diff options
Diffstat (limited to 'backup/Engineering_Physics_by_P.K.Palanisamy_version_backup/Chapter6_1.ipynb')
-rwxr-xr-x | backup/Engineering_Physics_by_P.K.Palanisamy_version_backup/Chapter6_1.ipynb | 603 |
1 files changed, 603 insertions, 0 deletions
diff --git a/backup/Engineering_Physics_by_P.K.Palanisamy_version_backup/Chapter6_1.ipynb b/backup/Engineering_Physics_by_P.K.Palanisamy_version_backup/Chapter6_1.ipynb new file mode 100755 index 00000000..9746dc5d --- /dev/null +++ b/backup/Engineering_Physics_by_P.K.Palanisamy_version_backup/Chapter6_1.ipynb @@ -0,0 +1,603 @@ +{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 6: Principles of quantum mechanics"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 6.1, Page number 6.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "de broglie wavelength is 1.323 *10**-14 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "c=3*10**8; #velocity of light(m/s)\n",
+ "m=1.67*10**-27; #mass of proton(kg)\n",
+ "h=6.626*10**-34; #planck's constant\n",
+ "\n",
+ "#Calculation\n",
+ "lamda=h*10/(m*c); #de broglie wavelength(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"de broglie wavelength is\",round(lamda*10**14,3),\"*10**-14 m\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 6.2, Page number 6.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "de broglie wavelength is 0.613 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "V=400; #voltage(V)\n",
+ "\n",
+ "#Calculation\n",
+ "lamda=12.26/math.sqrt(V); #de broglie wavelength(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"de broglie wavelength is\",lamda,\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 6.3, Page number 6.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "de broglie wavelength is 0.181 nm\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "m=1.674*10**-27; #mass of proton(kg)\n",
+ "h=6.626*10**-34; #planck's constant\n",
+ "E=0.025*1.6*10**-19; #energy(J)\n",
+ "\n",
+ "#Calculation\n",
+ "lamda=h/math.sqrt(2*m*E); #de broglie wavelength(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"de broglie wavelength is\",round(lamda*10**9,3),\"nm\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 6.4, Page number 6.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "de broglie wavelength is 0.3065 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "V=1600; #voltage(V)\n",
+ "\n",
+ "#Calculation\n",
+ "lamda=12.26/math.sqrt(V); #de broglie wavelength(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"de broglie wavelength is\",lamda,\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 6.5, Page number 6.14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "uncertainity in momentum is 5.27 *10**-24 kg m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "deltax=0.2*10**-10; #distance(m)\n",
+ "h=6.626*10**-34; #planck's constant\n",
+ "\n",
+ "#Calculation\n",
+ "deltap=h/(2*math.pi*deltax); #uncertainity in momentum(kg m/s)\n",
+ "\n",
+ "#Result\n",
+ "print \"uncertainity in momentum is\",round(deltap*10**24,2),\"*10**-24 kg m/s\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 6.6, Page number 6.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "lowest energy of electron is 112.9 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n1=n2=n3=1;\n",
+ "h=6.62*10**-34; #planck's constant\n",
+ "m=9.1*10**-31; #mass(kg)\n",
+ "L=0.1*10**-9; #side(m) \n",
+ "\n",
+ "#Calculation\n",
+ "E1=h**2*(n1**2+n2**2+n3**2)/(8*m*1.6*10**-19*L**2); #lowest energy of electron(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"lowest energy of electron is\",round(E1,1),\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 6.7, Page number 6.22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "lowest energy of electron is 1.208 *10**4 eV\n",
+ "value of E112, E121, E211 is 2.4168 *10**4 eV\n",
+ "value of E122, E212, E221 is 3.625 *10**4 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n1=n2=n3=1;\n",
+ "h=6.62*10**-34; #planck's constant\n",
+ "m=8.5*10**-31; #mass(kg)\n",
+ "L=10**-11; #side(m) \n",
+ "\n",
+ "#Calculation\n",
+ "E111=h**2*(n1**2+n2**2+n3**2)/(8*m*1.6*10**-19*L**2); #lowest energy of electron(eV)\n",
+ "E112=6*h**2/(8*m*1.6*10**-19*L**2); #value of E112(eV)\n",
+ "E121=E112; #value of E121(eV)\n",
+ "E211=E112; #value of E211(eV)\n",
+ "E122=9*h**2/(8*m*1.6*10**-19*L**2); #value of E122(eV)\n",
+ "E212=E122; #value of E212(eV)\n",
+ "E221=E122; #value of E221(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"lowest energy of electron is\",round(E111/10**4,3),\"*10**4 eV\"\n",
+ "print \"value of E112, E121, E211 is\",round(E121/10**4,4),\"*10**4 eV\"\n",
+ "print \"value of E122, E212, E221 is\",round(E122/10**4,3),\"*10**4 eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 6.8, Page number 6.23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "de broglie wavelength is 0.0275 nm\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "h=6.626*10**-34; #planck's constant\n",
+ "E=2000*1.6*10**-19; #energy(J)\n",
+ "\n",
+ "#Calculation\n",
+ "lamda=h/math.sqrt(2*m*E); #de broglie wavelength(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"de broglie wavelength is\",round(lamda*10**9,4),\"nm\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 6.9, Page number 6.23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "lowest energy of electron is 0.377 *10**-18 joule\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "h=6.626*10**-34; #planck's constant\n",
+ "n=1;\n",
+ "L=4*10**-10; #side(m) \n",
+ "\n",
+ "#Calculation\n",
+ "E1=n**2*h**2/(8*m*L**2); #lowest energy of electron(joule)\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print \"lowest energy of electron is\",round(E1*10**18,3),\"*10**-18 joule\"\n",
+ "print \"answer varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 6.10, Page number 6.24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "lowest energy of electron is 0.6031 *10**-17 joule\n",
+ "energy of electron in 1st state is 2.412 *10**-17 joule\n",
+ "energy of electron in 2nd state is 5.428 *10**-17 joule\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "h=6.626*10**-34; #planck's constant\n",
+ "n1=1;\n",
+ "n2=2;\n",
+ "n3=3;\n",
+ "L=1*10**-10; #side(m) \n",
+ "\n",
+ "#Calculation\n",
+ "E1=n1**2*h**2/(8*m*L**2); #lowest energy of electron(joule)\n",
+ "E2=n2**2*h**2/(8*m*L**2); #energy of electron in 1st state(joule)\n",
+ "E3=n3**2*h**2/(8*m*L**2); #energy of electron in 2nd state(joule)\n",
+ "\n",
+ "#Result\n",
+ "print \"lowest energy of electron is\",round(E1*10**17,4),\"*10**-17 joule\"\n",
+ "print \"energy of electron in 1st state is\",round(E2*10**17,3),\"*10**-17 joule\"\n",
+ "print \"energy of electron in 2nd state is\",round(E3*10**17,3),\"*10**-17 joule\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 6.11, Page number 6.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "velocity is 4386 km/s\n",
+ "kinetic energy is 54.71 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "h=6.626*10**-34; #planck's constant\n",
+ "lamda=1.66*10**-10; #wavelength(m)\n",
+ "\n",
+ "#Calculation\n",
+ "v=h/(m*lamda); #velocity(m/s)\n",
+ "KE=(1/2)*m*v**2; #kinetic energy(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"velocity is\",int(v/10**3),\"km/s\"\n",
+ "print \"kinetic energy is\",round(KE/(1.6*10**-19),2),\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 6.12, Page number 6.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "de broglie wavelength is 0.1 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "V=15000; #voltage(V)\n",
+ "\n",
+ "#Calculation\n",
+ "lamda=12.26/math.sqrt(V); #de broglie wavelength(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"de broglie wavelength is\",round(lamda,1),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 6.13, Page number 6.26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "spacing of crystal is 0.3816 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "V=344; #voltage(V)\n",
+ "n=1;\n",
+ "theta=60*math.pi/180; #angle(radian)\n",
+ "\n",
+ "#Calculation\n",
+ "lamda=round(12.26/math.sqrt(V),3); #de broglie wavelength(angstrom)\n",
+ "d=n*lamda/(2*math.sin(theta)); #spacing of crystal(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"spacing of crystal is\",round(d,4),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 6.14, Page number 6.26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength is 9.787 *10**-6 m\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "E=1.5*9.1*10**-31; #energy(joule)\n",
+ "m=1.676*10**-27; #mass(kg)\n",
+ "h=6.62*10**-34; #planck's constant\n",
+ "\n",
+ "#Calculation\n",
+ "v=math.sqrt(2*E/m); \n",
+ "lamda=h/(m*v); #wavelength(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength is\",round(lamda*10**6,3),\"*10**-6 m\"\n",
+ "print \"answer varies due to rounding off errors\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
|