summaryrefslogtreecommitdiff
path: root/_Theory_Of_Machines/Chapter2.ipynb
diff options
context:
space:
mode:
Diffstat (limited to '_Theory_Of_Machines/Chapter2.ipynb')
-rwxr-xr-x_Theory_Of_Machines/Chapter2.ipynb824
1 files changed, 0 insertions, 824 deletions
diff --git a/_Theory_Of_Machines/Chapter2.ipynb b/_Theory_Of_Machines/Chapter2.ipynb
deleted file mode 100755
index 0ed80f3b..00000000
--- a/_Theory_Of_Machines/Chapter2.ipynb
+++ /dev/null
@@ -1,824 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:1b022ca97a90c946dcce72b014fa00f7dd7b26ac917f0b5fe9fdd6cabd6dcdfd"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter2-TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex1-pg57"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "##CHAPTER 2 ILLUSRTATION 1 PAGE NO 57\n",
- "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
- "import math\n",
- "##===========================================================================================\n",
- "##INPUT DATA\n",
- "Na=300.;##driving shaft running speed in rpm\n",
- "Nb=400.;##driven shaft running speed in rpm\n",
- "Da=60.;##diameter of driving shaft in mm\n",
- "t=.8;##belt thickness in mm\n",
- "s=.05;##slip in percentage(5%)\n",
- "##==========================================================================================\n",
- "##calculation\n",
- "Db=(Da*Na)/Nb;##finding out the diameter of driven shaft without considering the thickness of belt\n",
- "Db1=(((Da+t)*Na)/Nb)-t##/considering the thickness\n",
- "Db2=(1.-s)*(Da+t)*(Na/Nb)-t##considering slip also\n",
- "##=========================================================================================\n",
- "##output\n",
- "print'%s %.1f %s'%('the value of Db is',Db,' cm')\n",
- "print'%s %.1f %s'%('the value of Db1 is',Db1,' cm')\n",
- "print'%s %.1f %s'%('the value of Db2 is',Db2,' cm')\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "the value of Db is 45.0 cm\n",
- "the value of Db1 is 44.8 cm\n",
- "the value of Db2 is 42.5 cm\n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex2-pg57"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "##CHAPTER 2,ILLUSRTATION 2 PAGE NO 57\n",
- "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
- "\n",
- "##====================================================================================\n",
- "##input\n",
- "n1=1200##rpm of motor shaft\n",
- "d1=40##diameter of motor pulley in cm\n",
- "d2=70##diameter of 1st pulley on the shaft in cm\n",
- "s=.03##percentage slip(3%)\n",
- "d3=45##diameter of 2nd pulley\n",
- "d4=65##diameter of the pulley on the counnter shaft\n",
- "##=========================================================================================\n",
- "##calculation\n",
- "n2=n1*d1*(1-s)/d2##rpm of driven shaft\n",
- "n3=n2##both the pulleys are mounted on the same shaft\n",
- "n4=n3*(1-s)*d3/d4##rpm of counter shaft\n",
- "\n",
- "##output\n",
- "print'%s %.1f %s %.1f %s '%('the speed of driven shaft is',n2,' rpm''the speed of counter shaft is ',n4,' rpm')\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "the speed of driven shaft is 665.1 rpmthe speed of counter shaft is 446.7 rpm \n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex3-pg58"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "##CHAPTER 2 ILLUSTRATION 3 PAGE NO:58\n",
- "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
- "import math\n",
- "##==============================================================================\n",
- "##input\n",
- "d1=30.##diameter of 1st shaft in cm\n",
- "d2=50.##diameter 2nd shaft in cm\n",
- "pi=3.141\n",
- "c=500.##centre distance between the shafts in cm\n",
- "##==============================================================================\n",
- "##calculation\n",
- "L1=((d1+d2)*pi/2.)+(2.*c)+((d1+d2)**2.)/(4.*c)##lenth of cross belt\n",
- "L2=((d1+d2)*pi/2.)+(2.*c)+((d1-d2)**2.)/(4.*c)##lenth of open belt\n",
- "r=L1-L2##remedy\n",
- "##==============================================================================\n",
- "##OUTPUT\n",
- "print'%s %.1f %s %.1f %s %.1f %s '%('length of cross belt is ',L1,'cm '' length of open belt is ',L2,'cm''the length of the belt to be shortened is ',r,' cm')\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "length of cross belt is 1128.8 cm length of open belt is 1125.8 cmthe length of the belt to be shortened is 3.0 cm \n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex4-pg59"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "##CHAPTER 2,ILLUSTRATION 4 PAGE 59\n",
- "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
- "import math\n",
- "##====================================================================================\n",
- "##INPUT\n",
- "D1=.5## DIAMETER OF 1ST SHAFT IN m\n",
- "D2=.25## DIAMETER OF 2nd SHAFT IN m\n",
- "C=2.## CENTRE DISTANCE IN m\n",
- "N1=220.## SPEED OF 1st SHAFT\n",
- "T1=1250.## TENSION ON TIGHT SIDE IN N\n",
- "U=.25## COEFFICIENT OF FRICTION\n",
- "PI=3.141\n",
- "e=2.71\n",
- "##====================================================================================\n",
- "##CALCULATION\n",
- "L=(D1+D2)*PI/2.+((D1+D2)**2./(4.*C))+2.*C\n",
- "F=(D1+D2)/(2.*C)\n",
- "ALPHA=math.asin(F/57.3)\n",
- "THETA=(180.+(2.*ALPHA))*PI/180.## ANGLE OF CONTACT IN radians\n",
- "T2=T1/(e**(U*THETA))## TENSION ON SLACK SIDE IN N\n",
- "V=PI*D1*N1/60.## VELOCITY IN m/s\n",
- "P=(T1-T2)*V/1000.## POWER IN kW\n",
- "##====================================================================================\n",
- "##OUTPUT\n",
- "print'%s %.1f %s'%('LENGTH OF BELT REQUIRED =',L,' m')\n",
- "print'%s %.1f %s'%('ANGLE OF CONTACT =',THETA,' radians')\n",
- "print'%s %.1f %s'%('POWER CAN BE TRANSMITTED=',P,' kW')\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "LENGTH OF BELT REQUIRED = 5.2 m\n",
- "ANGLE OF CONTACT = 3.1 radians\n",
- "POWER CAN BE TRANSMITTED= 3.9 kW\n"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex5-pg59"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "##CHAPTER 2,ILLUSTRATION 5 PAGE 5\n",
- "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
- "import math\n",
- "##=====================================================================================================\n",
- "##input\n",
- "n1=100.## of driving shaft\n",
- "n2=240.##speed of driven shaft\n",
- "p=11000.##power to be transmitted in watts\n",
- "c=250.##centre distance in cm\n",
- "d2=60.##diameter in cm\n",
- "b=11.5*10**-2##width of belt in metres\n",
- "t=1.2*10**-2##thickness in metres\n",
- "u=.25##co-efficient of friction \n",
- "pi=3.141\n",
- "e=2.71\n",
- "##===================================================================================================\n",
- "##calculation for open bely drive\n",
- "d1=n2*d2/n1\n",
- "f=(d1-d2)/(2.*c)##sin(alpha) for open bely drive\n",
- "##angle of arc of contact for open belt drive is,theta=180-2*alpha\n",
- "alpha=math.asin(f)*57.3\n",
- "teta=(180.-(2*alpha))*3.147/180.##pi/180 is used to convert into radians\n",
- "x=(e**(u*teta))##finding out the value of t1/t2\n",
- "v=pi*d2*10.*n2/60.##finding out the value of t1-t2\n",
- "y=p*1000./(v)\n",
- "t1=(y*x)/(x-1.)\n",
- "Fb=t1/(t*b)/1000.\n",
- "##=======================================================================================================\n",
- "##calculation for cross belt drive bely drive\n",
- "F=(d1+d2)/(2.*c)##for cross belt drive bely drive\n",
- "ALPHA=math.asin(F)*57.3\n",
- "THETA=(180.+(2.*ALPHA))*pi/180.##pi/180 is used to convert into radians\n",
- "X=(e**(u*THETA))##finding out the value of t1/t2\n",
- "V=pi*d2*10.*n2/60.##finding out the value of t1-t2\n",
- "Y=p*1000./(V)\n",
- "T1=(Y*X)/(X-1.)\n",
- "Fb2=T1/(t*b)/1000.\n",
- "##========================================================================================================\n",
- "##output\n",
- "print('for a open belt drive:')\n",
- "print'%s %.1f %s %.1f %s'%('the tension in belt is ',t1,'N' 'stress induced is ',Fb,' kN/m**2')\n",
- "print('for a cross belt drive:')\n",
- "print'%s %.1f %s %.1f %s '%('the tension in belt is ',T1,'N' 'stress induced is ',Fb2,' kN/m**2')\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "for a open belt drive:\n",
- "the tension in belt is 2898.4 Nstress induced is 2100.3 kN/m**2\n",
- "for a cross belt drive:\n",
- "the tension in belt is 2318.8 Nstress induced is 1680.3 kN/m**2 \n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex6-pg61"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "##CHAPTER 2,ILLUSTRATION 6 PAGE 61\n",
- "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
- "import math\n",
- "##========================================================================================\n",
- "##INPUT\n",
- "D1=80.##DIAMETER OF SHAFT IN cm\n",
- "N1=160.##SPEED OF 1ST SHAFT IN rpm\n",
- "N2=320.##SPEED OF 2ND SHAFT IN rpm\n",
- "C=250.##CENTRE DISTANCE IN CM\n",
- "U=.3##COEFFICIENT OF FRICTION\n",
- "P=4.##POWER IN KILO WATTS\n",
- "e=2.71\n",
- "PI=3.141\n",
- "f=110.##STRESS PER cm WIDTH OF BELT\n",
- "##========================================================================================\n",
- "##CALCULATION\n",
- "V=PI*D1*math.pow(10,-2)*N1/60.##VELOCITY IN m/s\n",
- "Y=P*1000./V##Y=T1-T2\n",
- "D2=D1*(N1/N2)##DIAMETER OF DRIVEN SHAFT\n",
- "F=(D1-D2)/(2.*C)\n",
- "ALPHA=math.asin(F/57.3)\n",
- "THETA=(180.-(2.*ALPHA))*PI/180.##ANGLE OF CONTACT IN radians\n",
- "X=e**(U*THETA)##VALUE OF T1/T2\n",
- "T1=X*Y/(X-1.)\n",
- "b=T1/f##WIDTH OF THE BELT REQUIRED \n",
- "##=======================================================================================\n",
- "##OUTPUT\n",
- "print'%s %.1f %s'%('THE WIDTH OF THE BELT IS ',b,' cm')\n",
- "#apporximate ans is correct "
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "THE WIDTH OF THE BELT IS 8.9 cm\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex7-pg62"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "##CHAPTER 2 ILLUSRTATION 7 PAGE NO 62\n",
- "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
- "\n",
- "##===========================================================================================\n",
- "##INPUT DATA\n",
- "m=1000.## MASS OF THE CASTING IN kg\n",
- "PI=3.141\n",
- "THETA=2.75*2*PI## ANGLE OF CONTACT IN radians\n",
- "D=.26## DIAMETER OF DRUM IN m\n",
- "N=24.## SPEED OF THE DRUM IN rpm\n",
- "U=.25## COEFFICIENT OF FRICTION\n",
- "e=2.71\n",
- "T1=9810## TENSION ON TIGHTSIDE IN N\n",
- "##=============================================================================================\n",
- "##CALCULATION\n",
- "T2=T1/(e**(U*THETA))## tension on slack side of belt in N\n",
- "W=m*9.81## WEIGHT OF CASTING IN N\n",
- "R=D/2.## RADIUS OF DRUM IN m\n",
- "P=2*PI*N*W*R/60000.## POWER REQUIRED IN kW\n",
- "P2=(T1-T2)*PI*D*N/60000.## POWER SUPPLIED BY DRUM IN kW\n",
- "##============================================================================================\n",
- "##OUTPUT\n",
- "print'%s %.1f %s %.1f %s %.1f %s '%('FORCE REQUIRED BY MAN=',T2,' N'and 'POWER REQUIRED TO RAISE CASTING=',P,' kW' 'POWER SUPPLIED BY DRUM=',P2,' kW')\n",
- "\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "FORCE REQUIRED BY MAN= 132.4 POWER REQUIRED TO RAISE CASTING= 3.2 kWPOWER SUPPLIED BY DRUM= 3.2 kW \n"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex8-pg62"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "##CHAPTER 2,ILLUSTRATION 8 PAGE 62\n",
- "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
- "import math\n",
- "##INPUT\n",
- "t=9.##THICKNESS IN mm\n",
- "b=250.##WIDTH IN mm\n",
- "D=90.##DIAMETER OF PULLEY IN cm\n",
- "N=336.##SPEED IN rpm\n",
- "PI=3.141\n",
- "U=.35##COEFFICIENT FRICTION\n",
- "e=2.71\n",
- "THETA=120.*PI/180.\n",
- "Fb=2.##STRESS IN MPa\n",
- "d=1000.##DENSITY IN KG/M**3\n",
- "\n",
- "##CALCULATION\n",
- "M=b*10**-3.*t*10**-3.*d##MASS IN KG\n",
- "V=PI*D*10**-2.*N/60.##VELOCITY IN m/s\n",
- "Tc=M*V**2##CENTRIFUGAL TENSION\n",
- "Tmax=b*t*Fb##MAX TENSION IN N\n",
- "T1=Tmax-Tc\n",
- "T2=T1/(e**(U*THETA))\n",
- "P=(T1-T2)*V/1000.\n",
- "\n",
- "##OUTPUT\n",
- "print'%s %.1f %s'%('THE TENSION ON TIGHT SIDE OF THE BELT IS',T1,' N')\n",
- "print'%s %.1f %s'%('THE TENSION ON SLACK SIDE OF THE BELT IS ',T2,' N')\n",
- "print'%s %.1f %s'%('CENTRIFUGAL TENSION =',Tc,'N')\n",
- "print'%s %.1f %s'%('THE POWER CAPACITY OF BELT IS ',P,' KW')\n",
- "\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "THE TENSION ON TIGHT SIDE OF THE BELT IS 3936.1 N\n",
- "THE TENSION ON SLACK SIDE OF THE BELT IS 1895.6 N\n",
- "CENTRIFUGAL TENSION = 563.9 N\n",
- "THE POWER CAPACITY OF BELT IS 32.3 KW\n"
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex9-pg63"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "##CHAPTER 2,ILLUSTRATION 9 PAGE 63\n",
- "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
- "import math\n",
- "##INPUT\n",
- "P=35000.##POWER TO BE TRANSMITTED IN WATTS\n",
- "D=1.5##EFFECTIVE DIAMETER OF PULLEY IN METRES\n",
- "N=300.##SPEED IN rpm\n",
- "e=2.71\n",
- "U=.3##COEFFICIENT OF FRICTION\n",
- "PI=3.141\n",
- "THETA=(11/24.)*360.*PI/180.##ANGLE OF CONTACT\n",
- "density=1.1##density of belt material in Mg/m**3\n",
- "L=1.##in metre\n",
- "t=9.5##THICKNESS OF BELT IN mm\n",
- "Fb=2.5##PERMISSIBLE WORK STRESS IN N/mm**2\n",
- "\n",
- "##CALCULATION\n",
- "V=PI*D*N/60.##VELOCITY IN m/s\n",
- "X=P/V##X=T1-T2\n",
- "Y=e**(U*THETA)##Y=T1/T2\n",
- "T1=X*Y/(Y-1)\n",
- "Mb=t*density*L/10**3.##value of m/b\n",
- "Tc=Mb*V**2.##centrifugal tension/b\n",
- "Tmaxb=t*Fb##max tension/b\n",
- "b=T1/(Tmaxb-Tc)##thickness in mm\n",
- "##output\n",
- "print'%s %.1f %s'%('TENSION IN TIGHT SIDE OF THE BELT =',T1,' N')\n",
- "print'%s %.1f %s'%('THICKNESS OF THE BELT IS =',b,' mm')\n",
- "\n",
- "\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "TENSION IN TIGHT SIDE OF THE BELT = 2573.5 N\n",
- "THICKNESS OF THE BELT IS = 143.4 mm\n"
- ]
- }
- ],
- "prompt_number": 10
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex10-pg64"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "##CHAPTER 2,ILLUSTRATION 10 PAGE 64\n",
- "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
- "import math\n",
- "##INPUT\n",
- "t=5.##THICKNESS OF BELT IN m\n",
- "PI=3.141\n",
- "U=.3\n",
- "e=2.71\n",
- "THETA=155.*PI/180.##ANGLE OF CONTACT IN radians\n",
- "V=30.##VELOCITY IN m/s\n",
- "density=1.##in m/cm**3\n",
- "L=1.##LENGTH\n",
- "\n",
- "##calculation\n",
- "Xb=80.## (T1-T2)=80b;so let (T1-T2)/b=Xb\n",
- "Y=e**(U*THETA)## LET Y=T1/T2\n",
- "Zb=80.*Y/(Y-1.)## LET T1/b=Zb;BY SOLVING THE ABOVE 2 EQUATIONS WE WILL GET THIS EXPRESSION\n",
- "Mb=t*L*density*10**-2.## m/b in N\n",
- "Tcb=Mb*V**2.## centrifugal tension/b\n",
- "Tmaxb=Zb+Tcb## MAX TENSION/b\n",
- "Fb=Tmaxb/t##STRESS INDUCED IN TIGHT BELT\n",
- "\n",
- "##OUTPUT\n",
- "print'%s %.1f %s'%('THE STRESS DEVELOPED ON THE TIGHT SIDE OF BELT=',Fb,' N/cm**2')\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "THE STRESS DEVELOPED ON THE TIGHT SIDE OF BELT= 37.8 N/cm**2\n"
- ]
- }
- ],
- "prompt_number": 11
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex11-pg65"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "##CHAPTER 2,ILLUSTRATION 11 PAGE 65\n",
- "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
- "import math\n",
- "##INPUT\n",
- "C=4.5## CENTRE DISTANCE IN metres\n",
- "D1=1.35## DIAMETER OF LARGER PULLEY IN metres\n",
- "D2=.9## DIAMETER OF SMALLER PULLEY IN metres\n",
- "To=2100.## INITIAL TENSION IN newtons\n",
- "b=12.## WIDTH OF BELT IN cm\n",
- "t=12.## THICKNESS OF BELT IN mm\n",
- "d=1.## DENSITY IN gm/cm**3\n",
- "U=.3## COEFFICIENT OF FRICTION\n",
- "L=1.## length in metres\n",
- "PI=3.141\n",
- "e=2.71\n",
- "\n",
- "##CALCULATION\n",
- "M=b*t*d*L*10**-2.## mass of belt per metre length in KG\n",
- "V=(To/3./M)**.5## VELOCITY OF FOR MAX POWER TO BE TRANSMITTED IN m/s\n",
- "Tc=M*V**2.## CENTRIFUGAL TENSION IN newtons\n",
- "## LET (T1+T2)=X\n",
- "X=2.*To-2.*Tc ## THE VALUE OF (T1+T2)\n",
- "F=(D1-D2)/(2.*C)\n",
- "ALPHA=math.asin(F/57.3)\n",
- "THETA=(180.-(2.*ALPHA))*PI/180.## ANGLE OF CONTACT IN radians\n",
- "## LET T1/T2=Y\n",
- "Y=e**(U*THETA)## THE VALUE OF T1/T2\n",
- "T1=X*Y/(Y+1.)## BY SOLVING X AND Y WE WILL GET THIS EQN\n",
- "T2=X-T1\n",
- "P=(T1-T2)*V/1000.## MAX POWER TRANSMITTED IN kilowatts\n",
- "N1=V*60./(PI*D1)## SPEED OF LARGER PULLEY IN rpm\n",
- "N2=V*60./(PI*D2)## SPEED OF SMALLER PULLEY IN rpm\n",
- "##OUTPUT\n",
- "print'%s %.1f %s'%(' MAX POWER TO BE TRANSMITTED =',P,' KW')\n",
- "print'%s %.1f %s'%(' SPEED OF THE LARGER PULLEY =',N1,' rpm')\n",
- "print'%s %.1f %s'%(' SPEED OF THE SMALLER PULLEY =',N2,' rpm')\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- " MAX POWER TO BE TRANSMITTED = 27.0 KW\n",
- " SPEED OF THE LARGER PULLEY = 312.0 rpm\n",
- " SPEED OF THE SMALLER PULLEY = 468.0 rpm\n"
- ]
- }
- ],
- "prompt_number": 12
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex12-pg66"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "##CHAPTER 2,ILLUSTRATION 12 PAGE 66\n",
- "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
- "import math\n",
- "##============================================================================================================================\n",
- "##INPUT\n",
- "PI=3.141\n",
- "e=2.71\n",
- "D1=1.20## DIAMETER OF DRIVING SHAFT IN m\n",
- "D2=.50## DIAMETER OF DRIVEN SHAFT IN m\n",
- "C=4.## CENTRE DISTANCE BETWEEN THE SHAFTS IN m\n",
- "M=.9## MASS OF BELT PER METRE LENGTH IN kg\n",
- "Tmax=2000## MAX TENSION IN N\n",
- "U=.3## COEFFICIENT OF FRICTION\n",
- "N1=200.## SPEED OF DRIVING SHAFT IN rpm\n",
- "N2=450.## SPEED OF DRIVEN SHAFT IN rpm\n",
- "##==============================================================================================================================\n",
- "##CALCULATION\n",
- "V=PI*D1*N1/60.## VELOCITY OF BELT IN m/s\n",
- "Tc=M*V**2.## CENTRIFUGAL TENSION IN N\n",
- "T1=Tmax-Tc## TENSION ON TIGHTSIDE IN N\n",
- "F=(D1-D2)/(2.*C)\n",
- "ALPHA=math.asin(F/57.3)\n",
- "THETA=(180.-(2.*ALPHA))*PI/180.## ANGLE OF CONTACT IN radians\n",
- "T2=T1/(e**(U*THETA))## TENSION ON SLACK SIDE IN N\n",
- "TL=(T1-T2)*D1/2.## TORQUE ON THE SHAFT OF LARGER PULLEY IN N-m\n",
- "TS=(T1-T2)*D2/2.## TORQUE ON THE SHAFT OF SMALLER PULLEY IN N-m\n",
- "P=(T1-T2)*V/1000.## POWER TRANSMITTED IN kW\n",
- "Pi=2.*PI*N1*TL/60000.## INPUT POWER\n",
- "Po=2.*PI*N2*TS/60000.## OUTPUT POWER\n",
- "Pl=Pi-Po## POWER LOST DUE TO FRICTION IN kW\n",
- "n=Po/Pi*100.## EFFICIENCY OF DRIVE IN %\n",
- "##==================================================================================================================================\n",
- "##OUTPUT\n",
- "print'%s %.1f %s'%('TORQUE ON LARGER SHAFT =',TL,'N-m')\n",
- "print'%s %.1f %s'%('TORQUE ON SMALLER SHAFT =',TS,' N-m')\n",
- "print'%s %.1f %s'%('POWER TRANSMITTED =',P,' kW')\n",
- "print'%s %.1f %s'%('POWER LOST DUE TO FRICTION =',Pl,' kW')\n",
- "print'%s %.1f %s'%('EFFICIENCY OF DRINE =',n,' percentage')\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "TORQUE ON LARGER SHAFT = 679.0 N-m\n",
- "TORQUE ON SMALLER SHAFT = 282.9 N-m\n",
- "POWER TRANSMITTED = 14.2 kW\n",
- "POWER LOST DUE TO FRICTION = 0.9 kW\n",
- "EFFICIENCY OF DRINE = 93.8 percentage\n"
- ]
- }
- ],
- "prompt_number": 14
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex13-pg67"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "##CHAPTER 2,ILLUSTRATION 13 PAGE 67\n",
- "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
- "import math\n",
- "##============================================================================================================================\n",
- "##INPUT\n",
- "PI=3.141\n",
- "e=2.71\n",
- "P=90## POWER OF A COMPRESSOR IN kW\n",
- "N2=250.## SPEED OF DRIVEN SHAFT IN rpm\n",
- "N1=750.## SPEED OF DRIVER SHAFT IN rpm\n",
- "D2=1.## DIAMETER OF DRIVEN SHAFT IN m\n",
- "C=1.75## CENTRE DISTANCE IN m\n",
- "V=1600./60.## VELOCITY IN m/s\n",
- "a=375.## CROSECTIONAL AREA IN mm**2\n",
- "density=1000.## BELT DENSITY IN kg/m**3\n",
- "L=1## length to be considered\n",
- "Fb=2.5## STRESSS INDUCED IN MPa\n",
- "beeta=35./2.## THE GROOVE ANGLE OF PULLEY\n",
- "U=.25## COEFFICIENT OF FRICTION\n",
- "##=================================================================================================================================\n",
- "##CALCULATION\n",
- "D1=N2*D2/N1## DIAMETER OF DRIVING SHAFT IN m\n",
- "m=a*density*10**-6.*L## MASS OF THE BELT IN kg\n",
- "Tmax=a*Fb## MAX TENSION IN N\n",
- "Tc=m*V**2.## CENTRIFUGAL TENSION IN N\n",
- "T1=Tmax-Tc## TENSION ON TIGHTSIDE OF BELT IN N\n",
- "F=(D2-D1)/(2.*C)\n",
- "ALPHA=math.asin(F/57.3)\n",
- "THETA=(180.-(2.*ALPHA))*PI/180.## ANGLE OF CONTACT IN radians\n",
- "T2=T1/(e**(U*THETA/math.sin(beeta/57.3)))##TENSION ON SLACKSIDE IN N\n",
- "P2=(T1-T2)*V/1000.## POWER TRANSMITTED PER BELT kW\n",
- "N=P/P2## NO OF V-BELTS\n",
- "N3=N+1.\n",
- "##======================================================================================================================================\n",
- "##OUTPUT\n",
- "print'%s %.1f %s %.1f %s '%('NO OF BELTS REQUIRED TO TRANSMIT POWER=',N,' APPROXIMATELY=',N3,'')\n",
- "\n",
- "\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "NO OF BELTS REQUIRED TO TRANSMIT POWER= 5.4 APPROXIMATELY= 6.4 \n"
- ]
- }
- ],
- "prompt_number": 15
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex14-pg68"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "##CHAPTER 2,ILLUSTRATION 14 PAGE 68\n",
- "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
- "import math\n",
- "##============================================================================================================================\n",
- "##INPUT\n",
- "PI=3.141\n",
- "e=2.71\n",
- "P=75.## POWER IN kW\n",
- "D=1.5## DIAMETER OF PULLEY IN m\n",
- "U=.3## COEFFICIENT OF FRICTION\n",
- "beeta=45./2.## GROOVE ANGLE\n",
- "THETA=160.*PI/180.## ANGLE OF CONTACT IN radians\n",
- "m=.6## MASS OF BELT IN kg/m\n",
- "Tmax=800.## MAX TENSION IN N\n",
- "N=200.## SPEED OF SHAFT IN rpm\n",
- "##=============================================================================================================================\n",
- "##calculation\n",
- "V=PI*D*N/60.## VELOCITY OF ROPE IN m/s\n",
- "Tc=m*V**2.## CENTRIFUGAL TENSION IN N\n",
- "T1=Tmax-Tc## TENSION ON TIGHT SIDE IN N\n",
- "T2=T1/(e**(U*THETA/math.sin(beeta/57.3)))##TENSION ON SLACKSIDE IN N\n",
- "P2=(T1-T2)*V/1000.## POWER TRANSMITTED PER BELT kW\n",
- "No=P/P2## NO OF V-BELTS\n",
- "N3=No+1.## ROUNDING OFF\n",
- "To=(T1+T2+Tc*2.)/2.## INITIAL TENSION\n",
- "##================================================================================================================================\n",
- "##OUTPUT\n",
- "print'%s %.1f %s %.1f %s '%('NO OF BELTS REQUIRED TO TRANSMIT POWER=',No,'' 'APPROXIMATELY=',N3,'')\n",
- "print'%s %.1f %s'%('INITIAL ROPE TENSION=',To,' N')\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "NO OF BELTS REQUIRED TO TRANSMIT POWER= 8.3 APPROXIMATELY= 9.3 \n",
- "INITIAL ROPE TENSION= 510.8 N\n"
- ]
- }
- ],
- "prompt_number": 16
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file