k); #temperature\n", + "\n", + "#result\n", + "print\"The value of temperature at which 1/10 atoms are in excited state in K is %.1e\" %round(T,3);" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The number of hydrogen atoms required is 1.5e+175 which weighs 3e+148 Kg\n", + "The value of temperature at which 1/10 atoms are in excited state in K is 3.3e+04\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 10.4 Page 311" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#initiation of variable\n", + "from math import log\n", + "#theoretical part a\n", + "print'The energy of interaction with magnetic field is given by uB and the degeneracy of the states are +-1/2 which are identical.\\nThe ratio is therefore pE2/pE1 which gives e^(-2*u*B/k*T)';\n", + "#partb\n", + "uB=5.79*10**-4; #for a typical atom\n", + "t=1.1;k=8.65*10**-5; #ratio and constant k\n", + "\n", + "#calculation\n", + "T=2*uB/(log(t)*k); #temperature\n", + "\n", + "#result\n", + "print\"The value of temperature ar which the given ratio exists in K is\",round(T,3);" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The energy of interaction with magnetic field is given by uB and the degeneracy of the states are +-1/2 which are identical.\n", + "The ratio is therefore pE2/pE1 which gives e^(-2*u*B/k*T)\n", + "The value of temperature ar which the given ratio exists in K is 140.46\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 10.5 Page 313" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#initiation of variable\n", + "from math import pi\n", + "p=0.971; A=6.023*10**23; m=23.0; # various given values and constants\n", + "\n", + "#calculation\n", + "c= (p*A/m)*10**6; # atoms per unit volume\n", + "hc=1240.0; mc2=0.511*10**6; # hc=1240 eV.nm\n", + "E= ((hc**2)/(2*mc2))*(((3/(8*pi))*c)**(2.0/3)); #value of fermi energy\n", + "\n", + "#result\n", + "print\"The fermi energy for sodium is\",round(E*10**-18,4),\"eV\";#multiply by 10^-18 to convert metres^2 term to nm^2" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The fermi energy for sodium is 3.1539 eV\n" + ] + } + ], + "prompt_number": 12 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |