diff options
Diffstat (limited to '_A_Textbook_Of_Engineering_Physics')
43 files changed, 8212 insertions, 0 deletions
diff --git a/_A_Textbook_Of_Engineering_Physics/Chapter11.ipynb b/_A_Textbook_Of_Engineering_Physics/Chapter11.ipynb new file mode 100755 index 00000000..2ca36fdf --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/Chapter11.ipynb @@ -0,0 +1,150 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:cb0c026235eca0bc18a695dcb9668ea4e2691af702577b5109cf13ded8d1630d"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter11-Architectural Acoustics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg293"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 11.1\n",
+ "##calculation of total absorption and average absorption coefficient\n",
+ "\n",
+ "##given values\n",
+ "\n",
+ "V=20*15*5.;##volume of hall in m**3\n",
+ "t=3.5;##reverberation time of empty hall in sec\n",
+ "\n",
+ "\n",
+ "##calculation\n",
+ "a1=.161*V/t;##total absorption of empty hall\n",
+ "k=a1/(2.*(20*15+15*5+20*5.));\n",
+ "print'%s %.2f %s'%('the average absorption coefficient is',k,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the average absorption coefficient is 0.07 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg293"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 11.2\n",
+ "##calculation of average absorption coefficient\n",
+ "\n",
+ "##given values\n",
+ "\n",
+ "V=10*8.*6.;##volume of hall in m**3\n",
+ "t=1.5;##reverberation time of empty hall in sec\n",
+ "A=20.;##area of curtain cloth in m**2\n",
+ "t1=1.;##new reverberation time in sec\n",
+ "\n",
+ "##calculation\n",
+ "a1=.161*V/t;##total absorption of empty hall\n",
+ "a2=.161*V/t1;##total absorption after a curtain cloth is suspended\n",
+ "\n",
+ "k=(a2-a1)/(2.*20.);\n",
+ "print'%s %.2f %s'%('the average absorption coefficient is',k,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the average absorption coefficient is 0.64 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg293"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 11.3\n",
+ "##calculation of average absorption coefficient and area\n",
+ "\n",
+ "##given values\n",
+ "\n",
+ "V=20*15*10.;##volume of hall in m**3\n",
+ "t=3.5;##reverberation time of empty hall in sec\n",
+ "t1=2.5;##reduced reverberation time \n",
+ "k2=.5;##absorption coefficient of curtain cloth\n",
+ "##calculation\n",
+ "a1=.161*V/t;##total absorption of empty hall\n",
+ "k1=a1/(2*(20*15+15*10+20*10));\n",
+ "print'%s %.2f %s'%('the average absorption coefficient is',k1,'');\n",
+ "a2=.161*V/t1;##total absorption when wall is covered with curtain\n",
+ "a=t1*(a2-a1)/(t1*k2);\n",
+ "print'%s %.2f %s'%('area of wall to be covered with curtain(in m^2)is:',a,'')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the average absorption coefficient is 0.11 \n",
+ "area of wall to be covered with curtain(in m^2)is: 110.40 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/_A_Textbook_Of_Engineering_Physics/Chapter11_1.ipynb b/_A_Textbook_Of_Engineering_Physics/Chapter11_1.ipynb new file mode 100755 index 00000000..2ca36fdf --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/Chapter11_1.ipynb @@ -0,0 +1,150 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:cb0c026235eca0bc18a695dcb9668ea4e2691af702577b5109cf13ded8d1630d"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter11-Architectural Acoustics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg293"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 11.1\n",
+ "##calculation of total absorption and average absorption coefficient\n",
+ "\n",
+ "##given values\n",
+ "\n",
+ "V=20*15*5.;##volume of hall in m**3\n",
+ "t=3.5;##reverberation time of empty hall in sec\n",
+ "\n",
+ "\n",
+ "##calculation\n",
+ "a1=.161*V/t;##total absorption of empty hall\n",
+ "k=a1/(2.*(20*15+15*5+20*5.));\n",
+ "print'%s %.2f %s'%('the average absorption coefficient is',k,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the average absorption coefficient is 0.07 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg293"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 11.2\n",
+ "##calculation of average absorption coefficient\n",
+ "\n",
+ "##given values\n",
+ "\n",
+ "V=10*8.*6.;##volume of hall in m**3\n",
+ "t=1.5;##reverberation time of empty hall in sec\n",
+ "A=20.;##area of curtain cloth in m**2\n",
+ "t1=1.;##new reverberation time in sec\n",
+ "\n",
+ "##calculation\n",
+ "a1=.161*V/t;##total absorption of empty hall\n",
+ "a2=.161*V/t1;##total absorption after a curtain cloth is suspended\n",
+ "\n",
+ "k=(a2-a1)/(2.*20.);\n",
+ "print'%s %.2f %s'%('the average absorption coefficient is',k,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the average absorption coefficient is 0.64 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg293"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 11.3\n",
+ "##calculation of average absorption coefficient and area\n",
+ "\n",
+ "##given values\n",
+ "\n",
+ "V=20*15*10.;##volume of hall in m**3\n",
+ "t=3.5;##reverberation time of empty hall in sec\n",
+ "t1=2.5;##reduced reverberation time \n",
+ "k2=.5;##absorption coefficient of curtain cloth\n",
+ "##calculation\n",
+ "a1=.161*V/t;##total absorption of empty hall\n",
+ "k1=a1/(2*(20*15+15*10+20*10));\n",
+ "print'%s %.2f %s'%('the average absorption coefficient is',k1,'');\n",
+ "a2=.161*V/t1;##total absorption when wall is covered with curtain\n",
+ "a=t1*(a2-a1)/(t1*k2);\n",
+ "print'%s %.2f %s'%('area of wall to be covered with curtain(in m^2)is:',a,'')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the average absorption coefficient is 0.11 \n",
+ "area of wall to be covered with curtain(in m^2)is: 110.40 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/_A_Textbook_Of_Engineering_Physics/Chapter12.ipynb b/_A_Textbook_Of_Engineering_Physics/Chapter12.ipynb new file mode 100755 index 00000000..7ced75e1 --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/Chapter12.ipynb @@ -0,0 +1,144 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:4671074782cd36f56500529820b222f929e1453d2be6b38ad8ab85fd8d868d5a"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter12-Ultrasonics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg295"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 12.1\n",
+ "##calculation of natural frequency,magnetostriction\n",
+ "\n",
+ "##given values\n",
+ "\n",
+ "l=40*10**-3.;##length of pure iron rod\n",
+ "d=7.25*10**3.;##density of iron in kg/m**3\n",
+ "Y=115*10**9.;##Young's modulus in N/m**2 \n",
+ "\n",
+ "##calculation\n",
+ "f=(1*math.sqrt(Y/d))/(2.*l);\n",
+ "print'%s %.2f %s'%('the natural frequency(in kHz) is',f*10**-3,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the natural frequency(in kHz) is 49.78 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg297"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 12.2\n",
+ "##calculation of natural frequency\n",
+ "\n",
+ "##given values\n",
+ "\n",
+ "t=5.5*10**-3.;##thickness in m\n",
+ "d=2.65*10**3.;##density in kg/m**3\n",
+ "Y=8*10**10.;##Young's modulus in N/m**2 \n",
+ "\n",
+ "\n",
+ "##calculation\n",
+ "f=(math.sqrt(Y/d))/(2.*t);##frequency in hertz\n",
+ "print'%s %.2f %s'%('the natural frequency(in kHz) is',f*10**-3,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the natural frequency(in kHz) is 499.49 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg301"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 12.3\n",
+ "##calculation of depth and wavelength\n",
+ "\n",
+ "##given values\n",
+ "\n",
+ "f=.07*10**6;##frequency in Hz\n",
+ "t=.65;##time taken for pulse to return\n",
+ "v=1700.;##velocity of sound in sea water in m/s\n",
+ "\n",
+ "##calculation\n",
+ "d=v*t/2.;##\n",
+ "print'%s %.2f %s'%('the depth of sea(in m) is',d,'');\n",
+ "l=v/f;##wavelenght of pulse in m\n",
+ "print'%s %.2f %s'%('wavelength of pulse (in cm)is',l*10**2,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the depth of sea(in m) is 552.50 \n",
+ "wavelength of pulse (in cm)is 2.43 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/_A_Textbook_Of_Engineering_Physics/Chapter12_1.ipynb b/_A_Textbook_Of_Engineering_Physics/Chapter12_1.ipynb new file mode 100755 index 00000000..7ced75e1 --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/Chapter12_1.ipynb @@ -0,0 +1,144 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:4671074782cd36f56500529820b222f929e1453d2be6b38ad8ab85fd8d868d5a"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter12-Ultrasonics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg295"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 12.1\n",
+ "##calculation of natural frequency,magnetostriction\n",
+ "\n",
+ "##given values\n",
+ "\n",
+ "l=40*10**-3.;##length of pure iron rod\n",
+ "d=7.25*10**3.;##density of iron in kg/m**3\n",
+ "Y=115*10**9.;##Young's modulus in N/m**2 \n",
+ "\n",
+ "##calculation\n",
+ "f=(1*math.sqrt(Y/d))/(2.*l);\n",
+ "print'%s %.2f %s'%('the natural frequency(in kHz) is',f*10**-3,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the natural frequency(in kHz) is 49.78 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg297"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 12.2\n",
+ "##calculation of natural frequency\n",
+ "\n",
+ "##given values\n",
+ "\n",
+ "t=5.5*10**-3.;##thickness in m\n",
+ "d=2.65*10**3.;##density in kg/m**3\n",
+ "Y=8*10**10.;##Young's modulus in N/m**2 \n",
+ "\n",
+ "\n",
+ "##calculation\n",
+ "f=(math.sqrt(Y/d))/(2.*t);##frequency in hertz\n",
+ "print'%s %.2f %s'%('the natural frequency(in kHz) is',f*10**-3,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the natural frequency(in kHz) is 499.49 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg301"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 12.3\n",
+ "##calculation of depth and wavelength\n",
+ "\n",
+ "##given values\n",
+ "\n",
+ "f=.07*10**6;##frequency in Hz\n",
+ "t=.65;##time taken for pulse to return\n",
+ "v=1700.;##velocity of sound in sea water in m/s\n",
+ "\n",
+ "##calculation\n",
+ "d=v*t/2.;##\n",
+ "print'%s %.2f %s'%('the depth of sea(in m) is',d,'');\n",
+ "l=v/f;##wavelenght of pulse in m\n",
+ "print'%s %.2f %s'%('wavelength of pulse (in cm)is',l*10**2,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the depth of sea(in m) is 552.50 \n",
+ "wavelength of pulse (in cm)is 2.43 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/_A_Textbook_Of_Engineering_Physics/Chapter13.ipynb b/_A_Textbook_Of_Engineering_Physics/Chapter13.ipynb new file mode 100755 index 00000000..2e8d2e4e --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/Chapter13.ipynb @@ -0,0 +1,410 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:1347b69ffb48f57ed84c93fa692b1b83ef62827af6c7ff1223306a59bfbf283e"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter13-Atomic Physics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg310"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 13.1\n",
+ "##calculation of rate of flow of photons\n",
+ "\n",
+ "##given values\n",
+ "\n",
+ "l=5893*10**-10;##wavelength of light in m \n",
+ "P=40.;##power of sodium lamp in W\n",
+ "d=10;##distance from the source in m\n",
+ "s=4*math.pi*d**2;##surface area of radius in m**2\n",
+ "c=3*10**8.;##velocity of light in m/s\n",
+ "h=6.626*10**-34;##Planck's constant in Js\n",
+ "##calculation\n",
+ "E=P*1.;##\n",
+ "print'%s %.2f %s'%('total energy emitted per second(in Joule)is',E,'');\n",
+ "n=E*l/(c*h);##total no of photons\n",
+ "R=n/s;\n",
+ "print'%s %.2e %s'%('rate of flow of photons per unit area (in /m^2) is',R,'')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "total energy emitted per second(in Joule)is 40.00 \n",
+ "rate of flow of photons per unit area (in /m^2) is 9.44e+16 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg315"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 13.2\n",
+ "##calculation of threshold wavelength and stopping potential\n",
+ "\n",
+ "##given values\n",
+ "\n",
+ "l=2000.;##wavelength of light in armstrong \n",
+ "e=1.6*10**-19.;##charge of electron\n",
+ "W=4.2;##work function in eV\n",
+ "c=3*10**8.;##velocity of light in m/s\n",
+ "h=6.626*10**-34.;##Planck's constant in Js\n",
+ "##calculation\n",
+ "x=12400/(W);##h*c=12400 eV\n",
+ "print'%s %.2f %s'%('threshold wavelength(in Armstrong)is',x,'');\n",
+ "Vs=(12400/l-W);##\n",
+ "print'%s %.2f %s'%('stopping potential (in VOLTS) is',Vs,'')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "threshold wavelength(in Armstrong)is 2952.38 \n",
+ "stopping potential (in VOLTS) is 2.00 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg326"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 13.3\n",
+ "##calculation of momentum of X-ray photon undergoing scattering\n",
+ "\n",
+ "##given values\n",
+ "\n",
+ "alpha=60*math.pi/180.;##scattering angle in radian\n",
+ "e=1.6*10**-19;##charge ofelectrone\n",
+ "W=12273.;##work function in eV\n",
+ "c=3*10**8;##velocity of light in m/s\n",
+ "h=6.626*10**-34.;##Planck's constant in Js\n",
+ "hc=12400.;##in eV\n",
+ "m=9.1*10**-31##restmass of photon in kg\n",
+ "##calculation\n",
+ "x=hc/(W);##wavelength of photon undergoing modofied scattering in armstrong\n",
+ "y=x-(h/(m*c))*(1-math.cos(alpha));\n",
+ "p=h/y*10**10.;\n",
+ "print'%s %.3e %s'%('momentum of photon(in kg-m/s) is',p,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "momentum of photon(in kg-m/s) is 6.558e-24 \n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg327"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 13.4\n",
+ "##calculation of wavelength of scattered radiation and velocity of recoiled electron\n",
+ "\n",
+ "##given values\n",
+ "\n",
+ "alpha=30*math.pi/180.;##scattering angle in radian\n",
+ "e=1.6*10**-19.;##charge ofelectron\n",
+ "x=1.372*10**-10.;##wavelength of incident radiation in m\n",
+ "c=3*10**8;##velocity of light in m/s\n",
+ "h=6.626*10**-34;##Planck's constant in Js\n",
+ "m=9.1*10**-31##rest mass of photon in kg\n",
+ "hc=12400.;##in eV\n",
+ "##calculation\n",
+ "\n",
+ "y=((x+(h/(m*c))*(1-math.cos(alpha))))*10**10;\n",
+ "print'%s %.2f %s'%('wavelength of scattered radiation(in armstrong)is',y,'');\n",
+ "x1=x*10**10;##converting incident wavelength into armstrong\n",
+ "KE=hc*e*((1/x1)-(1/y));##kinetic energy in Joule\n",
+ "print'%s %.3e %s'%('kinetic energy in joule is ',KE,'');\n",
+ "v=math.sqrt(2.*KE/m);\n",
+ "print'%s %.2f %s'%('velocity of recoiled electron (in m/s^2)is',v,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "wavelength of scattered radiation(in armstrong)is 1.38 \n",
+ "kinetic energy in joule is 3.419e-18 \n",
+ "velocity of recoiled electron (in m/s^2)is 2741274.99 \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg333"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 13.5\n",
+ "##calculation of wavelength of light emitted\n",
+ "\n",
+ "##given values\n",
+ "e=1.6*10**-19;##charge of electrone\n",
+ "c=3*10**8;##velocity of light\n",
+ "h=6.626*10**-34;##Planck's constant in Js\n",
+ "E1=5.36;##energy of first state in eV\n",
+ "E2=3.45;##energy of second state in eV\n",
+ "\n",
+ "\n",
+ "##1)calculation\n",
+ "\n",
+ "l=h*c*10**10/((E1-E2)*e);\n",
+ "print'%s %.2f %s'%('wavelength of scattered light(in Armstrong)is',l,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "wavelength of scattered light(in Armstrong)is 6504.58 \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg361"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 13.6\n",
+ "##calculation of de Broglie wavelength \n",
+ "\n",
+ "##1)given values\n",
+ "e=1.6*10**-19.;\n",
+ "h=6.626*10**-34.;##Planck's constant in Js\n",
+ "V=182.;##potential difference in volts\n",
+ "m=9.1*10**-31;##mass of e in kg\n",
+ "\n",
+ "\n",
+ "##1)calculation\n",
+ "\n",
+ "l=h/math.sqrt(2.*e*m*V);\n",
+ "print'%s %.3e %s'%('de Brogliewavelength (in m)is',l,'');\n",
+ "\n",
+ "\n",
+ "##2)given values\n",
+ "m1=1.;##mass of object in kg\n",
+ "v=1.;##velocity of object in m/s\n",
+ "l1=h/(m1*v);\n",
+ "print'%s %.3e %s'%('debrogie wavelength of object in m) is',l1,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "de Brogliewavelength (in m)is 9.102e-11 \n",
+ "debrogie wavelength of object in m) is 6.626e-34 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg368"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 13.7\n",
+ "##calculation of uncertainty in position\n",
+ "\n",
+ "##1)given values\n",
+ "\n",
+ "h=6.626*10**-34;##Planck's constant in Js\n",
+ "v1=220;##velocity of e in m/s\n",
+ "m=9.1*10**-31;##mass of e in kg\n",
+ "A=0.065/100.;##accuracy\n",
+ "\n",
+ "\n",
+ "##1)calculation\n",
+ "v2=v1*A;##uncertainty in speed\n",
+ "x1=h/(2*math.pi*m*v2);##\n",
+ "print'%s %.4f %s'%('uncertainty in position of e (in m)is',x1,'');\n",
+ "\n",
+ "\n",
+ "##2)given values\n",
+ "m1=150/1000.;##mass of object in kg\n",
+ "x2=h/(2*math.pi*m1*v2);\n",
+ "print'%s %.3e %s'%('uncertainty in position of baseball(in m) is',x2,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "uncertainty in position of e (in m)is 0.0008 \n",
+ "uncertainty in position of baseball(in m) is 4.916e-33 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8-pg377"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 13.8\n",
+ "##calculation of energy states of an electron and grain of dust and comparing\n",
+ "\n",
+ "##1)given values\n",
+ "L1=10*10**-10;##width of potential well in which e is confined\n",
+ "L2=.1*10**-3;##width of potential well in which grain of dust is confined\n",
+ "h=6.626*10**-34;##Planck's constant in Js\n",
+ "v1=10**6;##velocity of garin of dust in m/s\n",
+ "m1=9.1*10**-31;##mass of e in kg\n",
+ "m2=10**-9;##mass of grain in kg\n",
+ "\n",
+ "##1)calculation\n",
+ "\n",
+ "Ee1=1**2*h**2./(8.*m1*L1**2.);##first energy state of electron\n",
+ "print'%s %.3e %s'%('first energy state of e is ',Ee1,'');\n",
+ "Ee2=2**2*h**2/(8*m1*L1**2);##second energy state of electron\n",
+ "print'%s %.3e %s'%('second energy state of e is ',Ee2,'');\n",
+ "Ee3=3**2*h**2/(8*m1*L1**2);##third energy state of electron\n",
+ "print'%s %.3e %s'%('third energy state of e is ',Ee3,'');\n",
+ "print('Energy levels of an electron in an infinite potential well are quantised and the energy difference between the successive levels is quite large.Electron cannot jump from one level to other on strength of thermal energy.Hence quantization of energy plays a significant role in case of electron')\n",
+ "\n",
+ "Eg1=1**2*h**2/(8.*m2*L2**2.);##first energy state of grain of dust\n",
+ "print'%s %.3e %s'%('first energy state of grain of dust is ',Eg1,'');\n",
+ "Eg2=2**2*h**2/(8.*m2*L2**2.);##second energy state of grain of dust\n",
+ "print'%s %.3e %s'%('second energy state of grain of dust is ',Eg2,'');\n",
+ "Eg3=3**2*h**2/(8.*m2*L2**2.);##third energy state of grain of dust\n",
+ "print'%s %.3e %s'%('third energy state of grain of dust is ',Eg3,'');\n",
+ "KE=m2*v1**2/2.;##kinetic energy of grain of dust;\n",
+ "print'%s %.2f %s'%('kinetic energy of grain of dust is',KE,'');\n",
+ "print('The energy levels of a grain of dust are so near to each other that they constitute a continuum.These energy levels are far smaller than the kinetic energy possessed by the grain of dust.It can move through all these energy levels without an external supply of energy.Thus quantization of energy levels is not at all significant in case of macroscopic bodies.')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "first energy state of e is 6.031e-20 \n",
+ "second energy state of e is 2.412e-19 \n",
+ "third energy state of e is 5.428e-19 \n",
+ "Energy levels of an electron in an infinite potential well are quantised and the energy difference between the successive levels is quite large.Electron cannot jump from one level to other on strength of thermal energy.Hence quantization of energy plays a significant role in case of electron\n",
+ "first energy state of grain of dust is 5.488e-51 \n",
+ "second energy state of grain of dust is 2.195e-50 \n",
+ "third energy state of grain of dust is 4.939e-50 \n",
+ "kinetic energy of grain of dust is 500.00 \n",
+ "The energy levels of a grain of dust are so near to each other that they constitute a continuum.These energy levels are far smaller than the kinetic energy possessed by the grain of dust.It can move through all these energy levels without an external supply of energy.Thus quantization of energy levels is not at all significant in case of macroscopic bodies.\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/_A_Textbook_Of_Engineering_Physics/Chapter13_1.ipynb b/_A_Textbook_Of_Engineering_Physics/Chapter13_1.ipynb new file mode 100755 index 00000000..2e8d2e4e --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/Chapter13_1.ipynb @@ -0,0 +1,410 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:1347b69ffb48f57ed84c93fa692b1b83ef62827af6c7ff1223306a59bfbf283e"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter13-Atomic Physics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg310"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 13.1\n",
+ "##calculation of rate of flow of photons\n",
+ "\n",
+ "##given values\n",
+ "\n",
+ "l=5893*10**-10;##wavelength of light in m \n",
+ "P=40.;##power of sodium lamp in W\n",
+ "d=10;##distance from the source in m\n",
+ "s=4*math.pi*d**2;##surface area of radius in m**2\n",
+ "c=3*10**8.;##velocity of light in m/s\n",
+ "h=6.626*10**-34;##Planck's constant in Js\n",
+ "##calculation\n",
+ "E=P*1.;##\n",
+ "print'%s %.2f %s'%('total energy emitted per second(in Joule)is',E,'');\n",
+ "n=E*l/(c*h);##total no of photons\n",
+ "R=n/s;\n",
+ "print'%s %.2e %s'%('rate of flow of photons per unit area (in /m^2) is',R,'')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "total energy emitted per second(in Joule)is 40.00 \n",
+ "rate of flow of photons per unit area (in /m^2) is 9.44e+16 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg315"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 13.2\n",
+ "##calculation of threshold wavelength and stopping potential\n",
+ "\n",
+ "##given values\n",
+ "\n",
+ "l=2000.;##wavelength of light in armstrong \n",
+ "e=1.6*10**-19.;##charge of electron\n",
+ "W=4.2;##work function in eV\n",
+ "c=3*10**8.;##velocity of light in m/s\n",
+ "h=6.626*10**-34.;##Planck's constant in Js\n",
+ "##calculation\n",
+ "x=12400/(W);##h*c=12400 eV\n",
+ "print'%s %.2f %s'%('threshold wavelength(in Armstrong)is',x,'');\n",
+ "Vs=(12400/l-W);##\n",
+ "print'%s %.2f %s'%('stopping potential (in VOLTS) is',Vs,'')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "threshold wavelength(in Armstrong)is 2952.38 \n",
+ "stopping potential (in VOLTS) is 2.00 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg326"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 13.3\n",
+ "##calculation of momentum of X-ray photon undergoing scattering\n",
+ "\n",
+ "##given values\n",
+ "\n",
+ "alpha=60*math.pi/180.;##scattering angle in radian\n",
+ "e=1.6*10**-19;##charge ofelectrone\n",
+ "W=12273.;##work function in eV\n",
+ "c=3*10**8;##velocity of light in m/s\n",
+ "h=6.626*10**-34.;##Planck's constant in Js\n",
+ "hc=12400.;##in eV\n",
+ "m=9.1*10**-31##restmass of photon in kg\n",
+ "##calculation\n",
+ "x=hc/(W);##wavelength of photon undergoing modofied scattering in armstrong\n",
+ "y=x-(h/(m*c))*(1-math.cos(alpha));\n",
+ "p=h/y*10**10.;\n",
+ "print'%s %.3e %s'%('momentum of photon(in kg-m/s) is',p,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "momentum of photon(in kg-m/s) is 6.558e-24 \n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg327"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 13.4\n",
+ "##calculation of wavelength of scattered radiation and velocity of recoiled electron\n",
+ "\n",
+ "##given values\n",
+ "\n",
+ "alpha=30*math.pi/180.;##scattering angle in radian\n",
+ "e=1.6*10**-19.;##charge ofelectron\n",
+ "x=1.372*10**-10.;##wavelength of incident radiation in m\n",
+ "c=3*10**8;##velocity of light in m/s\n",
+ "h=6.626*10**-34;##Planck's constant in Js\n",
+ "m=9.1*10**-31##rest mass of photon in kg\n",
+ "hc=12400.;##in eV\n",
+ "##calculation\n",
+ "\n",
+ "y=((x+(h/(m*c))*(1-math.cos(alpha))))*10**10;\n",
+ "print'%s %.2f %s'%('wavelength of scattered radiation(in armstrong)is',y,'');\n",
+ "x1=x*10**10;##converting incident wavelength into armstrong\n",
+ "KE=hc*e*((1/x1)-(1/y));##kinetic energy in Joule\n",
+ "print'%s %.3e %s'%('kinetic energy in joule is ',KE,'');\n",
+ "v=math.sqrt(2.*KE/m);\n",
+ "print'%s %.2f %s'%('velocity of recoiled electron (in m/s^2)is',v,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "wavelength of scattered radiation(in armstrong)is 1.38 \n",
+ "kinetic energy in joule is 3.419e-18 \n",
+ "velocity of recoiled electron (in m/s^2)is 2741274.99 \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg333"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 13.5\n",
+ "##calculation of wavelength of light emitted\n",
+ "\n",
+ "##given values\n",
+ "e=1.6*10**-19;##charge of electrone\n",
+ "c=3*10**8;##velocity of light\n",
+ "h=6.626*10**-34;##Planck's constant in Js\n",
+ "E1=5.36;##energy of first state in eV\n",
+ "E2=3.45;##energy of second state in eV\n",
+ "\n",
+ "\n",
+ "##1)calculation\n",
+ "\n",
+ "l=h*c*10**10/((E1-E2)*e);\n",
+ "print'%s %.2f %s'%('wavelength of scattered light(in Armstrong)is',l,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "wavelength of scattered light(in Armstrong)is 6504.58 \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg361"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 13.6\n",
+ "##calculation of de Broglie wavelength \n",
+ "\n",
+ "##1)given values\n",
+ "e=1.6*10**-19.;\n",
+ "h=6.626*10**-34.;##Planck's constant in Js\n",
+ "V=182.;##potential difference in volts\n",
+ "m=9.1*10**-31;##mass of e in kg\n",
+ "\n",
+ "\n",
+ "##1)calculation\n",
+ "\n",
+ "l=h/math.sqrt(2.*e*m*V);\n",
+ "print'%s %.3e %s'%('de Brogliewavelength (in m)is',l,'');\n",
+ "\n",
+ "\n",
+ "##2)given values\n",
+ "m1=1.;##mass of object in kg\n",
+ "v=1.;##velocity of object in m/s\n",
+ "l1=h/(m1*v);\n",
+ "print'%s %.3e %s'%('debrogie wavelength of object in m) is',l1,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "de Brogliewavelength (in m)is 9.102e-11 \n",
+ "debrogie wavelength of object in m) is 6.626e-34 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg368"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 13.7\n",
+ "##calculation of uncertainty in position\n",
+ "\n",
+ "##1)given values\n",
+ "\n",
+ "h=6.626*10**-34;##Planck's constant in Js\n",
+ "v1=220;##velocity of e in m/s\n",
+ "m=9.1*10**-31;##mass of e in kg\n",
+ "A=0.065/100.;##accuracy\n",
+ "\n",
+ "\n",
+ "##1)calculation\n",
+ "v2=v1*A;##uncertainty in speed\n",
+ "x1=h/(2*math.pi*m*v2);##\n",
+ "print'%s %.4f %s'%('uncertainty in position of e (in m)is',x1,'');\n",
+ "\n",
+ "\n",
+ "##2)given values\n",
+ "m1=150/1000.;##mass of object in kg\n",
+ "x2=h/(2*math.pi*m1*v2);\n",
+ "print'%s %.3e %s'%('uncertainty in position of baseball(in m) is',x2,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "uncertainty in position of e (in m)is 0.0008 \n",
+ "uncertainty in position of baseball(in m) is 4.916e-33 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8-pg377"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 13.8\n",
+ "##calculation of energy states of an electron and grain of dust and comparing\n",
+ "\n",
+ "##1)given values\n",
+ "L1=10*10**-10;##width of potential well in which e is confined\n",
+ "L2=.1*10**-3;##width of potential well in which grain of dust is confined\n",
+ "h=6.626*10**-34;##Planck's constant in Js\n",
+ "v1=10**6;##velocity of garin of dust in m/s\n",
+ "m1=9.1*10**-31;##mass of e in kg\n",
+ "m2=10**-9;##mass of grain in kg\n",
+ "\n",
+ "##1)calculation\n",
+ "\n",
+ "Ee1=1**2*h**2./(8.*m1*L1**2.);##first energy state of electron\n",
+ "print'%s %.3e %s'%('first energy state of e is ',Ee1,'');\n",
+ "Ee2=2**2*h**2/(8*m1*L1**2);##second energy state of electron\n",
+ "print'%s %.3e %s'%('second energy state of e is ',Ee2,'');\n",
+ "Ee3=3**2*h**2/(8*m1*L1**2);##third energy state of electron\n",
+ "print'%s %.3e %s'%('third energy state of e is ',Ee3,'');\n",
+ "print('Energy levels of an electron in an infinite potential well are quantised and the energy difference between the successive levels is quite large.Electron cannot jump from one level to other on strength of thermal energy.Hence quantization of energy plays a significant role in case of electron')\n",
+ "\n",
+ "Eg1=1**2*h**2/(8.*m2*L2**2.);##first energy state of grain of dust\n",
+ "print'%s %.3e %s'%('first energy state of grain of dust is ',Eg1,'');\n",
+ "Eg2=2**2*h**2/(8.*m2*L2**2.);##second energy state of grain of dust\n",
+ "print'%s %.3e %s'%('second energy state of grain of dust is ',Eg2,'');\n",
+ "Eg3=3**2*h**2/(8.*m2*L2**2.);##third energy state of grain of dust\n",
+ "print'%s %.3e %s'%('third energy state of grain of dust is ',Eg3,'');\n",
+ "KE=m2*v1**2/2.;##kinetic energy of grain of dust;\n",
+ "print'%s %.2f %s'%('kinetic energy of grain of dust is',KE,'');\n",
+ "print('The energy levels of a grain of dust are so near to each other that they constitute a continuum.These energy levels are far smaller than the kinetic energy possessed by the grain of dust.It can move through all these energy levels without an external supply of energy.Thus quantization of energy levels is not at all significant in case of macroscopic bodies.')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "first energy state of e is 6.031e-20 \n",
+ "second energy state of e is 2.412e-19 \n",
+ "third energy state of e is 5.428e-19 \n",
+ "Energy levels of an electron in an infinite potential well are quantised and the energy difference between the successive levels is quite large.Electron cannot jump from one level to other on strength of thermal energy.Hence quantization of energy plays a significant role in case of electron\n",
+ "first energy state of grain of dust is 5.488e-51 \n",
+ "second energy state of grain of dust is 2.195e-50 \n",
+ "third energy state of grain of dust is 4.939e-50 \n",
+ "kinetic energy of grain of dust is 500.00 \n",
+ "The energy levels of a grain of dust are so near to each other that they constitute a continuum.These energy levels are far smaller than the kinetic energy possessed by the grain of dust.It can move through all these energy levels without an external supply of energy.Thus quantization of energy levels is not at all significant in case of macroscopic bodies.\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/_A_Textbook_Of_Engineering_Physics/Chapter14.ipynb b/_A_Textbook_Of_Engineering_Physics/Chapter14.ipynb new file mode 100755 index 00000000..1a941a59 --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/Chapter14.ipynb @@ -0,0 +1,224 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:fa946e3f77a5fb13eb7ad900f4bb8618950afc67e42b0d85db2b38e779043158"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter14-Lasers\n"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg418"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 14.1\n",
+ "##calculation of intensity of laser beam\n",
+ "\n",
+ "##given values\n",
+ "P=10*10**-3.;##Power in Watt\n",
+ "d=1.3*10**-3.;##diametre in m\n",
+ "A=math.pi*d**2./4.;##area in m**2\n",
+ "\n",
+ "\n",
+ "##calculation\n",
+ "I=P/A;\n",
+ "print'%s %.2f %s'%('intensity (in W/m^2) is',I,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "intensity (in W/m^2) is 7533.96 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg418"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 14.2\n",
+ "##calculation of intensity of laser beam\n",
+ "\n",
+ "##given values\n",
+ "P=1*10**-3.;##Power in Watt\n",
+ "l=6328*10**-10.;##wavelength in m\n",
+ "A=l**2.;##area in m**2\n",
+ "\n",
+ "\n",
+ "##calculation\n",
+ "I=P/A;\n",
+ "print'%s %.3e %s'%('intensity (in W/m^2) is',I,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "intensity (in W/m^2) is 2.497e+09 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg418"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 14.3\n",
+ "##calculation of coherence length,bandwidth and line width\n",
+ "\n",
+ "##given values\n",
+ "c=3*10**8.;##velocity of light in m/s\n",
+ "t=.1*10**-9.;##timedivision in s\n",
+ "l=6238*10**-10.;##wavelength in m\n",
+ "\n",
+ "##calculation\n",
+ "x=c*t;\n",
+ "print'%s %.2f %s'%('coherence length (in m) is',x,'');\n",
+ "d=1./t;\n",
+ "print'%s %.3e %s'%('bandwidth (in Hz) is',d,'');\n",
+ "y=l**2*d/c;##line width in m\n",
+ "print'%s %.2f %s'%('line width(in armstrong )is',y*10**10,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "coherence length (in m) is 0.03 \n",
+ "bandwidth (in Hz) is 1.000e+10 \n",
+ "line width(in armstrong )is 0.13 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg418"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 14.4\n",
+ "##calculation of frequency difference\n",
+ "\n",
+ "##given values\n",
+ "c=3*10**8;##velocity of light in m/s\n",
+ "l=.5;##distance in m\n",
+ "\n",
+ "##calculation\n",
+ "f=c/(2*l);##in hertz\n",
+ "print'%s %.2f %s'%('frequency difference (in MHz) is',f/10**6,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "frequency difference (in MHz) is 300.00 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg418"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 14.5\n",
+ "##calculation of no of cavity modes\n",
+ "\n",
+ "##given values\n",
+ "c=3*10**8.;##velocity of light in m/s\n",
+ "n=1.75;##refractive index\n",
+ "l=2*10**-2;##length of ruby rod in m\n",
+ "x=6943*10**-10.;##wavelength in m\n",
+ "y=5.3*10**-10.;##spread of wavelength in m\n",
+ "\n",
+ "##calculation\n",
+ "d=c/n/l;\n",
+ "f=c*y/x**2.;\n",
+ "m=f/d;\n",
+ "print'%s %.2f %s'%('no of modes is',m,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "no of modes is 38.48 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/_A_Textbook_Of_Engineering_Physics/Chapter14_1.ipynb b/_A_Textbook_Of_Engineering_Physics/Chapter14_1.ipynb new file mode 100755 index 00000000..1a941a59 --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/Chapter14_1.ipynb @@ -0,0 +1,224 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:fa946e3f77a5fb13eb7ad900f4bb8618950afc67e42b0d85db2b38e779043158"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter14-Lasers\n"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg418"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 14.1\n",
+ "##calculation of intensity of laser beam\n",
+ "\n",
+ "##given values\n",
+ "P=10*10**-3.;##Power in Watt\n",
+ "d=1.3*10**-3.;##diametre in m\n",
+ "A=math.pi*d**2./4.;##area in m**2\n",
+ "\n",
+ "\n",
+ "##calculation\n",
+ "I=P/A;\n",
+ "print'%s %.2f %s'%('intensity (in W/m^2) is',I,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "intensity (in W/m^2) is 7533.96 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg418"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 14.2\n",
+ "##calculation of intensity of laser beam\n",
+ "\n",
+ "##given values\n",
+ "P=1*10**-3.;##Power in Watt\n",
+ "l=6328*10**-10.;##wavelength in m\n",
+ "A=l**2.;##area in m**2\n",
+ "\n",
+ "\n",
+ "##calculation\n",
+ "I=P/A;\n",
+ "print'%s %.3e %s'%('intensity (in W/m^2) is',I,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "intensity (in W/m^2) is 2.497e+09 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg418"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 14.3\n",
+ "##calculation of coherence length,bandwidth and line width\n",
+ "\n",
+ "##given values\n",
+ "c=3*10**8.;##velocity of light in m/s\n",
+ "t=.1*10**-9.;##timedivision in s\n",
+ "l=6238*10**-10.;##wavelength in m\n",
+ "\n",
+ "##calculation\n",
+ "x=c*t;\n",
+ "print'%s %.2f %s'%('coherence length (in m) is',x,'');\n",
+ "d=1./t;\n",
+ "print'%s %.3e %s'%('bandwidth (in Hz) is',d,'');\n",
+ "y=l**2*d/c;##line width in m\n",
+ "print'%s %.2f %s'%('line width(in armstrong )is',y*10**10,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "coherence length (in m) is 0.03 \n",
+ "bandwidth (in Hz) is 1.000e+10 \n",
+ "line width(in armstrong )is 0.13 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg418"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 14.4\n",
+ "##calculation of frequency difference\n",
+ "\n",
+ "##given values\n",
+ "c=3*10**8;##velocity of light in m/s\n",
+ "l=.5;##distance in m\n",
+ "\n",
+ "##calculation\n",
+ "f=c/(2*l);##in hertz\n",
+ "print'%s %.2f %s'%('frequency difference (in MHz) is',f/10**6,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "frequency difference (in MHz) is 300.00 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg418"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 14.5\n",
+ "##calculation of no of cavity modes\n",
+ "\n",
+ "##given values\n",
+ "c=3*10**8.;##velocity of light in m/s\n",
+ "n=1.75;##refractive index\n",
+ "l=2*10**-2;##length of ruby rod in m\n",
+ "x=6943*10**-10.;##wavelength in m\n",
+ "y=5.3*10**-10.;##spread of wavelength in m\n",
+ "\n",
+ "##calculation\n",
+ "d=c/n/l;\n",
+ "f=c*y/x**2.;\n",
+ "m=f/d;\n",
+ "print'%s %.2f %s'%('no of modes is',m,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "no of modes is 38.48 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/_A_Textbook_Of_Engineering_Physics/Chapter15.ipynb b/_A_Textbook_Of_Engineering_Physics/Chapter15.ipynb new file mode 100755 index 00000000..fd70c5b8 --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/Chapter15.ipynb @@ -0,0 +1,661 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:00168ce8e6485ed62b7ab93f835949895122e8d417f4d6143363c166514fa2f2"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Chapter15-Atomic Nucleus And Nuclear Energy"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg-pg427"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 15.1\n",
+ "##calculation of binding energy per nucleon\n",
+ "\n",
+ "##given values\n",
+ "Mp=1.00814;##mass of proton in amu\n",
+ "Mn=1.008665;##mass of nucleon in amu\n",
+ "M=7.01822;##mass of Lithium nucleus in amu\n",
+ "amu=931.;##amu in MeV\n",
+ "n=7-3;##no of neutrons in lithium nucleus\n",
+ "\n",
+ "##calculation\n",
+ "ET=(3*Mp+4*Mn-M)*amu;##total binding energy in MeV\n",
+ "E=ET/7.;##7 1s the mass number\n",
+ "print'%s %.2f %s'%('Binding energy per nucleon in MeV is',E,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Binding energy per nucleon in MeV is 5.43 \n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg427"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 15.2\n",
+ "##calculation of energy \n",
+ "\n",
+ "##given values\n",
+ "M1=15.00001;##atomic mass of N15 in amu\n",
+ "M2=15.0030;##atomic mass of O15 in amu\n",
+ "M3=15.9949;##atomic mass of O16 in amu\n",
+ "amu=931.4;##amu in MeV\n",
+ "mp=1.0072766;##restmass of proton\n",
+ "mn=1.0086654;##restmass of neutron\n",
+ "\n",
+ "##calculation\n",
+ "Q1=(M3-mp-M1)*amu;\n",
+ "print'%s %.2f %s'%('energy required to remove one proton from O16 is',Q1,'');\n",
+ "Q2=(M3-mn-M2)*amu;\n",
+ "print'%s %.2f %s'%('energy required to remove one neutron from O16 is',Q2,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "energy required to remove one proton from O16 is -11.54 \n",
+ "energy required to remove one neutron from O16 is -15.62 \n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg428"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 15.3\n",
+ "##calculation of binding energy \n",
+ "\n",
+ "##given values\n",
+ "Mp=1.00758;##mass of proton in amu\n",
+ "Mn=1.00897;##mass of nucleon in amu\n",
+ "M=4.0028;##mass of Helium nucleus in amu\n",
+ "amu=931.4;##amu in MeV\n",
+ "\n",
+ "##calculation\n",
+ "E1=(2*Mp+2*Mn-M)*amu;##total binding energy\n",
+ "print'%s %.2f %s'%('Binding energy in MeV is',E1,'');\n",
+ "E2=E1*10**6*1.6*10**-19;\n",
+ "print'%s %.3e %s'%('binding energy in Joule is',E2,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Binding energy in MeV is 28.22 \n",
+ "binding energy in Joule is 4.515e-12 \n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg435"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 15.4\n",
+ "##calculation of amount of unchanged material\n",
+ "\n",
+ "##given values\n",
+ "T=2;##half life in years\n",
+ "k=.6931/T;##decay constant\n",
+ "M=4.0028;##mass of Helium nucleus in amu\n",
+ "amu=931.4;##amu in MeV\n",
+ "No=1.;##initial amount in g\n",
+ "\n",
+ "##calculation\n",
+ "N=No*(math.e**(-k*2*T));\n",
+ "print'%s %.2f %s'%('amount of material remaining unchanged after four years(in gram) is',N,'');\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "amount of material remaining unchanged after four years(in gram) is 0.25 \n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg435"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 15.5\n",
+ "##calculation of amount of halflife\n",
+ "\n",
+ "##given values\n",
+ "t=5.;##time period in years\n",
+ "amu=931.4;##amu in MeV\n",
+ "No=5.;##initial amount in g\n",
+ "N=5.-(10.5*10**-3);##amount present after 5 years\n",
+ "\n",
+ "\n",
+ "##calculation\n",
+ "k=math.log(N/No)/t;##decay constant\n",
+ "T=-.693/k;\n",
+ "print'%s %.2f %s'%('halflife in years is',T,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "halflife in years is 1648.27 \n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg435"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 15.6\n",
+ "##calculation of activity\n",
+ "\n",
+ "##given values\n",
+ "t=28.;##half life in years\n",
+ "m=10**-3;##mass of sample\n",
+ "M=90.;##atomic mass of strontium\n",
+ "NA=6.02*10**26;##avogadro's number\n",
+ "\n",
+ "\n",
+ "##calculation\n",
+ "n=m*NA/M;##no of nuclei in 1 mg sample\n",
+ "k=.693/(t*365*24.*60.*60.);##decay constant\n",
+ "A=k*n;\n",
+ "print'%s %.3e %s'%('activity of sample(in disintegrations per second) is',A,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "activity of sample(in disintegrations per second) is 5.250e+12 \n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg439"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 15.7\n",
+ "##calculation of age of mineral\n",
+ "\n",
+ "##given values\n",
+ "t=4.5*10**9.;##half life in years\n",
+ "M1=238.;##atomic mass of Uranium in g\n",
+ "m=.093;##mass of lead in 1 g of uranium in g\n",
+ "NA=6.02*10**26;##avogadro's number\n",
+ "M2=206.;##atomic mass of lead in g\n",
+ "\n",
+ "##calculation\n",
+ "n=NA/M1;##no of nuclei in 1 g of uranium sample\n",
+ "n1=m*NA/M2;##no of nuclei in m mass of lead\n",
+ "c=n1/n;\n",
+ "k=.693/t;##decay constant\n",
+ "T=(1/k)*math.log(1+c);\n",
+ "print'%s %.3e %s'%('age of mineral in years is',T,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "age of mineral in years is 6.627e+08 \n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8-pg440"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 15.8\n",
+ "##calculation of age of wooden piece\n",
+ "\n",
+ "##given values\n",
+ "t=5730.;##half life of C14 in years\n",
+ "M1=50.;##mass of wooden piece in g\n",
+ "A1=320.;##activity of wooden piece (disintegration per minute per g)\n",
+ "A2=12.;##activity of living tree\n",
+ "\n",
+ "##calculation\n",
+ "k=.693/t;##decay constant\n",
+ "A=A1/M1;##activity after death\n",
+ "\n",
+ "T=(1/k)*math.log(A2/A);\n",
+ "print'%s %.2f %s'%('age of mineral in years is',T,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "age of mineral in years is 5197.59 \n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9-pg443"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 15.9\n",
+ "##calculation of energy released\n",
+ "\n",
+ "##given values\n",
+ "M1=10.016125;##atomic mass of Boron in amu\n",
+ "M2=13.007440;##atomic mass of C13 in amu\n",
+ "M3=4.003874;##atomic mass of Helium in amu\n",
+ "mp=1.008146;##mass of proton in amu\n",
+ "amu=931.;##amu in MeV\n",
+ "\n",
+ "##calculation\n",
+ "Q=(M1+M3-(M2+mp))*amu;##total binding energy in M\n",
+ "print'%s %.2f %s'%('Binding energy per nucleon in MeV is',Q,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Binding energy per nucleon in MeV is 4.11 \n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10-pg444"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 15.10\n",
+ "##calculation of crosssection\n",
+ "\n",
+ "##given values\n",
+ "t=.01*10**-3;##thickness in m\n",
+ "n=10**13.;##no of protons bombarding target per s\n",
+ "NA=6.02*10**26.;##avogadro's number\n",
+ "M=7.;##atomic mass of lithium in kg\n",
+ "d=500.;##density of lithium in kg/m**3\n",
+ "n0=10**8.;##no of neutrons produced per s\n",
+ "##calculation\n",
+ "n1=d*NA/M;##no of target nuclei per unit volume\n",
+ "n2=n1*t;##no of target nuclei per area\n",
+ "A=n0/(n*n2);\n",
+ "print'%s %.3e %s'%('crosssection(in m^2) for this reaction is',A,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "crosssection(in m^2) for this reaction is 2.326e-29 \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11-pg450"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 15.11\n",
+ "##calculation of final energy \n",
+ "\n",
+ "##given values\n",
+ "B=.4;##max magnetic field in Wb/m**2\n",
+ "c=3*10**8.;\n",
+ "e=1.6*10**-19.;\n",
+ "d=1.52;##diametre in m\n",
+ "r=d/2.;\n",
+ "\n",
+ "##calculation\n",
+ "E=B*e*r*c;##E=pc,p=mv=Ber\n",
+ "print'%s %.3e %s'%('final energy of e(in J) is',E,'');\n",
+ "E1=(E/e)/10**6;\n",
+ "print'%s %.2f %s'%('final energy of e (in MeV) is',E1,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "final energy of e(in J) is 1.459e-11 \n",
+ "final energy of e (in MeV) is 91.20 \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12-pg459"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 15.12\n",
+ "##calculation of amount of fuel\n",
+ "\n",
+ "##given values\n",
+ "P=100*10**6.;##power required by city\n",
+ "M=235.;##atomic mass of Uranium in g\n",
+ "e=20/100.;##conversion efficiency\n",
+ "NA=6.02*10**26.;##avogadros number\n",
+ "E=200*10**6*1.6*10**-19;##energy released per fission\n",
+ "t=8.64*10**4.;##day in seconds\n",
+ "\n",
+ "\n",
+ "##calculation\n",
+ "E1=P*t;##energy requirement\n",
+ "m=E1*M/(NA*e*E);##no of nuclei N=NA*m/M,energy released by m kg is N*E,energy requirement=e*N*E\n",
+ "print'%s %.2f %s'%('amount of fuel(in kg) required is',m,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "amount of fuel(in kg) required is 0.53 \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex13-pg459"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 15.13\n",
+ "##calculation of power output\n",
+ "\n",
+ "##given values\n",
+ "M=235.;##atomic mass of Uranium in kg\n",
+ "e=5/100.;##reactor efficiency\n",
+ "m=25/1000.;##amount of uranium consumed per day in kg\n",
+ "E=200*10**6*1.6*10**-19;##energy released per fission\n",
+ "t=8.64*10**4.;##day in seconds\n",
+ "NA=6.02*10**26.;##avogadros number\n",
+ "\n",
+ "##calculation\n",
+ "n=NA*m/M;##no of nuclei in 25g\n",
+ "E1=n*E;##energy produced by n nuclei\n",
+ "E2=E1*e;##energy converted to power\n",
+ "P=E2/t;##power output in Watt\n",
+ "print'%s %.2f %s'%('power output in MW is',P/10**6,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "power output in MW is 1.19 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex14-pg460"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 15.14\n",
+ "##calculation of power developed\n",
+ "\n",
+ "##given values\n",
+ "M=235.;##atomic mass of Uranium in kg\n",
+ "m=20.4;##amount of uranium consumed per day in kg\n",
+ "E=200*10**6*1.6*10**-19;##energy released per fission\n",
+ "t=3600*1000.;##time of operation\n",
+ "NA=6.02*10**26;##avogadros number\n",
+ "\n",
+ "##calculation\n",
+ "n=NA*m/M;##no of nuclei in 20.4kg\n",
+ "E1=n*E;##energy produced by n nuclei\n",
+ "P=E1/t;##in Watt\n",
+ "print'%s %.2f %s'%('power developed in MW is',P/10**6,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "power developed in MW is 464.52 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex15-pg464"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 15.15\n",
+ "##calculation of amount of dueterium consumed\n",
+ "\n",
+ "##given values\n",
+ "M1=2.01478;##atomic mass of Hydrogen in amu\n",
+ "M2=4.00388;##atomic mass of Helium in amu\n",
+ "amu=931.;##amu in MeV\n",
+ "e=30/100.;##efficiency\n",
+ "P=50*10**6.;##output power\n",
+ "NA=6.026*10**26.;##avogadro number\n",
+ "t=8.64*10**4.;##seconds in a day\n",
+ "\n",
+ "##calculation\n",
+ "Q=(2*M1-M2)*amu;##energy released in a D-D reaction in MeV\n",
+ "O=Q*e*10**6/2.;##actual output per dueterium atom in eV\n",
+ "n=P/(O*1.6*10**-19);##no of D atoms required\n",
+ "m=n*M1/NA;##equivalent mass of D required per s\n",
+ "X=m*t;\n",
+ "\n",
+ "print'%s %.2f %s'%('Deuterium requirement per day in kg is',X,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Deuterium requirement per day in kg is 0.03 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/_A_Textbook_Of_Engineering_Physics/Chapter15_1.ipynb b/_A_Textbook_Of_Engineering_Physics/Chapter15_1.ipynb new file mode 100755 index 00000000..42c1e8e6 --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/Chapter15_1.ipynb @@ -0,0 +1,661 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:b3c63b0fb789da64aa0a78019434c8cd892ee24c8c45cf80d5de4f41e17fa45f"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter15-Atomic Nucleus And Nuclear Energy"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg-pg427"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 15.1\n",
+ "##calculation of binding energy per nucleon\n",
+ "\n",
+ "##given values\n",
+ "Mp=1.00814;##mass of proton in amu\n",
+ "Mn=1.008665;##mass of nucleon in amu\n",
+ "M=7.01822;##mass of Lithium nucleus in amu\n",
+ "amu=931.;##amu in MeV\n",
+ "n=7-3;##no of neutrons in lithium nucleus\n",
+ "\n",
+ "##calculation\n",
+ "ET=(3*Mp+4*Mn-M)*amu;##total binding energy in MeV\n",
+ "E=ET/7.;##7 1s the mass number\n",
+ "print'%s %.2f %s'%('Binding energy per nucleon in MeV is',E,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Binding energy per nucleon in MeV is 5.43 \n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg427"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 15.2\n",
+ "##calculation of energy \n",
+ "\n",
+ "##given values\n",
+ "M1=15.00001;##atomic mass of N15 in amu\n",
+ "M2=15.0030;##atomic mass of O15 in amu\n",
+ "M3=15.9949;##atomic mass of O16 in amu\n",
+ "amu=931.4;##amu in MeV\n",
+ "mp=1.0072766;##restmass of proton\n",
+ "mn=1.0086654;##restmass of neutron\n",
+ "\n",
+ "##calculation\n",
+ "Q1=(M3-mp-M1)*amu;\n",
+ "print'%s %.2f %s'%('energy required to remove one proton from O16 is',Q1,'');\n",
+ "Q2=(M3-mn-M2)*amu;\n",
+ "print'%s %.2f %s'%('energy required to remove one neutron from O16 is',Q2,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "energy required to remove one proton from O16 is -11.54 \n",
+ "energy required to remove one neutron from O16 is -15.62 \n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg428"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 15.3\n",
+ "##calculation of binding energy \n",
+ "\n",
+ "##given values\n",
+ "Mp=1.00758;##mass of proton in amu\n",
+ "Mn=1.00897;##mass of nucleon in amu\n",
+ "M=4.0028;##mass of Helium nucleus in amu\n",
+ "amu=931.4;##amu in MeV\n",
+ "\n",
+ "##calculation\n",
+ "E1=(2*Mp+2*Mn-M)*amu;##total binding energy\n",
+ "print'%s %.2f %s'%('Binding energy in MeV is',E1,'');\n",
+ "E2=E1*10**6*1.6*10**-19;\n",
+ "print'%s %.3e %s'%('binding energy in Joule is',E2,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Binding energy in MeV is 28.22 \n",
+ "binding energy in Joule is 4.515e-12 \n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg435"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 15.4\n",
+ "##calculation of amount of unchanged material\n",
+ "\n",
+ "##given values\n",
+ "T=2;##half life in years\n",
+ "k=.6931/T;##decay constant\n",
+ "M=4.0028;##mass of Helium nucleus in amu\n",
+ "amu=931.4;##amu in MeV\n",
+ "No=1.;##initial amount in g\n",
+ "\n",
+ "##calculation\n",
+ "N=No*(math.e**(-k*2*T));\n",
+ "print'%s %.2f %s'%('amount of material remaining unchanged after four years(in gram) is',N,'');\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "amount of material remaining unchanged after four years(in gram) is 0.25 \n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg435"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 15.5\n",
+ "##calculation of amount of halflife\n",
+ "\n",
+ "##given values\n",
+ "t=5.;##time period in years\n",
+ "amu=931.4;##amu in MeV\n",
+ "No=5.;##initial amount in g\n",
+ "N=5.-(10.5*10**-3);##amount present after 5 years\n",
+ "\n",
+ "\n",
+ "##calculation\n",
+ "k=math.log(N/No)/t;##decay constant\n",
+ "T=-.693/k;\n",
+ "print'%s %.2f %s'%('halflife in years is',T,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "halflife in years is 1648.27 \n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg435"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 15.6\n",
+ "##calculation of activity\n",
+ "\n",
+ "##given values\n",
+ "t=28.;##half life in years\n",
+ "m=10**-3;##mass of sample\n",
+ "M=90.;##atomic mass of strontium\n",
+ "NA=6.02*10**26;##avogadro's number\n",
+ "\n",
+ "\n",
+ "##calculation\n",
+ "n=m*NA/M;##no of nuclei in 1 mg sample\n",
+ "k=.693/(t*365*24.*60.*60.);##decay constant\n",
+ "A=k*n;\n",
+ "print'%s %.3e %s'%('activity of sample(in disintegrations per second) is',A,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "activity of sample(in disintegrations per second) is 5.250e+12 \n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg439"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 15.7\n",
+ "##calculation of age of mineral\n",
+ "\n",
+ "##given values\n",
+ "t=4.5*10**9.;##half life in years\n",
+ "M1=238.;##atomic mass of Uranium in g\n",
+ "m=.093;##mass of lead in 1 g of uranium in g\n",
+ "NA=6.02*10**26;##avogadro's number\n",
+ "M2=206.;##atomic mass of lead in g\n",
+ "\n",
+ "##calculation\n",
+ "n=NA/M1;##no of nuclei in 1 g of uranium sample\n",
+ "n1=m*NA/M2;##no of nuclei in m mass of lead\n",
+ "c=n1/n;\n",
+ "k=.693/t;##decay constant\n",
+ "T=(1/k)*math.log(1+c);\n",
+ "print'%s %.3e %s'%('age of mineral in years is',T,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "age of mineral in years is 6.627e+08 \n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8-pg440"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 15.8\n",
+ "##calculation of age of wooden piece\n",
+ "\n",
+ "##given values\n",
+ "t=5730.;##half life of C14 in years\n",
+ "M1=50.;##mass of wooden piece in g\n",
+ "A1=320.;##activity of wooden piece (disintegration per minute per g)\n",
+ "A2=12.;##activity of living tree\n",
+ "\n",
+ "##calculation\n",
+ "k=.693/t;##decay constant\n",
+ "A=A1/M1;##activity after death\n",
+ "\n",
+ "T=(1/k)*math.log(A2/A);\n",
+ "print'%s %.2f %s'%('age of mineral in years is',T,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "age of mineral in years is 5197.59 \n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9-pg443"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 15.9\n",
+ "##calculation of energy released\n",
+ "\n",
+ "##given values\n",
+ "M1=10.016125;##atomic mass of Boron in amu\n",
+ "M2=13.007440;##atomic mass of C13 in amu\n",
+ "M3=4.003874;##atomic mass of Helium in amu\n",
+ "mp=1.008146;##mass of proton in amu\n",
+ "amu=931.;##amu in MeV\n",
+ "\n",
+ "##calculation\n",
+ "Q=(M1+M3-(M2+mp))*amu;##total binding energy in M\n",
+ "print'%s %.2f %s'%('Binding energy per nucleon in MeV is',Q,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Binding energy per nucleon in MeV is 4.11 \n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10-pg444"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 15.10\n",
+ "##calculation of crosssection\n",
+ "\n",
+ "##given values\n",
+ "t=.01*10**-3;##thickness in m\n",
+ "n=10**13.;##no of protons bombarding target per s\n",
+ "NA=6.02*10**26.;##avogadro's number\n",
+ "M=7.;##atomic mass of lithium in kg\n",
+ "d=500.;##density of lithium in kg/m**3\n",
+ "n0=10**8.;##no of neutrons produced per s\n",
+ "##calculation\n",
+ "n1=d*NA/M;##no of target nuclei per unit volume\n",
+ "n2=n1*t;##no of target nuclei per area\n",
+ "A=n0/(n*n2);\n",
+ "print'%s %.3e %s'%('crosssection(in m^2) for this reaction is',A,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "crosssection(in m^2) for this reaction is 2.326e-29 \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11-pg450"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 15.11\n",
+ "##calculation of final energy \n",
+ "\n",
+ "##given values\n",
+ "B=.4;##max magnetic field in Wb/m**2\n",
+ "c=3*10**8.;\n",
+ "e=1.6*10**-19.;\n",
+ "d=1.52;##diametre in m\n",
+ "r=d/2.;\n",
+ "\n",
+ "##calculation\n",
+ "E=B*e*r*c;##E=pc,p=mv=Ber\n",
+ "print'%s %.3e %s'%('final energy of e(in J) is',E,'');\n",
+ "E1=(E/e)/10**6;\n",
+ "print'%s %.2f %s'%('final energy of e (in MeV) is',E1,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "final energy of e(in J) is 1.459e-11 \n",
+ "final energy of e (in MeV) is 91.20 \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12-pg459"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 15.12\n",
+ "##calculation of amount of fuel\n",
+ "\n",
+ "##given values\n",
+ "P=100*10**6.;##power required by city\n",
+ "M=235.;##atomic mass of Uranium in g\n",
+ "e=20/100.;##conversion efficiency\n",
+ "NA=6.02*10**26.;##avogadros number\n",
+ "E=200*10**6*1.6*10**-19;##energy released per fission\n",
+ "t=8.64*10**4.;##day in seconds\n",
+ "\n",
+ "\n",
+ "##calculation\n",
+ "E1=P*t;##energy requirement\n",
+ "m=E1*M/(NA*e*E);##no of nuclei N=NA*m/M,energy released by m kg is N*E,energy requirement=e*N*E\n",
+ "print'%s %.2f %s'%('amount of fuel(in kg) required is',m,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "amount of fuel(in kg) required is 0.53 \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex13-pg459"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 15.13\n",
+ "##calculation of power output\n",
+ "\n",
+ "##given values\n",
+ "M=235.;##atomic mass of Uranium in kg\n",
+ "e=5/100.;##reactor efficiency\n",
+ "m=25/1000.;##amount of uranium consumed per day in kg\n",
+ "E=200*10**6*1.6*10**-19;##energy released per fission\n",
+ "t=8.64*10**4.;##day in seconds\n",
+ "NA=6.02*10**26.;##avogadros number\n",
+ "\n",
+ "##calculation\n",
+ "n=NA*m/M;##no of nuclei in 25g\n",
+ "E1=n*E;##energy produced by n nuclei\n",
+ "E2=E1*e;##energy converted to power\n",
+ "P=E2/t;##power output in Watt\n",
+ "print'%s %.2f %s'%('power output in MW is',P/10**6,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "power output in MW is 1.19 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex14-pg460"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 15.14\n",
+ "##calculation of power developed\n",
+ "\n",
+ "##given values\n",
+ "M=235.;##atomic mass of Uranium in kg\n",
+ "m=20.4;##amount of uranium consumed per day in kg\n",
+ "E=200*10**6*1.6*10**-19;##energy released per fission\n",
+ "t=3600*1000.;##time of operation\n",
+ "NA=6.02*10**26;##avogadros number\n",
+ "\n",
+ "##calculation\n",
+ "n=NA*m/M;##no of nuclei in 20.4kg\n",
+ "E1=n*E;##energy produced by n nuclei\n",
+ "P=E1/t;##in Watt\n",
+ "print'%s %.2f %s'%('power developed in MW is',P/10**6,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "power developed in MW is 464.52 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex15-pg464"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 15.15\n",
+ "##calculation of amount of dueterium consumed\n",
+ "\n",
+ "##given values\n",
+ "M1=2.01478;##atomic mass of Hydrogen in amu\n",
+ "M2=4.00388;##atomic mass of Helium in amu\n",
+ "amu=931.;##amu in MeV\n",
+ "e=30/100.;##efficiency\n",
+ "P=50*10**6.;##output power\n",
+ "NA=6.026*10**26.;##avogadro number\n",
+ "t=8.64*10**4.;##seconds in a day\n",
+ "\n",
+ "##calculation\n",
+ "Q=(2*M1-M2)*amu;##energy released in a D-D reaction in MeV\n",
+ "O=Q*e*10**6/2.;##actual output per dueterium atom in eV\n",
+ "n=P/(O*1.6*10**-19);##no of D atoms required\n",
+ "m=n*M1/NA;##equivalent mass of D required per s\n",
+ "X=m*t;\n",
+ "\n",
+ "print'%s %.2f %s'%('Deuterium requirement per day in kg is',X,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Deuterium requirement per day in kg is 0.03 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/_A_Textbook_Of_Engineering_Physics/Chapter16.ipynb b/_A_Textbook_Of_Engineering_Physics/Chapter16.ipynb new file mode 100755 index 00000000..0852b1be --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/Chapter16.ipynb @@ -0,0 +1,187 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:d811f941685df0c27130d7c823a224d6aa75e253b0c49d58341e9220ca07cdb5"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter16-Structure of Solids"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg483"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 16.1\n",
+ "##calculation of density\n",
+ "\n",
+ "##given values\n",
+ "a=3.36*10**-10;##lattice constant in m\n",
+ "M=209.;##atomicmass of polonium in kg\n",
+ "N=6.02*10**26;##avogadro's number\n",
+ "z=1.;##no of atom\n",
+ "##calculation\n",
+ "d=z*M/(N*a**3)\n",
+ "\n",
+ "print'%s %.2f %s'%('density (in kg/m^3) is',d,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "density (in kg/m^3) is 9152.34 \n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg483"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 16.2\n",
+ "##calculation of no of atoms\n",
+ "\n",
+ "##given values\n",
+ "a=4.3*10**-10;##edge of unit cell in m\n",
+ "d=963.;##density in kg/m**3\n",
+ "M=23.;##atomicmass of sodium in kg\n",
+ "N=6.02*10**26;##avogadro's number\n",
+ "\n",
+ "##calculation\n",
+ "z=d*N*a**3./M;\n",
+ "\n",
+ "print'%s %.2f %s'%('no of atoms is',z,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "no of atoms is 2.00 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg483"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 16.3\n",
+ "##calculation of distance\n",
+ "\n",
+ "##given values\n",
+ "z=4.;##no of atoms in fcc\n",
+ "d=2180.;##density in kg/m**3\n",
+ "M=23+35.3;##atomicmass of sodium chloride in kg\n",
+ "N=6.02*10**26;##avogadro's number\n",
+ "\n",
+ "##calculation\n",
+ "a1=z*M/(N*d);\n",
+ "a=a1**(1/3.);\n",
+ "l=a/2.;##in m\n",
+ "\n",
+ "print'%s %.2f %s'%('distance between adjacent chlorine and sodium atoms in armstrong is',l*10**10,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "distance between adjacent chlorine and sodium atoms in armstrong is 2.81 \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg495"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 16.4\n",
+ "##calculation of interatomic spacing\n",
+ "\n",
+ "##given values\n",
+ "alpha=30*math.pi/180.;##Bragg angle in degree\n",
+ "h=1;\n",
+ "k=1;\n",
+ "l=1;\n",
+ "m=1;##order of reflection\n",
+ "x=1.75*10**-10;##wavelength in m\n",
+ "\n",
+ "##calculation\n",
+ "d=m*x/(2.*math.sin(alpha));\n",
+ "a=d*math.sqrt(h**2+k**2+l**2.);##in m\n",
+ "\n",
+ "print'%s %.2f %s'%('interatomic spacing in armstrong is',a*10**10,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "interatomic spacing in armstrong is 3.03 \n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/_A_Textbook_Of_Engineering_Physics/Chapter16_1.ipynb b/_A_Textbook_Of_Engineering_Physics/Chapter16_1.ipynb new file mode 100755 index 00000000..0852b1be --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/Chapter16_1.ipynb @@ -0,0 +1,187 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:d811f941685df0c27130d7c823a224d6aa75e253b0c49d58341e9220ca07cdb5"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter16-Structure of Solids"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg483"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 16.1\n",
+ "##calculation of density\n",
+ "\n",
+ "##given values\n",
+ "a=3.36*10**-10;##lattice constant in m\n",
+ "M=209.;##atomicmass of polonium in kg\n",
+ "N=6.02*10**26;##avogadro's number\n",
+ "z=1.;##no of atom\n",
+ "##calculation\n",
+ "d=z*M/(N*a**3)\n",
+ "\n",
+ "print'%s %.2f %s'%('density (in kg/m^3) is',d,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "density (in kg/m^3) is 9152.34 \n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg483"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 16.2\n",
+ "##calculation of no of atoms\n",
+ "\n",
+ "##given values\n",
+ "a=4.3*10**-10;##edge of unit cell in m\n",
+ "d=963.;##density in kg/m**3\n",
+ "M=23.;##atomicmass of sodium in kg\n",
+ "N=6.02*10**26;##avogadro's number\n",
+ "\n",
+ "##calculation\n",
+ "z=d*N*a**3./M;\n",
+ "\n",
+ "print'%s %.2f %s'%('no of atoms is',z,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "no of atoms is 2.00 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg483"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 16.3\n",
+ "##calculation of distance\n",
+ "\n",
+ "##given values\n",
+ "z=4.;##no of atoms in fcc\n",
+ "d=2180.;##density in kg/m**3\n",
+ "M=23+35.3;##atomicmass of sodium chloride in kg\n",
+ "N=6.02*10**26;##avogadro's number\n",
+ "\n",
+ "##calculation\n",
+ "a1=z*M/(N*d);\n",
+ "a=a1**(1/3.);\n",
+ "l=a/2.;##in m\n",
+ "\n",
+ "print'%s %.2f %s'%('distance between adjacent chlorine and sodium atoms in armstrong is',l*10**10,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "distance between adjacent chlorine and sodium atoms in armstrong is 2.81 \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg495"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 16.4\n",
+ "##calculation of interatomic spacing\n",
+ "\n",
+ "##given values\n",
+ "alpha=30*math.pi/180.;##Bragg angle in degree\n",
+ "h=1;\n",
+ "k=1;\n",
+ "l=1;\n",
+ "m=1;##order of reflection\n",
+ "x=1.75*10**-10;##wavelength in m\n",
+ "\n",
+ "##calculation\n",
+ "d=m*x/(2.*math.sin(alpha));\n",
+ "a=d*math.sqrt(h**2+k**2+l**2.);##in m\n",
+ "\n",
+ "print'%s %.2f %s'%('interatomic spacing in armstrong is',a*10**10,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "interatomic spacing in armstrong is 3.03 \n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/_A_Textbook_Of_Engineering_Physics/Chapter17.ipynb b/_A_Textbook_Of_Engineering_Physics/Chapter17.ipynb new file mode 100755 index 00000000..24b8e0d7 --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/Chapter17.ipynb @@ -0,0 +1,138 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:247cbf7511831aaf13adbf586a5a4c7c4e491e38e060a5558f6021f692906cbf"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter17-The Band Theory of Solids"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg522"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 17.1\n",
+ "##calculation of probability\n",
+ "\n",
+ "##given values\n",
+ "E=.01;##energy difference in eV\n",
+ "kT=.026;##temperture equivalent at room temp in e\n",
+ "\n",
+ "##calculation\n",
+ "P=1/(1+(math.e**(E/kT)));\n",
+ "\n",
+ "print'%s %.2f %s'%('interatomic spacing is',P,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "interatomic spacing is 0.41 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg523"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 17.2\n",
+ "##calculation of velocity of e\n",
+ "\n",
+ "##given values\n",
+ "e=1.6*10**-19.;##charge of e in C\n",
+ "E=2.1*e;##fermi level in J\n",
+ "m=9.1*10**-31.;##mass of e in kg\n",
+ "\n",
+ "##calculation\n",
+ "v=math.sqrt(2.*E/m);\n",
+ "\n",
+ "print'%s %.2f %s'%('velocity of e(in m/s)',v,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "velocity of e(in m/s) 859337.85 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg523"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 17.3\n",
+ "##calculation of velocity of fraction of free electrons\n",
+ "\n",
+ "##given values\n",
+ "E=5.5;##fermi level in eV\n",
+ "kT=.026;##temperture equivalent at room temp in e\n",
+ "\n",
+ "##calculation\n",
+ "f=2.*kT/E;\n",
+ "\n",
+ "print'%s %.4f %s'%('fraction of free electrone\\s upto width kT on either side of Ef is',f,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "fraction of free electrone\\s upto width kT on either side of Ef is 0.0095 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/_A_Textbook_Of_Engineering_Physics/Chapter17_1.ipynb b/_A_Textbook_Of_Engineering_Physics/Chapter17_1.ipynb new file mode 100755 index 00000000..24b8e0d7 --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/Chapter17_1.ipynb @@ -0,0 +1,138 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:247cbf7511831aaf13adbf586a5a4c7c4e491e38e060a5558f6021f692906cbf"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter17-The Band Theory of Solids"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg522"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 17.1\n",
+ "##calculation of probability\n",
+ "\n",
+ "##given values\n",
+ "E=.01;##energy difference in eV\n",
+ "kT=.026;##temperture equivalent at room temp in e\n",
+ "\n",
+ "##calculation\n",
+ "P=1/(1+(math.e**(E/kT)));\n",
+ "\n",
+ "print'%s %.2f %s'%('interatomic spacing is',P,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "interatomic spacing is 0.41 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg523"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 17.2\n",
+ "##calculation of velocity of e\n",
+ "\n",
+ "##given values\n",
+ "e=1.6*10**-19.;##charge of e in C\n",
+ "E=2.1*e;##fermi level in J\n",
+ "m=9.1*10**-31.;##mass of e in kg\n",
+ "\n",
+ "##calculation\n",
+ "v=math.sqrt(2.*E/m);\n",
+ "\n",
+ "print'%s %.2f %s'%('velocity of e(in m/s)',v,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "velocity of e(in m/s) 859337.85 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg523"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 17.3\n",
+ "##calculation of velocity of fraction of free electrons\n",
+ "\n",
+ "##given values\n",
+ "E=5.5;##fermi level in eV\n",
+ "kT=.026;##temperture equivalent at room temp in e\n",
+ "\n",
+ "##calculation\n",
+ "f=2.*kT/E;\n",
+ "\n",
+ "print'%s %.4f %s'%('fraction of free electrone\\s upto width kT on either side of Ef is',f,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "fraction of free electrone\\s upto width kT on either side of Ef is 0.0095 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/_A_Textbook_Of_Engineering_Physics/Chapter18.ipynb b/_A_Textbook_Of_Engineering_Physics/Chapter18.ipynb new file mode 100755 index 00000000..d80a182f --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/Chapter18.ipynb @@ -0,0 +1,319 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:265535ddaffc0266824860d662b8052593e36ca515dd70e32c070b51cf842e7d"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter18-Semiconductors"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg539"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 18.2\n",
+ "##calculation of probability\n",
+ "\n",
+ "##given values\n",
+ "T=300.;##temp in K\n",
+ "kT=.026;##temperture equivalent at room temp in eV\n",
+ "Eg=5.6;##forbidden gap in eV\n",
+ "\n",
+ "##calculation\n",
+ "f=1./(1.+math.e**(Eg/(2.*kT)));\n",
+ "\n",
+ "print'%s %.3e %s'%('probability of an e being thermally promoted to conduction band is',f,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "probability of an e being thermally promoted to conduction band is 1.698e-47 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg540"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 18.3\n",
+ "##calculation of fraction of e in CB\n",
+ "\n",
+ "##given values\n",
+ "T=300.;##temp in K\n",
+ "kT=.026;##temperture equivalent at room temp in eV\n",
+ "Eg1=.72;##forbidden gap of germanium in eV\n",
+ "Eg2=1.1;##forbidden gap of silicon in eV\n",
+ "Eg3=5.6;##forbidden gap of diamond in eV\n",
+ "\n",
+ "##calculation\n",
+ "f1=math.e**(-Eg1/(2.*kT));\n",
+ "print'%s %.6f %s'%('fraction of e in conduction band of germanium is',f1,'');\n",
+ "f2=math.e**(-Eg2/(2.*kT));\n",
+ "print'%s %.3e %s'%('fraction of e in conduction band of silicon is',f2,'');\n",
+ "f3=math.e**(-Eg3/(2*kT));\n",
+ "print'%s %.3e %s'%('fraction of e in conduction band of diamond is',f3,'');\n",
+ "print'abpove results shows that larger the band gap and the smaller electrons that can go under into the conduction band'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "fraction of e in conduction band of germanium is 0.000001 \n",
+ "fraction of e in conduction band of silicon is 6.501e-10 \n",
+ "fraction of e in conduction band of diamond is 1.698e-47 \n",
+ "abpove results shows that larger the band gap and the smaller electrons that can go under into the conduction band\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg540"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 18.4\n",
+ "##calculation of fractionional change in no of e\n",
+ "\n",
+ "##given values\n",
+ "T1=300.;##temp in K\n",
+ "T2=310.;##temp in K\n",
+ "Eg=1.1;##forbidden gap of silicon in eV\n",
+ "k=8.6*10**-5.;##boltzmann's constant in eV/K\n",
+ "\n",
+ "##calculation\n",
+ "n1=(10**21.7)*(T1**(3/2.))*10**(-2500.*Eg/T1);##no of conduction e at T1\n",
+ "n2=(10**21.7)*(T2**(3/2.))*10**(-2500.*Eg/T2);##no of conduction e at T2\n",
+ "x=n2/n1;\n",
+ "print'%s %.1f %s'%('fractional change in no of e is',x,'');\n",
+ "print 'in book he just worte ans but he didnt calculated final ans but here is i calculated'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "fractional change in no of e is 2.1 \n",
+ "in book he just worte ans but he didnt calculated final ans but here is i calculated\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg541"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "##Example 18.5\n",
+ "##calculation of resistivity\n",
+ "\n",
+ "##given values\n",
+ "e=1.6*10**-19;\n",
+ "ni=2.5*10**19;##intrinsic density of carriers per m**3\n",
+ "ue=.39;##mobility of e \n",
+ "uh=.19;##mobility of hole\n",
+ "\n",
+ "\n",
+ "##calculation\n",
+ "c=e*ni*(ue+uh);##conductivity\n",
+ "r=1/c;##resistivity\n",
+ "print'%s %.2f %s'%('resistivity in ohm m is',r,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "resistivity in ohm m is 0.43 \n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg548"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 18.6\n",
+ "##calculation of conductivity of intrinsic and doped semiconductors\n",
+ "\n",
+ "##given values\n",
+ "h=4.52*10**24;##no of holes per m**3\n",
+ "e=1.25*10**14;##no of electrons per m**3\n",
+ "ue=.38;##e mobility\n",
+ "uh=.18;##hole mobility\n",
+ "q=1.6*10**-19;##charge of e in C\n",
+ "##calculation\n",
+ "ni=math.sqrt(h*e);##intrinsic concentration\n",
+ "ci=q*ni*(ue+uh);\n",
+ "print'%s %.2f %s'%('conductivity of semiconductor(in S/m) is',ci,'');\n",
+ "cp=q*h*uh;\n",
+ "print'%s %.2f %s'%('conductivity of doped semiconductor (in S/m) is',cp,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "conductivity of semiconductor(in S/m) is 2.13 \n",
+ "conductivity of doped semiconductor (in S/m) is 130176.00 \n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg548"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 18.7\n",
+ "##calculation of hole concentration\n",
+ "\n",
+ "##given values\n",
+ "ni=2.4*10**19.;##carrier concentration per m**3\n",
+ "N=4*10**28.;##concentration of ge atoms per m**3\n",
+ "\n",
+ "##calculation\n",
+ "ND=N/10**6.;##donor cocntrtn\n",
+ "n=ND;##no of electrones\n",
+ "\n",
+ "p=ni**2./n;\n",
+ "print'%s %.3e %s'%('concentartion of holes per m^3 is',p,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "concentartion of holes per m^3 is 1.440e+16 \n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8-pg558"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 18.8\n",
+ "##calculation of Hall voltage\n",
+ "\n",
+ "##given values\n",
+ "ND=10**21.;##donor density per m**3\n",
+ "B=.5;##magnetic field in T\n",
+ "J=500.;##current density in A/m**2\n",
+ "w=3*10**-3.;##width in m\n",
+ "e=1.6*10**-19.;##charge in C\n",
+ "\n",
+ "##calculation\n",
+ "\n",
+ "\n",
+ "V=B*J*w/(ND*e);##in volts\n",
+ "print'%s %.2f %s'%('Hall voltage in mv is',V*10**3,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Hall voltage in mv is 4.69 \n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/_A_Textbook_Of_Engineering_Physics/Chapter18_1.ipynb b/_A_Textbook_Of_Engineering_Physics/Chapter18_1.ipynb new file mode 100755 index 00000000..d80a182f --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/Chapter18_1.ipynb @@ -0,0 +1,319 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:265535ddaffc0266824860d662b8052593e36ca515dd70e32c070b51cf842e7d"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter18-Semiconductors"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg539"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 18.2\n",
+ "##calculation of probability\n",
+ "\n",
+ "##given values\n",
+ "T=300.;##temp in K\n",
+ "kT=.026;##temperture equivalent at room temp in eV\n",
+ "Eg=5.6;##forbidden gap in eV\n",
+ "\n",
+ "##calculation\n",
+ "f=1./(1.+math.e**(Eg/(2.*kT)));\n",
+ "\n",
+ "print'%s %.3e %s'%('probability of an e being thermally promoted to conduction band is',f,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "probability of an e being thermally promoted to conduction band is 1.698e-47 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg540"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 18.3\n",
+ "##calculation of fraction of e in CB\n",
+ "\n",
+ "##given values\n",
+ "T=300.;##temp in K\n",
+ "kT=.026;##temperture equivalent at room temp in eV\n",
+ "Eg1=.72;##forbidden gap of germanium in eV\n",
+ "Eg2=1.1;##forbidden gap of silicon in eV\n",
+ "Eg3=5.6;##forbidden gap of diamond in eV\n",
+ "\n",
+ "##calculation\n",
+ "f1=math.e**(-Eg1/(2.*kT));\n",
+ "print'%s %.6f %s'%('fraction of e in conduction band of germanium is',f1,'');\n",
+ "f2=math.e**(-Eg2/(2.*kT));\n",
+ "print'%s %.3e %s'%('fraction of e in conduction band of silicon is',f2,'');\n",
+ "f3=math.e**(-Eg3/(2*kT));\n",
+ "print'%s %.3e %s'%('fraction of e in conduction band of diamond is',f3,'');\n",
+ "print'abpove results shows that larger the band gap and the smaller electrons that can go under into the conduction band'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "fraction of e in conduction band of germanium is 0.000001 \n",
+ "fraction of e in conduction band of silicon is 6.501e-10 \n",
+ "fraction of e in conduction band of diamond is 1.698e-47 \n",
+ "abpove results shows that larger the band gap and the smaller electrons that can go under into the conduction band\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg540"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 18.4\n",
+ "##calculation of fractionional change in no of e\n",
+ "\n",
+ "##given values\n",
+ "T1=300.;##temp in K\n",
+ "T2=310.;##temp in K\n",
+ "Eg=1.1;##forbidden gap of silicon in eV\n",
+ "k=8.6*10**-5.;##boltzmann's constant in eV/K\n",
+ "\n",
+ "##calculation\n",
+ "n1=(10**21.7)*(T1**(3/2.))*10**(-2500.*Eg/T1);##no of conduction e at T1\n",
+ "n2=(10**21.7)*(T2**(3/2.))*10**(-2500.*Eg/T2);##no of conduction e at T2\n",
+ "x=n2/n1;\n",
+ "print'%s %.1f %s'%('fractional change in no of e is',x,'');\n",
+ "print 'in book he just worte ans but he didnt calculated final ans but here is i calculated'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "fractional change in no of e is 2.1 \n",
+ "in book he just worte ans but he didnt calculated final ans but here is i calculated\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg541"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "##Example 18.5\n",
+ "##calculation of resistivity\n",
+ "\n",
+ "##given values\n",
+ "e=1.6*10**-19;\n",
+ "ni=2.5*10**19;##intrinsic density of carriers per m**3\n",
+ "ue=.39;##mobility of e \n",
+ "uh=.19;##mobility of hole\n",
+ "\n",
+ "\n",
+ "##calculation\n",
+ "c=e*ni*(ue+uh);##conductivity\n",
+ "r=1/c;##resistivity\n",
+ "print'%s %.2f %s'%('resistivity in ohm m is',r,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "resistivity in ohm m is 0.43 \n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg548"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 18.6\n",
+ "##calculation of conductivity of intrinsic and doped semiconductors\n",
+ "\n",
+ "##given values\n",
+ "h=4.52*10**24;##no of holes per m**3\n",
+ "e=1.25*10**14;##no of electrons per m**3\n",
+ "ue=.38;##e mobility\n",
+ "uh=.18;##hole mobility\n",
+ "q=1.6*10**-19;##charge of e in C\n",
+ "##calculation\n",
+ "ni=math.sqrt(h*e);##intrinsic concentration\n",
+ "ci=q*ni*(ue+uh);\n",
+ "print'%s %.2f %s'%('conductivity of semiconductor(in S/m) is',ci,'');\n",
+ "cp=q*h*uh;\n",
+ "print'%s %.2f %s'%('conductivity of doped semiconductor (in S/m) is',cp,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "conductivity of semiconductor(in S/m) is 2.13 \n",
+ "conductivity of doped semiconductor (in S/m) is 130176.00 \n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg548"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 18.7\n",
+ "##calculation of hole concentration\n",
+ "\n",
+ "##given values\n",
+ "ni=2.4*10**19.;##carrier concentration per m**3\n",
+ "N=4*10**28.;##concentration of ge atoms per m**3\n",
+ "\n",
+ "##calculation\n",
+ "ND=N/10**6.;##donor cocntrtn\n",
+ "n=ND;##no of electrones\n",
+ "\n",
+ "p=ni**2./n;\n",
+ "print'%s %.3e %s'%('concentartion of holes per m^3 is',p,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "concentartion of holes per m^3 is 1.440e+16 \n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8-pg558"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 18.8\n",
+ "##calculation of Hall voltage\n",
+ "\n",
+ "##given values\n",
+ "ND=10**21.;##donor density per m**3\n",
+ "B=.5;##magnetic field in T\n",
+ "J=500.;##current density in A/m**2\n",
+ "w=3*10**-3.;##width in m\n",
+ "e=1.6*10**-19.;##charge in C\n",
+ "\n",
+ "##calculation\n",
+ "\n",
+ "\n",
+ "V=B*J*w/(ND*e);##in volts\n",
+ "print'%s %.2f %s'%('Hall voltage in mv is',V*10**3,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Hall voltage in mv is 4.69 \n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/_A_Textbook_Of_Engineering_Physics/Chapter19.ipynb b/_A_Textbook_Of_Engineering_Physics/Chapter19.ipynb new file mode 100755 index 00000000..9cd6b0d3 --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/Chapter19.ipynb @@ -0,0 +1,103 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:e62a104ff81010a41974070c37970149915a1689606735dc017583e29241aaa5"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter19-PN-Junction Diode"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg571"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 19.1\n",
+ "##calculation of potential barrier\n",
+ "\n",
+ "##given values\n",
+ "e=1.6*10**-19.;\n",
+ "n=4.4*10**28.;##no of atoms per m**3\n",
+ "kT=.026*e;##temp eqvlnt at room temp\n",
+ "ni=2.4*10**19.;##no of intrinsic carriers per m**3\n",
+ "NA=n/10**6.;##no of acceptors\n",
+ "ND=n/10**6.;##no of donors\n",
+ "\n",
+ "##calculation\n",
+ "V=(kT/e)*math.log(NA*ND/ni**2);\n",
+ "print'%s %.2f %s'%('potential barrier in volts is',V,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "potential barrier in volts is 0.39 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg578"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 19.2\n",
+ "##calculation of current\n",
+ "\n",
+ "##given values\n",
+ "e=1.6*10**-19.;\n",
+ "kT=.026*e;##temp eqvlnt at room temp\n",
+ "Io=2*10**-7;##current flowing at room temp in A\n",
+ "V=.1;##forward bias voltage in volts\n",
+ "\n",
+ "##calculation\n",
+ "I=Io*(math.e**(e*V/kT)-1);##in Ampere\n",
+ "print'%s %.2f %s'%('current flowing when forward bias applied(in microampere)is',I*10**6,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "current flowing when forward bias applied(in microampere)is 9.16 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/_A_Textbook_Of_Engineering_Physics/Chapter19_1.ipynb b/_A_Textbook_Of_Engineering_Physics/Chapter19_1.ipynb new file mode 100755 index 00000000..9cd6b0d3 --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/Chapter19_1.ipynb @@ -0,0 +1,103 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:e62a104ff81010a41974070c37970149915a1689606735dc017583e29241aaa5"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter19-PN-Junction Diode"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg571"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 19.1\n",
+ "##calculation of potential barrier\n",
+ "\n",
+ "##given values\n",
+ "e=1.6*10**-19.;\n",
+ "n=4.4*10**28.;##no of atoms per m**3\n",
+ "kT=.026*e;##temp eqvlnt at room temp\n",
+ "ni=2.4*10**19.;##no of intrinsic carriers per m**3\n",
+ "NA=n/10**6.;##no of acceptors\n",
+ "ND=n/10**6.;##no of donors\n",
+ "\n",
+ "##calculation\n",
+ "V=(kT/e)*math.log(NA*ND/ni**2);\n",
+ "print'%s %.2f %s'%('potential barrier in volts is',V,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "potential barrier in volts is 0.39 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg578"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 19.2\n",
+ "##calculation of current\n",
+ "\n",
+ "##given values\n",
+ "e=1.6*10**-19.;\n",
+ "kT=.026*e;##temp eqvlnt at room temp\n",
+ "Io=2*10**-7;##current flowing at room temp in A\n",
+ "V=.1;##forward bias voltage in volts\n",
+ "\n",
+ "##calculation\n",
+ "I=Io*(math.e**(e*V/kT)-1);##in Ampere\n",
+ "print'%s %.2f %s'%('current flowing when forward bias applied(in microampere)is',I*10**6,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "current flowing when forward bias applied(in microampere)is 9.16 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/_A_Textbook_Of_Engineering_Physics/Chapter21.ipynb b/_A_Textbook_Of_Engineering_Physics/Chapter21.ipynb new file mode 100755 index 00000000..4528f908 --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/Chapter21.ipynb @@ -0,0 +1,149 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:0a1f9cbfac6e4a80fe362c0012a4a307feac15a79ecc69bd2a9d9a5220fc3bbc"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter21-Magnetic Materials"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg612"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 21.1\n",
+ "##calculation of magnetizing force and relative permeability\n",
+ "\n",
+ "##given values\n",
+ "M=2300.;##magnetization in A/m\n",
+ "B=.00314;##flux density in Wb/m**2\n",
+ "u=12.57*10**-7.;##permeability in H/m\n",
+ "\n",
+ "##calculation\n",
+ "H=(B/u)-M;\n",
+ "print'%s %.2f %s'%('magnetizing force(in A/m)is ',H,'');\n",
+ "Ur=B/(u*H);\n",
+ "print'%s %.2f %s'%('relative permeability is',Ur,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "magnetizing force(in A/m)is 198.01 \n",
+ "relative permeability is 12.62 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg613"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 21.2\n",
+ "##calculation of magnetization and magnetic flux density\n",
+ "\n",
+ "##given values\n",
+ "H=10**5;##external field in A/m\n",
+ "X=5*10**-5;##susceptibility \n",
+ "u=12.57*10**-7;##permeability in H/m\n",
+ "\n",
+ "##calculation\n",
+ "M=X*H;\n",
+ "print'%s %.2f %s'%('magnetization (in A/m)is ',M,'');\n",
+ "B=u*(M+H);\n",
+ "print'%s %.2f %s'%('magnetic flux density (in wb/m^2) is',B,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "magnetization (in A/m)is 5.00 \n",
+ "magnetic flux density (in wb/m^2) is 0.13 \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg615"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 21.3\n",
+ "##calculation of relative permeability\n",
+ "\n",
+ "##given values\n",
+ "\n",
+ "X=3.7*10**-3;##susceptibility at 300k\n",
+ "T=300;##temp in K\n",
+ "T1=200;##temp in K\n",
+ "T2=500;##temp in K\n",
+ "\n",
+ "##calculation\n",
+ "C=X*T;##curie constant\n",
+ "XT1=C/T1;\n",
+ "print'%s %.4f %s'%('relative permeability at T1 is ',XT1,'');\n",
+ "XT2=C/T2;\n",
+ "print'%s %.3f %s'%('relative permeability at T2 is',XT2,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "relative permeability at T1 is 0.0056 \n",
+ "relative permeability at T2 is 0.002 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/_A_Textbook_Of_Engineering_Physics/Chapter21_1.ipynb b/_A_Textbook_Of_Engineering_Physics/Chapter21_1.ipynb new file mode 100755 index 00000000..4528f908 --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/Chapter21_1.ipynb @@ -0,0 +1,149 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:0a1f9cbfac6e4a80fe362c0012a4a307feac15a79ecc69bd2a9d9a5220fc3bbc"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter21-Magnetic Materials"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg612"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 21.1\n",
+ "##calculation of magnetizing force and relative permeability\n",
+ "\n",
+ "##given values\n",
+ "M=2300.;##magnetization in A/m\n",
+ "B=.00314;##flux density in Wb/m**2\n",
+ "u=12.57*10**-7.;##permeability in H/m\n",
+ "\n",
+ "##calculation\n",
+ "H=(B/u)-M;\n",
+ "print'%s %.2f %s'%('magnetizing force(in A/m)is ',H,'');\n",
+ "Ur=B/(u*H);\n",
+ "print'%s %.2f %s'%('relative permeability is',Ur,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "magnetizing force(in A/m)is 198.01 \n",
+ "relative permeability is 12.62 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg613"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 21.2\n",
+ "##calculation of magnetization and magnetic flux density\n",
+ "\n",
+ "##given values\n",
+ "H=10**5;##external field in A/m\n",
+ "X=5*10**-5;##susceptibility \n",
+ "u=12.57*10**-7;##permeability in H/m\n",
+ "\n",
+ "##calculation\n",
+ "M=X*H;\n",
+ "print'%s %.2f %s'%('magnetization (in A/m)is ',M,'');\n",
+ "B=u*(M+H);\n",
+ "print'%s %.2f %s'%('magnetic flux density (in wb/m^2) is',B,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "magnetization (in A/m)is 5.00 \n",
+ "magnetic flux density (in wb/m^2) is 0.13 \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg615"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 21.3\n",
+ "##calculation of relative permeability\n",
+ "\n",
+ "##given values\n",
+ "\n",
+ "X=3.7*10**-3;##susceptibility at 300k\n",
+ "T=300;##temp in K\n",
+ "T1=200;##temp in K\n",
+ "T2=500;##temp in K\n",
+ "\n",
+ "##calculation\n",
+ "C=X*T;##curie constant\n",
+ "XT1=C/T1;\n",
+ "print'%s %.4f %s'%('relative permeability at T1 is ',XT1,'');\n",
+ "XT2=C/T2;\n",
+ "print'%s %.3f %s'%('relative permeability at T2 is',XT2,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "relative permeability at T1 is 0.0056 \n",
+ "relative permeability at T2 is 0.002 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/_A_Textbook_Of_Engineering_Physics/Chapter22.ipynb b/_A_Textbook_Of_Engineering_Physics/Chapter22.ipynb new file mode 100755 index 00000000..86088884 --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/Chapter22.ipynb @@ -0,0 +1,141 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:29de63e7ef1a8622d7d2e459bd1b9274805adbb7b74a608deb83d9b4c0dd3ef4"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Chapter22-Superconductivity"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg646"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 22.1\n",
+ "##calculation of magnetic field\n",
+ "\n",
+ "##given values\n",
+ "\n",
+ "Tc=7.2;##transition temp in K\n",
+ "T=5.;##temp in K\n",
+ "Hc=3.3*10**4;##magnetic field at T in A/m\n",
+ "\n",
+ "\n",
+ "##calculation\n",
+ "Hc0=Hc/(1-(T**2/Tc**2));\n",
+ "print'%s %.2f %s'%('max value of H at 0K (in A/m) is ',Hc0,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "max value of H at 0K (in A/m) is 63737.70 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg646"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 22.2\n",
+ "##calculation of transition temperature\n",
+ "\n",
+ "##given values\n",
+ "\n",
+ "T=8.;##temp in K\n",
+ "Hc=1*10**5.;##critical magnetic field at T in A/m\n",
+ "Hc0=2*10**5.;##magnetic field at 0 K in A/m\n",
+ "\n",
+ "##calculation\n",
+ "Tc=T/(math.sqrt(1.-Hc/Hc0));\n",
+ "print'%s %.2f %s'%('transition temp in K is',Tc,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "transition temp in K is 11.31 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg647"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 22.3\n",
+ "##calculation of temp at which there is max critical field\n",
+ "\n",
+ "##given values\n",
+ "\n",
+ "Tc=7.26;##critical temp in K\n",
+ "Hc=8*10**5.;##max critical magnetic field at T in A/m\n",
+ "H=4*10**4.;## subjected magnetic field at in A/m\n",
+ "\n",
+ "##calculation\n",
+ "T=Tc*(math.sqrt(1.-H/Hc));\n",
+ "print'%s %.2f %s'%('max temp for superconductivity in K is',T,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "max temp for superconductivity in K is 7.08 \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/_A_Textbook_Of_Engineering_Physics/Chapter22_1.ipynb b/_A_Textbook_Of_Engineering_Physics/Chapter22_1.ipynb new file mode 100755 index 00000000..15083682 --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/Chapter22_1.ipynb @@ -0,0 +1,141 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:ab6a6bb45b4cdef5c73ac14b797742c1b4b21056356723e765f29cef6d5d7ccd"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter22-Superconductivity"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg646"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 22.1\n",
+ "##calculation of magnetic field\n",
+ "\n",
+ "##given values\n",
+ "\n",
+ "Tc=7.2;##transition temp in K\n",
+ "T=5.;##temp in K\n",
+ "Hc=3.3*10**4;##magnetic field at T in A/m\n",
+ "\n",
+ "\n",
+ "##calculation\n",
+ "Hc0=Hc/(1-(T**2/Tc**2));\n",
+ "print'%s %.2f %s'%('max value of H at 0K (in A/m) is ',Hc0,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "max value of H at 0K (in A/m) is 63737.70 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg646"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 22.2\n",
+ "##calculation of transition temperature\n",
+ "\n",
+ "##given values\n",
+ "\n",
+ "T=8.;##temp in K\n",
+ "Hc=1*10**5.;##critical magnetic field at T in A/m\n",
+ "Hc0=2*10**5.;##magnetic field at 0 K in A/m\n",
+ "\n",
+ "##calculation\n",
+ "Tc=T/(math.sqrt(1.-Hc/Hc0));\n",
+ "print'%s %.2f %s'%('transition temp in K is',Tc,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "transition temp in K is 11.31 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg647"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 22.3\n",
+ "##calculation of temp at which there is max critical field\n",
+ "\n",
+ "##given values\n",
+ "\n",
+ "Tc=7.26;##critical temp in K\n",
+ "Hc=8*10**5.;##max critical magnetic field at T in A/m\n",
+ "H=4*10**4.;## subjected magnetic field at in A/m\n",
+ "\n",
+ "##calculation\n",
+ "T=Tc*(math.sqrt(1.-H/Hc));\n",
+ "print'%s %.2f %s'%('max temp for superconductivity in K is',T,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "max temp for superconductivity in K is 7.08 \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/_A_Textbook_Of_Engineering_Physics/Chapter23.ipynb b/_A_Textbook_Of_Engineering_Physics/Chapter23.ipynb new file mode 100755 index 00000000..d7f5b70f --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/Chapter23.ipynb @@ -0,0 +1,311 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:4021239986e9b103686ab01f7ccbdc5317b1bf2aa2e09bf052e63053a477f649"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter23-Dielectrics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg679"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 23.1\n",
+ "##calculation of relative permittivity\n",
+ "\n",
+ "##given values\n",
+ "\n",
+ "E=1000.;##electric field in V/m\n",
+ "P=4.3*10**-8;##polarization in C/m**2\n",
+ "e=8.85*10**-12;##permittivity in F/m\n",
+ "\n",
+ "\n",
+ "##calculation\n",
+ "er=1.+(P/(e*E));\n",
+ "print'%s %.2f %s'%('relative permittivity of NaCl is ',er,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "relative permittivity of NaCl is 5.86 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg675"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 23.2\n",
+ "##calculation of electronic polarizability\n",
+ "\n",
+ "##given values\n",
+ "\n",
+ "e=8.85*10**-12;##permittivity in F/m\n",
+ "er=1.0024;##relative permittivity at NTP\n",
+ "N=2.7*10**25.;##atoms per m**3\n",
+ "\n",
+ "\n",
+ "##calculation\n",
+ "alpha=e*(er-1)/N;\n",
+ "print'%s %.3e %s'%('electronic polarizability (in F/m^2)is ',alpha,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "electronic polarizability (in F/m^2)is 7.867e-40 \n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg678"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 23.3\n",
+ "##calculation of electronic polarizability and relative permittivity\n",
+ "\n",
+ "##given values\n",
+ "\n",
+ "e=8.85*10**-12.;##permittivity in F/m\n",
+ "N=9.8*10**26.;##atoms per m**3\n",
+ "r=.53*10**-10.;##radius in m\n",
+ "\n",
+ "\n",
+ "##calculation\n",
+ "alpha=4*math.pi*e*r**3;\n",
+ "print'%s %.3e %s'%('electronic polarizability (in F/m**2)is ',alpha,'');\n",
+ "er=1+(4*math.pi*N*r**3);\n",
+ "print'%s %.2f %s'%('relative permittivity is',er,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "electronic polarizability (in F/m**2)is 1.656e-41 \n",
+ "relative permittivity is 1.00 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg681"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 23.4\n",
+ "##calculation of electronic polarizability and relative permittivity\n",
+ "\n",
+ "##given values\n",
+ "w=32.;##atomic weight of sulphur \n",
+ "d=2.08*10**3.;##density in kg/m**3\n",
+ "NA=6.02*10**26.;##avogadros number\n",
+ "alpha=3.28*10**-40.;##electronic polarizability in F.m**2\n",
+ "e=8.854*10**-12.;##permittiviy\n",
+ "##calculation\n",
+ "\n",
+ "n=NA*d/w;\n",
+ "k=n*alpha/(3.*e);\n",
+ "er=(1+2*k)/(1.-k);\n",
+ "print'%s %.2f %s'%('relative permittivity is',er,'')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "relative permittivity is 3.80 \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg682"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 23.5\n",
+ "##calculation of ionic polarizability\n",
+ "\n",
+ "##given values\n",
+ "n=1.5;##refractive index\n",
+ "er=6.75;##relative permittivity\n",
+ "\n",
+ "##calculation\n",
+ "Pi=(er-n**2.)*100./(er-1.);\n",
+ "print'%s %.2f %s'%('percentage ionic polarizability (in %)) is',Pi,'')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "percentage ionic polarizability (in %)) is 78.26 \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg685"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 23.6\n",
+ "##calculation of frequency and phase difference\n",
+ "\n",
+ "##given values\n",
+ "t=18*10**-6;##relaxation time in s\n",
+ "\n",
+ "##calculation\n",
+ "f=1/(2*math.pi*t);\n",
+ "print'%s %.2f %s'%('frequency at which real and imaginary part of complx dielectric constant are equal is',f,'');\n",
+ "alpha=math.atan(1)*180/math.pi;## phase difference between current and voltage( 1 because real and imaginry parts are equal of the dielectric constant)\n",
+ "print'%s %.2f %s'%('phase diffeerence (in degree) is',alpha,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "frequency at which real and imaginary part of complx dielectric constant are equal is 8841.94 \n",
+ "phase diffeerence (in degree) is 45.00 "
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg692"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 23.7\n",
+ "##calculation of frequency\n",
+ "\n",
+ "##given values\n",
+ "t=5.5*10**-3.;##thickness of plate in m\n",
+ "Y=8*10**10.;##Young's modulus in N/m**2\n",
+ "d=2.65*10**3.;##density in kg/m**3\n",
+ "\n",
+ "\n",
+ "\n",
+ "##calculation\n",
+ "f=math.sqrt(Y/d)/(2.*t);##in Hz\n",
+ "print'%s %.2f %s'%('frequency of fundamental note(in KHz) is',f/10**3,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "frequency of fundamental note(in KHz) is 499.49 \n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/_A_Textbook_Of_Engineering_Physics/Chapter23_1.ipynb b/_A_Textbook_Of_Engineering_Physics/Chapter23_1.ipynb new file mode 100755 index 00000000..d7f5b70f --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/Chapter23_1.ipynb @@ -0,0 +1,311 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:4021239986e9b103686ab01f7ccbdc5317b1bf2aa2e09bf052e63053a477f649"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter23-Dielectrics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg679"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 23.1\n",
+ "##calculation of relative permittivity\n",
+ "\n",
+ "##given values\n",
+ "\n",
+ "E=1000.;##electric field in V/m\n",
+ "P=4.3*10**-8;##polarization in C/m**2\n",
+ "e=8.85*10**-12;##permittivity in F/m\n",
+ "\n",
+ "\n",
+ "##calculation\n",
+ "er=1.+(P/(e*E));\n",
+ "print'%s %.2f %s'%('relative permittivity of NaCl is ',er,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "relative permittivity of NaCl is 5.86 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg675"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 23.2\n",
+ "##calculation of electronic polarizability\n",
+ "\n",
+ "##given values\n",
+ "\n",
+ "e=8.85*10**-12;##permittivity in F/m\n",
+ "er=1.0024;##relative permittivity at NTP\n",
+ "N=2.7*10**25.;##atoms per m**3\n",
+ "\n",
+ "\n",
+ "##calculation\n",
+ "alpha=e*(er-1)/N;\n",
+ "print'%s %.3e %s'%('electronic polarizability (in F/m^2)is ',alpha,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "electronic polarizability (in F/m^2)is 7.867e-40 \n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg678"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 23.3\n",
+ "##calculation of electronic polarizability and relative permittivity\n",
+ "\n",
+ "##given values\n",
+ "\n",
+ "e=8.85*10**-12.;##permittivity in F/m\n",
+ "N=9.8*10**26.;##atoms per m**3\n",
+ "r=.53*10**-10.;##radius in m\n",
+ "\n",
+ "\n",
+ "##calculation\n",
+ "alpha=4*math.pi*e*r**3;\n",
+ "print'%s %.3e %s'%('electronic polarizability (in F/m**2)is ',alpha,'');\n",
+ "er=1+(4*math.pi*N*r**3);\n",
+ "print'%s %.2f %s'%('relative permittivity is',er,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "electronic polarizability (in F/m**2)is 1.656e-41 \n",
+ "relative permittivity is 1.00 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg681"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 23.4\n",
+ "##calculation of electronic polarizability and relative permittivity\n",
+ "\n",
+ "##given values\n",
+ "w=32.;##atomic weight of sulphur \n",
+ "d=2.08*10**3.;##density in kg/m**3\n",
+ "NA=6.02*10**26.;##avogadros number\n",
+ "alpha=3.28*10**-40.;##electronic polarizability in F.m**2\n",
+ "e=8.854*10**-12.;##permittiviy\n",
+ "##calculation\n",
+ "\n",
+ "n=NA*d/w;\n",
+ "k=n*alpha/(3.*e);\n",
+ "er=(1+2*k)/(1.-k);\n",
+ "print'%s %.2f %s'%('relative permittivity is',er,'')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "relative permittivity is 3.80 \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg682"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 23.5\n",
+ "##calculation of ionic polarizability\n",
+ "\n",
+ "##given values\n",
+ "n=1.5;##refractive index\n",
+ "er=6.75;##relative permittivity\n",
+ "\n",
+ "##calculation\n",
+ "Pi=(er-n**2.)*100./(er-1.);\n",
+ "print'%s %.2f %s'%('percentage ionic polarizability (in %)) is',Pi,'')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "percentage ionic polarizability (in %)) is 78.26 \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg685"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 23.6\n",
+ "##calculation of frequency and phase difference\n",
+ "\n",
+ "##given values\n",
+ "t=18*10**-6;##relaxation time in s\n",
+ "\n",
+ "##calculation\n",
+ "f=1/(2*math.pi*t);\n",
+ "print'%s %.2f %s'%('frequency at which real and imaginary part of complx dielectric constant are equal is',f,'');\n",
+ "alpha=math.atan(1)*180/math.pi;## phase difference between current and voltage( 1 because real and imaginry parts are equal of the dielectric constant)\n",
+ "print'%s %.2f %s'%('phase diffeerence (in degree) is',alpha,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "frequency at which real and imaginary part of complx dielectric constant are equal is 8841.94 \n",
+ "phase diffeerence (in degree) is 45.00 "
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg692"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 23.7\n",
+ "##calculation of frequency\n",
+ "\n",
+ "##given values\n",
+ "t=5.5*10**-3.;##thickness of plate in m\n",
+ "Y=8*10**10.;##Young's modulus in N/m**2\n",
+ "d=2.65*10**3.;##density in kg/m**3\n",
+ "\n",
+ "\n",
+ "\n",
+ "##calculation\n",
+ "f=math.sqrt(Y/d)/(2.*t);##in Hz\n",
+ "print'%s %.2f %s'%('frequency of fundamental note(in KHz) is',f/10**3,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "frequency of fundamental note(in KHz) is 499.49 \n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/_A_Textbook_Of_Engineering_Physics/Chapter24.ipynb b/_A_Textbook_Of_Engineering_Physics/Chapter24.ipynb new file mode 100755 index 00000000..67066c07 --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/Chapter24.ipynb @@ -0,0 +1,312 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:1cf24b70876a8aeb6aa008651e71d8cde215c5cbb4fe65495bcd461a3cc2b49b"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter24-Fibre Optics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg701"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 24.1\n",
+ "##Fiber optics\n",
+ "\n",
+ "##given values\n",
+ "n=1.5;##refractive index\n",
+ "x=.0005;##fractional index difference\n",
+ "\n",
+ "##calculation\n",
+ "u=n*(1-x);\n",
+ "print'%s %.2f %s'%('cladding index is',u,'');\n",
+ "alpha=math.asin(u/n)*180/math.pi;\n",
+ "print'%s %.2f %s'%('critical internal reflection angle(in degree) is',alpha,'');\n",
+ "theta=math.asin(math.sqrt(n**2-u**2))*180/math.pi;\n",
+ "print'%s %.2f %s'%('critical acceptance angle(in degree) is',theta,'');\n",
+ "N=n*math.sqrt(2.*x);\n",
+ "print'%s %.2f %s'%('numerical aperture is',N,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "cladding index is 1.50 \n",
+ "critical internal reflection angle(in degree) is 88.19 \n",
+ "critical acceptance angle(in degree) is 2.72 \n",
+ "numerical aperture is 0.05 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg701"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 24.2\n",
+ "##calculation of acceptance angle\n",
+ "\n",
+ "##given values\n",
+ "n=1.59;##cladding refractive index\n",
+ "u=1.33;##refractive index of water\n",
+ "N=.20;##numerical aperture offibre\n",
+ "##calculation\n",
+ "x=math.sqrt(N**2+n**2.);##index of fibre\n",
+ "N1=math.sqrt(x**2-n**2.)/u;##numerical aperture when fibre is in water\n",
+ "alpha=math.asin(N1)*180./math.pi;\n",
+ "print'%s %.2f %s'%('acceptance angle in degree is',alpha,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "acceptance angle in degree is 8.65 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg705"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 24.3\n",
+ "##calculation of normalised frequency\n",
+ "\n",
+ "##given values\n",
+ "n=1.45;##core refractive index\n",
+ "d=.6;##core diametre in m\n",
+ "N=.16;##numerical aperture of fibre\n",
+ "l=.9*10**-6.;##wavelength of light\n",
+ "\n",
+ "##calculation\n",
+ "u=math.sqrt(n**2.+N**2.);##index of glass fibre\n",
+ "V=math.pi*d*math.sqrt(u**2.-n**2.)/l;\n",
+ "print'%s %.2f %s'%('normalised frequency is',V,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "normalised frequency is 335103.22 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg705"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 24.4\n",
+ "##calculation of normailsed frequency and no of modes\n",
+ "\n",
+ "##given values\n",
+ "n=1.52;##core refractive index\n",
+ "d=29*10**-6.;##core diametre in m\n",
+ "l=1.3*10**-6.;##wavelength of light\n",
+ "x=.0007;##fractional refractive index\n",
+ "\n",
+ "##calculation\n",
+ "u=n*(1.-x);##index of glass fibre\n",
+ "V=math.pi*d*math.sqrt(n**2-u**2)/l;\n",
+ "print'%s %.2f %s'%('normalised frequency is',V,'');\n",
+ "N=V**2./2.;\n",
+ "print'%s %.2f %s'%('no of modes is',N,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "normalised frequency is 3.99 \n",
+ "no of modes is 7.94 \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg706"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 24.5\n",
+ "##calculation of numerical aperture and maximum acceptance angle\n",
+ "\n",
+ "##given values\n",
+ "n=1.480;##core refractive index\n",
+ "u=1.47;##index of glass\n",
+ "l=850*10**-9.;##wavelength of light\n",
+ "V=2.405;##V-number\n",
+ "\n",
+ "##calculation\n",
+ "r=V*l/math.sqrt(n**2-u**2)/math.pi/2;##in m\n",
+ "print'%s %.2f %s'%('core radius in micrometre is',r*10**6,'');\n",
+ "N=math.sqrt(n**2-u**2);\n",
+ "print'%s %.2f %s'%('numerical aperture is',N,'');\n",
+ "alpha=math.asin(N)*180/math.pi;\n",
+ "print'%s %.2f %s'%('max acceptance angle is',alpha,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "core radius in micrometre is 1.89 \n",
+ "numerical aperture is 0.17 \n",
+ "max acceptance angle is 9.89 \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg712"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 24.6\n",
+ "##calculation of power level\n",
+ "\n",
+ "##given values\n",
+ "a=3.5;##attenuation in dB/km\n",
+ "Pi=.5*10**-3.;##initial power level in W\n",
+ "l=4.;##length of cable in km\n",
+ "\n",
+ "##calculation\n",
+ "Po=Pi*10**6./(10**(a*l/10.));\n",
+ "print'%s %.2f %s'%('power level after km(in microwatt) is',Po,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "power level after km(in microwatt) is 19.91 \n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg712"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 24.7\n",
+ "##calculation of power loss\n",
+ "\n",
+ "##given values\n",
+ "Pi=1*10**-3.;##initial power level in W\n",
+ "l=.5;##length of cable in km\n",
+ "Po=.85*Pi\n",
+ "\n",
+ "##calculation\n",
+ "a=(10./l)*math.log10(Pi/Po);\n",
+ "print'%s %.2f %s'%('loss in dB/km is',a,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "loss in dB/km is 1.41 \n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/_A_Textbook_Of_Engineering_Physics/Chapter24_1.ipynb b/_A_Textbook_Of_Engineering_Physics/Chapter24_1.ipynb new file mode 100755 index 00000000..67066c07 --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/Chapter24_1.ipynb @@ -0,0 +1,312 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:1cf24b70876a8aeb6aa008651e71d8cde215c5cbb4fe65495bcd461a3cc2b49b"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter24-Fibre Optics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg701"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 24.1\n",
+ "##Fiber optics\n",
+ "\n",
+ "##given values\n",
+ "n=1.5;##refractive index\n",
+ "x=.0005;##fractional index difference\n",
+ "\n",
+ "##calculation\n",
+ "u=n*(1-x);\n",
+ "print'%s %.2f %s'%('cladding index is',u,'');\n",
+ "alpha=math.asin(u/n)*180/math.pi;\n",
+ "print'%s %.2f %s'%('critical internal reflection angle(in degree) is',alpha,'');\n",
+ "theta=math.asin(math.sqrt(n**2-u**2))*180/math.pi;\n",
+ "print'%s %.2f %s'%('critical acceptance angle(in degree) is',theta,'');\n",
+ "N=n*math.sqrt(2.*x);\n",
+ "print'%s %.2f %s'%('numerical aperture is',N,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "cladding index is 1.50 \n",
+ "critical internal reflection angle(in degree) is 88.19 \n",
+ "critical acceptance angle(in degree) is 2.72 \n",
+ "numerical aperture is 0.05 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg701"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 24.2\n",
+ "##calculation of acceptance angle\n",
+ "\n",
+ "##given values\n",
+ "n=1.59;##cladding refractive index\n",
+ "u=1.33;##refractive index of water\n",
+ "N=.20;##numerical aperture offibre\n",
+ "##calculation\n",
+ "x=math.sqrt(N**2+n**2.);##index of fibre\n",
+ "N1=math.sqrt(x**2-n**2.)/u;##numerical aperture when fibre is in water\n",
+ "alpha=math.asin(N1)*180./math.pi;\n",
+ "print'%s %.2f %s'%('acceptance angle in degree is',alpha,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "acceptance angle in degree is 8.65 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg705"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 24.3\n",
+ "##calculation of normalised frequency\n",
+ "\n",
+ "##given values\n",
+ "n=1.45;##core refractive index\n",
+ "d=.6;##core diametre in m\n",
+ "N=.16;##numerical aperture of fibre\n",
+ "l=.9*10**-6.;##wavelength of light\n",
+ "\n",
+ "##calculation\n",
+ "u=math.sqrt(n**2.+N**2.);##index of glass fibre\n",
+ "V=math.pi*d*math.sqrt(u**2.-n**2.)/l;\n",
+ "print'%s %.2f %s'%('normalised frequency is',V,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "normalised frequency is 335103.22 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg705"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 24.4\n",
+ "##calculation of normailsed frequency and no of modes\n",
+ "\n",
+ "##given values\n",
+ "n=1.52;##core refractive index\n",
+ "d=29*10**-6.;##core diametre in m\n",
+ "l=1.3*10**-6.;##wavelength of light\n",
+ "x=.0007;##fractional refractive index\n",
+ "\n",
+ "##calculation\n",
+ "u=n*(1.-x);##index of glass fibre\n",
+ "V=math.pi*d*math.sqrt(n**2-u**2)/l;\n",
+ "print'%s %.2f %s'%('normalised frequency is',V,'');\n",
+ "N=V**2./2.;\n",
+ "print'%s %.2f %s'%('no of modes is',N,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "normalised frequency is 3.99 \n",
+ "no of modes is 7.94 \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg706"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 24.5\n",
+ "##calculation of numerical aperture and maximum acceptance angle\n",
+ "\n",
+ "##given values\n",
+ "n=1.480;##core refractive index\n",
+ "u=1.47;##index of glass\n",
+ "l=850*10**-9.;##wavelength of light\n",
+ "V=2.405;##V-number\n",
+ "\n",
+ "##calculation\n",
+ "r=V*l/math.sqrt(n**2-u**2)/math.pi/2;##in m\n",
+ "print'%s %.2f %s'%('core radius in micrometre is',r*10**6,'');\n",
+ "N=math.sqrt(n**2-u**2);\n",
+ "print'%s %.2f %s'%('numerical aperture is',N,'');\n",
+ "alpha=math.asin(N)*180/math.pi;\n",
+ "print'%s %.2f %s'%('max acceptance angle is',alpha,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "core radius in micrometre is 1.89 \n",
+ "numerical aperture is 0.17 \n",
+ "max acceptance angle is 9.89 \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg712"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 24.6\n",
+ "##calculation of power level\n",
+ "\n",
+ "##given values\n",
+ "a=3.5;##attenuation in dB/km\n",
+ "Pi=.5*10**-3.;##initial power level in W\n",
+ "l=4.;##length of cable in km\n",
+ "\n",
+ "##calculation\n",
+ "Po=Pi*10**6./(10**(a*l/10.));\n",
+ "print'%s %.2f %s'%('power level after km(in microwatt) is',Po,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "power level after km(in microwatt) is 19.91 \n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg712"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 24.7\n",
+ "##calculation of power loss\n",
+ "\n",
+ "##given values\n",
+ "Pi=1*10**-3.;##initial power level in W\n",
+ "l=.5;##length of cable in km\n",
+ "Po=.85*Pi\n",
+ "\n",
+ "##calculation\n",
+ "a=(10./l)*math.log10(Pi/Po);\n",
+ "print'%s %.2f %s'%('loss in dB/km is',a,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "loss in dB/km is 1.41 \n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/_A_Textbook_Of_Engineering_Physics/Chapter4.ipynb b/_A_Textbook_Of_Engineering_Physics/Chapter4.ipynb new file mode 100755 index 00000000..024db2ff --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/Chapter4.ipynb @@ -0,0 +1,314 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:5cdc0313c39e461d83bef4f404708f38e979d4c9312a95284be2bd9b855678fb"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter4-Electron Ballistics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "##Example 4.1\n",
+ "##Calculation of acceleration,time taken,distance covered and kinetic energy of an accelerating proton\n",
+ "\n",
+ "##given values\n",
+ "m=1.67 *10**-27;##mass of proton in kg\n",
+ "q=1.602 *10**-19;##charge of proton in Coulomb\n",
+ "v1=0;##initial velocity in m/s\n",
+ "v2=2.5*10**6;##final velocity in m/s\n",
+ "E=500.;##electric field strength in V/m\n",
+ "##calculation\n",
+ "a=E*q/m;##acceleration\n",
+ "print'%s %.1f %s'%('acceleration of proton in (m/s^2) is:',a,'');\n",
+ "t=v2/a;##time\n",
+ "print'%s %.5f %s'%('time(in s) taken by proton to reach the final velocity is:',t,'');\n",
+ "x=a*t**2./2.;##distance\n",
+ "print'%s %.1f %s'%('distance (in m)covered by proton in this time is:',x,'');\n",
+ "KE=E*q*x;##kinetic energy\n",
+ "print'%s %.3e %s'%('kinetic energy(in J) at the time is:',KE,'');\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "acceleration of proton in (m/s^2) is: 47964071856.3 \n",
+ "time(in s) taken by proton to reach the final velocity is: 0.00005 \n",
+ "distance (in m)covered by proton in this time is: 65.2 \n",
+ "kinetic energy(in J) at the time is: 5.219e-15 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg49"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 4.2\n",
+ "##electrostatic deflection\n",
+ "##given values\n",
+ "pi=3.141\n",
+ "V1=2000.;##in volts,potential difference through which electron beam is accelerated\n",
+ "l=.04;##length of rectangular plates\n",
+ "d=.015;##distance between plates\n",
+ "V=50.;##potential difference between plates\n",
+ "##calculations\n",
+ "alpha=math.atan(l*V/(2.*d*V1))*(180./pi);##in degrees\n",
+ "print'%s %.1f %s'%('angle of deflection of electron beam is:',alpha,'')\n",
+ "v=5.93*(10**5)*math.sqrt(V1);##horizontal velocity in m/s\n",
+ "t=l/v;##in s\n",
+ "print'%s %.3e %s'%('transit time through electric field is:',t,'')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "angle of deflection of electron beam is: 1.9 \n",
+ "transit time through electric field is: 1.508e-09 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg50"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 4.3\n",
+ "##electron projected at an angle into a uniform electric field\n",
+ "##given values\n",
+ "v1=4.5*10**5;##initial speed in m/s\n",
+ "alpha=37*math.pi/180.;##angle of projection in degrees\n",
+ "E=200.;##electric field intensity in N/C\n",
+ "e=1.6*10**-19;##in C\n",
+ "m=9.1*10**-31;##in kg\n",
+ "a=e*E/m;##acceleration in m/s**2\n",
+ "t=2*v1*math.sin(alpha)/a;##time in s\n",
+ "print'%s %.2e %s'%('time taken by electron to return to its initial level is:',t,'')\n",
+ "H=(v1**2.*math.sin(alpha)*math.sin(alpha))/(2.*a);##height in m\n",
+ "print'%s %.4f %s'%('maximum height reached by electron is:',H,'')\n",
+ "s=(v1**2.)*(2.*math.sin(alpha)*math.cos(alpha))/(2.*a);##print'%s %.1f %s'%lacement in m\n",
+ "print'%s %.4f %s'%('horizontal displacement(in m)when it reaches maximum height is:',s,'')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "time taken by electron to return to its initial level is: 1.54e-08 \n",
+ "maximum height reached by electron is: 0.0010 \n",
+ "horizontal displacement(in m)when it reaches maximum height is: 0.0028 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg53"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 4.4\n",
+ "##motion of an electron in a uniform magnetic field\n",
+ "##given values\n",
+ "V=200.;##potential difference through which electron is accelerated in volts\n",
+ "B=0.01;##magnetic field in wb/m**2\n",
+ "e=1.6*10**-19;##in C\n",
+ "m=9.1*10**-31;##in kg\n",
+ "v=math.sqrt(2.*e*V/m);##electron velocity in m/s\n",
+ "print'%s %.1f %s'%('electron velocity is:',v,'')\n",
+ "r=m*v/(e*B);##in m\n",
+ "print'%s %.4f %s'%('radius of path (in m)is:',r,'')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "electron velocity is: 8386278.7 \n",
+ "radius of path (in m)is: 0.0048 \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg54"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 4.5\n",
+ "##motion of an electron in a uniform magnetic field acting at an angle\n",
+ "##given values\n",
+ "v=3*10**7;##electron speed\n",
+ "B=.23;##magnetic field in wb/m**2\n",
+ "q=45*math.pi/180;##in degrees,angle in which electron enter field\n",
+ "e=1.6*10**-19;##in C\n",
+ "m=9.1*10**-31;##in kg\n",
+ "R=m*v*math.sin(q)/(e*B);##in m\n",
+ "print'%s %.5f %s'%('radius of helical path is:',R,'')\n",
+ "p=2*math.pi*m*v*math.cos(q)/(e*B);##in m\n",
+ "print'%s %.4f %s'%('pitch of helical path(in m) is:',p,'')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "radius of helical path is: 0.00052 \n",
+ "pitch of helical path(in m) is: 0.0033 \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg55"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 4.6\n",
+ "##Magnetostatic deflection\n",
+ "##given values\n",
+ "D=.03;##deflection in m\n",
+ "m=9.1*10**-31;##in kg\n",
+ "e=1.6*10**-19;##in C\n",
+ "L=.15;##distance between CRT and anode in m\n",
+ "l=L/2.;\n",
+ "V=2000.;##in voltsin wb/\n",
+ "B=D*math.sqrt(2.*m*V)/(L*l*math.sqrt(e));##in wb/m**2\n",
+ "print'%s %.4f %s'%('transverse magnetic field acting (in wb/m^2)is:',B,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "transverse magnetic field acting (in wb/m^2)is: 0.0004 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg57"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 4.7\n",
+ "##electric and magnetic fields in crossed configuration\n",
+ "##given values\n",
+ "B=2*10**-3;##magnetic field in wb/m**2\n",
+ "E=3.4*10**4;##electric field in V/m\n",
+ "m=9.1*10**-31;##in kg\n",
+ "e=1.6*10**-19;##in C\n",
+ "v=E/B;##in m/s\n",
+ "print'%s %.1f %s'%('electron speed is:',v,'')\n",
+ "R=m*v/(e*B);##in m\n",
+ "print'%s %.3f %s'%('radius of circular path (in m) when electric field is switched off',R,'')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "electron speed is: 17000000.0 \n",
+ "radius of circular path (in m) when electric field is switched off 0.048 \n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/_A_Textbook_Of_Engineering_Physics/Chapter4_1.ipynb b/_A_Textbook_Of_Engineering_Physics/Chapter4_1.ipynb new file mode 100755 index 00000000..024db2ff --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/Chapter4_1.ipynb @@ -0,0 +1,314 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:5cdc0313c39e461d83bef4f404708f38e979d4c9312a95284be2bd9b855678fb"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter4-Electron Ballistics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "##Example 4.1\n",
+ "##Calculation of acceleration,time taken,distance covered and kinetic energy of an accelerating proton\n",
+ "\n",
+ "##given values\n",
+ "m=1.67 *10**-27;##mass of proton in kg\n",
+ "q=1.602 *10**-19;##charge of proton in Coulomb\n",
+ "v1=0;##initial velocity in m/s\n",
+ "v2=2.5*10**6;##final velocity in m/s\n",
+ "E=500.;##electric field strength in V/m\n",
+ "##calculation\n",
+ "a=E*q/m;##acceleration\n",
+ "print'%s %.1f %s'%('acceleration of proton in (m/s^2) is:',a,'');\n",
+ "t=v2/a;##time\n",
+ "print'%s %.5f %s'%('time(in s) taken by proton to reach the final velocity is:',t,'');\n",
+ "x=a*t**2./2.;##distance\n",
+ "print'%s %.1f %s'%('distance (in m)covered by proton in this time is:',x,'');\n",
+ "KE=E*q*x;##kinetic energy\n",
+ "print'%s %.3e %s'%('kinetic energy(in J) at the time is:',KE,'');\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "acceleration of proton in (m/s^2) is: 47964071856.3 \n",
+ "time(in s) taken by proton to reach the final velocity is: 0.00005 \n",
+ "distance (in m)covered by proton in this time is: 65.2 \n",
+ "kinetic energy(in J) at the time is: 5.219e-15 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg49"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 4.2\n",
+ "##electrostatic deflection\n",
+ "##given values\n",
+ "pi=3.141\n",
+ "V1=2000.;##in volts,potential difference through which electron beam is accelerated\n",
+ "l=.04;##length of rectangular plates\n",
+ "d=.015;##distance between plates\n",
+ "V=50.;##potential difference between plates\n",
+ "##calculations\n",
+ "alpha=math.atan(l*V/(2.*d*V1))*(180./pi);##in degrees\n",
+ "print'%s %.1f %s'%('angle of deflection of electron beam is:',alpha,'')\n",
+ "v=5.93*(10**5)*math.sqrt(V1);##horizontal velocity in m/s\n",
+ "t=l/v;##in s\n",
+ "print'%s %.3e %s'%('transit time through electric field is:',t,'')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "angle of deflection of electron beam is: 1.9 \n",
+ "transit time through electric field is: 1.508e-09 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg50"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 4.3\n",
+ "##electron projected at an angle into a uniform electric field\n",
+ "##given values\n",
+ "v1=4.5*10**5;##initial speed in m/s\n",
+ "alpha=37*math.pi/180.;##angle of projection in degrees\n",
+ "E=200.;##electric field intensity in N/C\n",
+ "e=1.6*10**-19;##in C\n",
+ "m=9.1*10**-31;##in kg\n",
+ "a=e*E/m;##acceleration in m/s**2\n",
+ "t=2*v1*math.sin(alpha)/a;##time in s\n",
+ "print'%s %.2e %s'%('time taken by electron to return to its initial level is:',t,'')\n",
+ "H=(v1**2.*math.sin(alpha)*math.sin(alpha))/(2.*a);##height in m\n",
+ "print'%s %.4f %s'%('maximum height reached by electron is:',H,'')\n",
+ "s=(v1**2.)*(2.*math.sin(alpha)*math.cos(alpha))/(2.*a);##print'%s %.1f %s'%lacement in m\n",
+ "print'%s %.4f %s'%('horizontal displacement(in m)when it reaches maximum height is:',s,'')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "time taken by electron to return to its initial level is: 1.54e-08 \n",
+ "maximum height reached by electron is: 0.0010 \n",
+ "horizontal displacement(in m)when it reaches maximum height is: 0.0028 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg53"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 4.4\n",
+ "##motion of an electron in a uniform magnetic field\n",
+ "##given values\n",
+ "V=200.;##potential difference through which electron is accelerated in volts\n",
+ "B=0.01;##magnetic field in wb/m**2\n",
+ "e=1.6*10**-19;##in C\n",
+ "m=9.1*10**-31;##in kg\n",
+ "v=math.sqrt(2.*e*V/m);##electron velocity in m/s\n",
+ "print'%s %.1f %s'%('electron velocity is:',v,'')\n",
+ "r=m*v/(e*B);##in m\n",
+ "print'%s %.4f %s'%('radius of path (in m)is:',r,'')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "electron velocity is: 8386278.7 \n",
+ "radius of path (in m)is: 0.0048 \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg54"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 4.5\n",
+ "##motion of an electron in a uniform magnetic field acting at an angle\n",
+ "##given values\n",
+ "v=3*10**7;##electron speed\n",
+ "B=.23;##magnetic field in wb/m**2\n",
+ "q=45*math.pi/180;##in degrees,angle in which electron enter field\n",
+ "e=1.6*10**-19;##in C\n",
+ "m=9.1*10**-31;##in kg\n",
+ "R=m*v*math.sin(q)/(e*B);##in m\n",
+ "print'%s %.5f %s'%('radius of helical path is:',R,'')\n",
+ "p=2*math.pi*m*v*math.cos(q)/(e*B);##in m\n",
+ "print'%s %.4f %s'%('pitch of helical path(in m) is:',p,'')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "radius of helical path is: 0.00052 \n",
+ "pitch of helical path(in m) is: 0.0033 \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg55"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 4.6\n",
+ "##Magnetostatic deflection\n",
+ "##given values\n",
+ "D=.03;##deflection in m\n",
+ "m=9.1*10**-31;##in kg\n",
+ "e=1.6*10**-19;##in C\n",
+ "L=.15;##distance between CRT and anode in m\n",
+ "l=L/2.;\n",
+ "V=2000.;##in voltsin wb/\n",
+ "B=D*math.sqrt(2.*m*V)/(L*l*math.sqrt(e));##in wb/m**2\n",
+ "print'%s %.4f %s'%('transverse magnetic field acting (in wb/m^2)is:',B,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "transverse magnetic field acting (in wb/m^2)is: 0.0004 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg57"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 4.7\n",
+ "##electric and magnetic fields in crossed configuration\n",
+ "##given values\n",
+ "B=2*10**-3;##magnetic field in wb/m**2\n",
+ "E=3.4*10**4;##electric field in V/m\n",
+ "m=9.1*10**-31;##in kg\n",
+ "e=1.6*10**-19;##in C\n",
+ "v=E/B;##in m/s\n",
+ "print'%s %.1f %s'%('electron speed is:',v,'')\n",
+ "R=m*v/(e*B);##in m\n",
+ "print'%s %.3f %s'%('radius of circular path (in m) when electric field is switched off',R,'')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "electron speed is: 17000000.0 \n",
+ "radius of circular path (in m) when electric field is switched off 0.048 \n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/_A_Textbook_Of_Engineering_Physics/Chapter5.ipynb b/_A_Textbook_Of_Engineering_Physics/Chapter5.ipynb new file mode 100755 index 00000000..f25c1843 --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/Chapter5.ipynb @@ -0,0 +1,147 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:b45bed0bf651f557c40cec41e1736def1e279410a176004acdb12e68c84f8fd8"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Chapter5Electron Oprtics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg 72"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 5.1\n",
+ "##Electron refraction, calculation of potential difference\n",
+ "\n",
+ "##given values\n",
+ "V1=250.;##potential by which electrons are accelerated in Volts\n",
+ "alpha1=50*math.pi/180.;##in degree\n",
+ "alpha2=30*math.pi/180.;##in degree\n",
+ "b=math.sin(alpha1)/math.sin(alpha2);\n",
+ "##calculation\n",
+ "V2=(b**2.)*V1;\n",
+ "a=V2-V1;\n",
+ "print'%s %.1f %s'%('potential difference(in volts) is:',a,'');\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "potential difference(in volts) is: 336.8 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2 $3-pg94"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "##Example 5.2&5.3\n",
+ "import math\n",
+ "##Cyclotron, calculation of magnetic induction,maximum energy\n",
+ "##given values\n",
+ "f=12*(10**6);##oscillator frequency in Hertz\n",
+ "r=.53;##radius of the dee in metre\n",
+ "q=1.6*10**-19;##Deuteron charge in C\n",
+ "m=3.34*10**-27;##mass of deuteron in kg\n",
+ "##calculation\n",
+ "B=2*math.pi*f*m/q;##\n",
+ "print'%s %.1f %s'%('magnetic induction (in Tesla) is:',B,'');\n",
+ "E=B**2*q**2.*r**2./(2.*m);\n",
+ "print'%s %.3e %s'%('maximum energy to which deuterons can be accelerated (in J) is',E,'')\n",
+ "E1=E*6.24*10**18/10**6;##conversion of energy into MeV\n",
+ "print'%s %.1f %s'%('maximum energy to which deuterons can be accelerated (in MeV) is',E1,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "magnetic induction (in Tesla) is: 1.6 \n",
+ "maximum energy to which deuterons can be accelerated (in J) is 2.667e-12 \n",
+ "maximum energy to which deuterons can be accelerated (in MeV) is 16.6 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg99"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 5.4\n",
+ "##Mass spectrograph, calculation of linear separation of lines formed on photographic plates\n",
+ "\n",
+ "##given values;\n",
+ "E=8.*10**4;##electric field in V/m\n",
+ "B=.55##magnetic induction in Wb/m*2\n",
+ "q=1.6*10**-19;##charge of ions\n",
+ "m1=20.*1.67*10**-27;##atomic mass of an isotope of neon\n",
+ "m2=22.*1.67*10**-27;##atomic mass of other isotope of neon\n",
+ "##calculation\n",
+ "x=2*E*(m2-m1)/(q*B**2);##\n",
+ "print'%s %.3f %s'%('separation of lines (in metre) is:',x,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "separation of lines (in metre) is: 0.011 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/_A_Textbook_Of_Engineering_Physics/Chapter5_1.ipynb b/_A_Textbook_Of_Engineering_Physics/Chapter5_1.ipynb new file mode 100755 index 00000000..f4389219 --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/Chapter5_1.ipynb @@ -0,0 +1,185 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:550f2c4f76d815d509a9a81031b8891ad0f830da6727cb50a9ec9ad3c5c39d1e"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter5 Electron Oprtics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg 72"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 5.1\n",
+ "##Electron refraction, calculation of potential difference\n",
+ "\n",
+ "##given values\n",
+ "V1=250.;##potential by which electrons are accelerated in Volts\n",
+ "alpha1=50*math.pi/180.;##in degree\n",
+ "alpha2=30*math.pi/180.;##in degree\n",
+ "b=math.sin(alpha1)/math.sin(alpha2);\n",
+ "##calculation\n",
+ "V2=(b**2.)*V1;\n",
+ "a=V2-V1;\n",
+ "print'%s %.1f %s'%('potential difference(in volts) is:',a,'');\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "potential difference(in volts) is: 336.8 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2 -pg94"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "##Example 5.2&5.3\n",
+ "import math\n",
+ "##Cyclotron, calculation of magnetic induction,maximum energy\n",
+ "##given values\n",
+ "f=12*(10**6);##oscillator frequency in Hertz\n",
+ "r=.53;##radius of the dee in metre\n",
+ "q=1.6*10**-19;##Deuteron charge in C\n",
+ "m=3.34*10**-27;##mass of deuteron in kg\n",
+ "##calculation\n",
+ "B=2*math.pi*f*m/q;##\n",
+ "print'%s %.2f %s'%('magnetic induction (in Tesla) is:',B,'');\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "magnetic induction (in Tesla) is: 1.57 \n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg94"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Cyclotron, calculation of magnetic induction,maximum energy\n",
+ "##given values\n",
+ "f=12.*(10**6);##oscillator frequency in Hertz\n",
+ "r=.53;##radius of the dee in metre\n",
+ "q=1.6*10**-19;##Deuteron charge in C\n",
+ "m=3.34*10**-27;##mass of deuteron in kg\n",
+ "##calculation\n",
+ "B=2*math.pi*f*m/q;##\n",
+ "\n",
+ "E=B**2*q**2.*r**2./(2.*m);\n",
+ "print'%s %.2e %s'%('maximum energy to which deuterons can be accelerated (in J) is',E,'')\n",
+ "E1=E*6.24*10**18/10**6.;##conversion of energy into MeV\n",
+ "print'%s %.1f %s'%('maximum energy to which deuterons can be accelerated (in MeV) is',E1,'');\n",
+ "print('in text book ans is given wrong')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "maximum energy to which deuterons can be accelerated (in J) is 2.67e-12 \n",
+ "maximum energy to which deuterons can be accelerated (in MeV) is 16.6 \n",
+ "in text book ans is given wrong\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg99"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 5.4\n",
+ "##Mass spectrograph, calculation of linear separation of lines formed on photographic plates\n",
+ "\n",
+ "##given values;\n",
+ "E=8.*10**4;##electric field in V/m\n",
+ "B=.55##magnetic induction in Wb/m*2\n",
+ "q=1.6*10**-19;##charge of ions\n",
+ "m1=20.*1.67*10**-27;##atomic mass of an isotope of neon\n",
+ "m2=22.*1.67*10**-27;##atomic mass of other isotope of neon\n",
+ "##calculation\n",
+ "x=2*E*(m2-m1)/(q*B**2);##\n",
+ "print'%s %.3f %s'%('separation of lines (in metre) is:',x,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "separation of lines (in metre) is: 0.011 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/_A_Textbook_Of_Engineering_Physics/Chapter6.ipynb b/_A_Textbook_Of_Engineering_Physics/Chapter6.ipynb new file mode 100755 index 00000000..5992fd39 --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/Chapter6.ipynb @@ -0,0 +1,95 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:2c7fa5f48e2180e437af8892520159f12789c250e22a9e424719ad83f83b7fff"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter6-Properties of Light"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg124"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "##Example 6.1\n",
+ "##Optical path calculation \n",
+ "\n",
+ "##given values\n",
+ "n=1.33;##refractive index of medium\n",
+ "x=.75;##geometrical path in micrometre\n",
+ " ##calculation\n",
+ "y=x*n;##\n",
+ "print'%s %.3f %s'%('optical path (in micrometre) is:',y,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "optical path (in micrometre) is: 0.998 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg137"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "##Example 6.2\n",
+ "##Coherence length calculation \n",
+ "\n",
+ "##given values\n",
+ "l=1*10**-14.;##line width in metre\n",
+ "x=10.6*10**-6.;##IR emission wavelength in metre\n",
+ " ##calculation\n",
+ "y=x**2./l;##\n",
+ "print'%s %.1f %s'%('coherence length(in metre) is:',y,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "coherence length(in metre) is: 11236.0 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/_A_Textbook_Of_Engineering_Physics/Chapter6_1.ipynb b/_A_Textbook_Of_Engineering_Physics/Chapter6_1.ipynb new file mode 100755 index 00000000..5992fd39 --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/Chapter6_1.ipynb @@ -0,0 +1,95 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:2c7fa5f48e2180e437af8892520159f12789c250e22a9e424719ad83f83b7fff"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter6-Properties of Light"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg124"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "##Example 6.1\n",
+ "##Optical path calculation \n",
+ "\n",
+ "##given values\n",
+ "n=1.33;##refractive index of medium\n",
+ "x=.75;##geometrical path in micrometre\n",
+ " ##calculation\n",
+ "y=x*n;##\n",
+ "print'%s %.3f %s'%('optical path (in micrometre) is:',y,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "optical path (in micrometre) is: 0.998 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg137"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "##Example 6.2\n",
+ "##Coherence length calculation \n",
+ "\n",
+ "##given values\n",
+ "l=1*10**-14.;##line width in metre\n",
+ "x=10.6*10**-6.;##IR emission wavelength in metre\n",
+ " ##calculation\n",
+ "y=x**2./l;##\n",
+ "print'%s %.1f %s'%('coherence length(in metre) is:',y,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "coherence length(in metre) is: 11236.0 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/_A_Textbook_Of_Engineering_Physics/Chapter7.ipynb b/_A_Textbook_Of_Engineering_Physics/Chapter7.ipynb new file mode 100755 index 00000000..1db562d5 --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/Chapter7.ipynb @@ -0,0 +1,175 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:dc1d02c818142fc43f1bb36bcc3b4789ed6aba6b82727804f7035772e1b68c40"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter7-Interface and Diffraction"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg146"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 7.1\n",
+ "##plane parallel thin film\n",
+ "\n",
+ "##given values\n",
+ "x=5890*10**-10;##wavelength of light in metre\n",
+ "n=1.5;##refractive index\n",
+ "r=60*math.pi/180.;##angle of refraction in degree\n",
+ " ##calculation\n",
+ "t=x/(2*n*math.cos(r));\n",
+ "print'%s %.2f %s'%('thickness of plate (in micrometre) is:',t*10**6,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "thickness of plate (in micrometre) is: 0.39 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg151"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 7.2\n",
+ "##wedge shaped thin film\n",
+ "\n",
+ "##given values\n",
+ "x=5893*10**-10.;##wavelength of light in metre\n",
+ "n=1.5;##refractive index\n",
+ "y=.1*10**-3.;##fringe spacing\n",
+ " ##calculation\n",
+ "z=x/(2.*n*y);##angle of wedge\n",
+ "alpha=z*180./math.pi;##conversion of radian into degree\n",
+ "print'%s %.2f %s'%('angle of wedge (in degree) is:',alpha,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "angle of wedge (in degree) is: 0.11 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg156"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 7.3\n",
+ "##Newton's ring experiment- calculation of refractive index\n",
+ "\n",
+ "##given values\n",
+ "D1=1.5;##diametre (in cm)of tenth dark ring in air\n",
+ "D2=1.27;##diametre (in cm)of tenth dark ring in liquid\n",
+ "\n",
+ "\n",
+ " ##calculation\n",
+ "n=D1**2./D2**2.;\n",
+ "print'%s %.2f %s'%('refractive index of liquid is',n,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "refractive index of liquid is 1.40 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-160"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 7.4\n",
+ "##nonreflecting film\n",
+ "\n",
+ "##given values\n",
+ "l=5500*10**-10.;##wavelength of light\n",
+ "n1=1.33;##refractive index of water\n",
+ "n2=1.52;##refractive index of glass window pane\n",
+ "x=math.sqrt(n1);##to check if it is nonreflecting\n",
+ "\n",
+ " ##calculation\n",
+ "t=l/(4.*n1);##thickness of water film required\n",
+ "print'%s %.2f %s'%('minimum thickness of film (in metre) is',t*10**6,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "minimum thickness of film (in metre) is 0.10 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/_A_Textbook_Of_Engineering_Physics/Chapter7_1.ipynb b/_A_Textbook_Of_Engineering_Physics/Chapter7_1.ipynb new file mode 100755 index 00000000..1db562d5 --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/Chapter7_1.ipynb @@ -0,0 +1,175 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:dc1d02c818142fc43f1bb36bcc3b4789ed6aba6b82727804f7035772e1b68c40"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter7-Interface and Diffraction"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg146"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 7.1\n",
+ "##plane parallel thin film\n",
+ "\n",
+ "##given values\n",
+ "x=5890*10**-10;##wavelength of light in metre\n",
+ "n=1.5;##refractive index\n",
+ "r=60*math.pi/180.;##angle of refraction in degree\n",
+ " ##calculation\n",
+ "t=x/(2*n*math.cos(r));\n",
+ "print'%s %.2f %s'%('thickness of plate (in micrometre) is:',t*10**6,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "thickness of plate (in micrometre) is: 0.39 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg151"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 7.2\n",
+ "##wedge shaped thin film\n",
+ "\n",
+ "##given values\n",
+ "x=5893*10**-10.;##wavelength of light in metre\n",
+ "n=1.5;##refractive index\n",
+ "y=.1*10**-3.;##fringe spacing\n",
+ " ##calculation\n",
+ "z=x/(2.*n*y);##angle of wedge\n",
+ "alpha=z*180./math.pi;##conversion of radian into degree\n",
+ "print'%s %.2f %s'%('angle of wedge (in degree) is:',alpha,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "angle of wedge (in degree) is: 0.11 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg156"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 7.3\n",
+ "##Newton's ring experiment- calculation of refractive index\n",
+ "\n",
+ "##given values\n",
+ "D1=1.5;##diametre (in cm)of tenth dark ring in air\n",
+ "D2=1.27;##diametre (in cm)of tenth dark ring in liquid\n",
+ "\n",
+ "\n",
+ " ##calculation\n",
+ "n=D1**2./D2**2.;\n",
+ "print'%s %.2f %s'%('refractive index of liquid is',n,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "refractive index of liquid is 1.40 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-160"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 7.4\n",
+ "##nonreflecting film\n",
+ "\n",
+ "##given values\n",
+ "l=5500*10**-10.;##wavelength of light\n",
+ "n1=1.33;##refractive index of water\n",
+ "n2=1.52;##refractive index of glass window pane\n",
+ "x=math.sqrt(n1);##to check if it is nonreflecting\n",
+ "\n",
+ " ##calculation\n",
+ "t=l/(4.*n1);##thickness of water film required\n",
+ "print'%s %.2f %s'%('minimum thickness of film (in metre) is',t*10**6,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "minimum thickness of film (in metre) is 0.10 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/_A_Textbook_Of_Engineering_Physics/Chapter8.ipynb b/_A_Textbook_Of_Engineering_Physics/Chapter8.ipynb new file mode 100755 index 00000000..ff6879b2 --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/Chapter8.ipynb @@ -0,0 +1,102 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:960fd108c21eb5121a849117765bbc8e0d88eb94076f3988470cabfdb760bcc0"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter8-Polarization"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg200"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 8.2\n",
+ "##Polarizer,calculation of angle\n",
+ "\n",
+ "##given values\n",
+ "Io=1.;##intensity of polarised light\n",
+ "I1=Io/2.;##intensity of beam polarised by first by first polariser\n",
+ "I2=Io/3.;##intensity of light polarised by second polariser\n",
+ "\n",
+ "\n",
+ " ##calculation\n",
+ "a=math.acos(math.sqrt(I2/I1));\n",
+ "alpha=a*180./math.pi;##conversion of angle into degree\n",
+ "print'%s %.1f %s'%('angle between characteristic directions (in degree) is',alpha,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "angle between characteristic directions (in degree) is 35.3 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg209"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 8.3\n",
+ "##calculation of birefringence\n",
+ "\n",
+ "##given values\n",
+ "\n",
+ "l=6*10**-7.;##wavelength of light in metre\n",
+ "d=3*10**-5.;##thickness of crystal\n",
+ "\n",
+ "\n",
+ " ##calculation\n",
+ "x=l/(4.*d);\n",
+ "print'%s %.3f %s'%('the birefringance of the crystal is',x,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the birefringance of the crystal is 0.005 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/_A_Textbook_Of_Engineering_Physics/Chapter8_1.ipynb b/_A_Textbook_Of_Engineering_Physics/Chapter8_1.ipynb new file mode 100755 index 00000000..ff6879b2 --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/Chapter8_1.ipynb @@ -0,0 +1,102 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:960fd108c21eb5121a849117765bbc8e0d88eb94076f3988470cabfdb760bcc0"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter8-Polarization"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg200"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 8.2\n",
+ "##Polarizer,calculation of angle\n",
+ "\n",
+ "##given values\n",
+ "Io=1.;##intensity of polarised light\n",
+ "I1=Io/2.;##intensity of beam polarised by first by first polariser\n",
+ "I2=Io/3.;##intensity of light polarised by second polariser\n",
+ "\n",
+ "\n",
+ " ##calculation\n",
+ "a=math.acos(math.sqrt(I2/I1));\n",
+ "alpha=a*180./math.pi;##conversion of angle into degree\n",
+ "print'%s %.1f %s'%('angle between characteristic directions (in degree) is',alpha,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "angle between characteristic directions (in degree) is 35.3 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg209"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 8.3\n",
+ "##calculation of birefringence\n",
+ "\n",
+ "##given values\n",
+ "\n",
+ "l=6*10**-7.;##wavelength of light in metre\n",
+ "d=3*10**-5.;##thickness of crystal\n",
+ "\n",
+ "\n",
+ " ##calculation\n",
+ "x=l/(4.*d);\n",
+ "print'%s %.3f %s'%('the birefringance of the crystal is',x,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the birefringance of the crystal is 0.005 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/_A_Textbook_Of_Engineering_Physics/README.txt b/_A_Textbook_Of_Engineering_Physics/README.txt new file mode 100755 index 00000000..e156a531 --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/README.txt @@ -0,0 +1,10 @@ +Contributed By: kartik sankhla +Course: btech +College/Institute/Organization: iitbombay +Department/Designation: aerospace engnieering +Book Title: A Textbook Of Engineering Physics +Author: M. N. Avadhanulu, And P. G. Kshirsagar +Publisher: S. Chand And Company, New Delhi +Year of publication: 2011 +Isbn: 81-219-0817-5 +Edition: 9
\ No newline at end of file diff --git a/_A_Textbook_Of_Engineering_Physics/screenshots/Chapter11.png b/_A_Textbook_Of_Engineering_Physics/screenshots/Chapter11.png Binary files differnew file mode 100755 index 00000000..d60291ea --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/screenshots/Chapter11.png diff --git a/_A_Textbook_Of_Engineering_Physics/screenshots/Chapter11_1.png b/_A_Textbook_Of_Engineering_Physics/screenshots/Chapter11_1.png Binary files differnew file mode 100755 index 00000000..50e4571c --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/screenshots/Chapter11_1.png diff --git a/_A_Textbook_Of_Engineering_Physics/screenshots/Chapter12.png b/_A_Textbook_Of_Engineering_Physics/screenshots/Chapter12.png Binary files differnew file mode 100755 index 00000000..e6fcb374 --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/screenshots/Chapter12.png diff --git a/_A_Textbook_Of_Engineering_Physics/screenshots/Chapter12_1.png b/_A_Textbook_Of_Engineering_Physics/screenshots/Chapter12_1.png Binary files differnew file mode 100755 index 00000000..bab9d24a --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/screenshots/Chapter12_1.png diff --git a/_A_Textbook_Of_Engineering_Physics/screenshots/Chapter13.png b/_A_Textbook_Of_Engineering_Physics/screenshots/Chapter13.png Binary files differnew file mode 100755 index 00000000..2560bf69 --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/screenshots/Chapter13.png diff --git a/_A_Textbook_Of_Engineering_Physics/screenshots/Chapter13_1.png b/_A_Textbook_Of_Engineering_Physics/screenshots/Chapter13_1.png Binary files differnew file mode 100755 index 00000000..e45c80b4 --- /dev/null +++ b/_A_Textbook_Of_Engineering_Physics/screenshots/Chapter13_1.png |