summaryrefslogtreecommitdiff
path: root/backup/Modern_Physics_By_G.Aruldas_version_backup/Chapter20_2.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'backup/Modern_Physics_By_G.Aruldas_version_backup/Chapter20_2.ipynb')
-rwxr-xr-xbackup/Modern_Physics_By_G.Aruldas_version_backup/Chapter20_2.ipynb119
1 files changed, 119 insertions, 0 deletions
diff --git a/backup/Modern_Physics_By_G.Aruldas_version_backup/Chapter20_2.ipynb b/backup/Modern_Physics_By_G.Aruldas_version_backup/Chapter20_2.ipynb
new file mode 100755
index 00000000..6f977e4e
--- /dev/null
+++ b/backup/Modern_Physics_By_G.Aruldas_version_backup/Chapter20_2.ipynb
@@ -0,0 +1,119 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:eeb9c551735bd0ab45890fc906baf874437271bf852063fccc60d822b2aaeaef"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "20: Nuclear radiation detectors and particle accelerators"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 20.1, Page number 390"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34; #planck's constant(Js)\n",
+ "e=1.6*10**-19; #conversion factor from J to eV\n",
+ "m=1.67*10**-27; #mass of proton(kg)\n",
+ "E=30*10**6; #energy(eV)\n",
+ "r=1.2*10**-15; #radius of nucleon(m)\n",
+ "\n",
+ "#Calculation\n",
+ "lamdaP=h/math.sqrt(2*m*E*e); #wavelength of proton(m)\n",
+ "lamdaAlpha=h/math.sqrt(2*4*m*E*e); #wavelength of alpha particle(m)\n",
+ "a=2*r; #size of nucleon(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength of proton is\",round(lamdaP*10**15,1),\"*10**-15 m\"\n",
+ "print \"wavelength of alpha particle is\",round(lamdaAlpha*10**15,1),\"*10**-15 m\"\n",
+ "print \"size of nucleon is\",a,\"m\"\n",
+ "print \"alpha particle is better\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "wavelength of proton is 5.2 *10**-15 m\n",
+ "wavelength of alpha particle is 2.6 *10**-15 m\n",
+ "size of nucleon is 2.4e-15 m\n",
+ "alpha particle is better\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 20.2, Page number 391"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "q=1.6*10**-19; #conversion factor from J to eV\n",
+ "B=2; #magnetic field(T)\n",
+ "m=1.67*10**-27; #mass of proton(kg)\n",
+ "R=0.25; #radius(m)\n",
+ "a=6.24*10**12; #conversion factor from J to MeV\n",
+ "\n",
+ "#Calculation\n",
+ "f=q*B/(2*math.pi*m); #frequency needed(MHz)\n",
+ "KE=q**2*B**2*R**2/(2*m); #kinetic energy(J)\n",
+ "KE=KE*a; #kinetic energy(MeV)\n",
+ "\n",
+ "#Result\n",
+ "print \"frequency needed is\",round(f*10**-6,1),\"MHz\"\n",
+ "print \"kinetic energy is\",round(KE),\"MeV\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "frequency needed is 30.5 MHz\n",
+ "kinetic energy is 12.0 MeV\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file