summaryrefslogtreecommitdiff
path: root/_A_Textbook_Of_Engineering_Physics/Chapter24_1.ipynb
diff options
context:
space:
mode:
Diffstat (limited to '_A_Textbook_Of_Engineering_Physics/Chapter24_1.ipynb')
-rwxr-xr-x_A_Textbook_Of_Engineering_Physics/Chapter24_1.ipynb312
1 files changed, 0 insertions, 312 deletions
diff --git a/_A_Textbook_Of_Engineering_Physics/Chapter24_1.ipynb b/_A_Textbook_Of_Engineering_Physics/Chapter24_1.ipynb
deleted file mode 100755
index 67066c07..00000000
--- a/_A_Textbook_Of_Engineering_Physics/Chapter24_1.ipynb
+++ /dev/null
@@ -1,312 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:1cf24b70876a8aeb6aa008651e71d8cde215c5cbb4fe65495bcd461a3cc2b49b"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter24-Fibre Optics"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex1-pg701"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "##Example 24.1\n",
- "##Fiber optics\n",
- "\n",
- "##given values\n",
- "n=1.5;##refractive index\n",
- "x=.0005;##fractional index difference\n",
- "\n",
- "##calculation\n",
- "u=n*(1-x);\n",
- "print'%s %.2f %s'%('cladding index is',u,'');\n",
- "alpha=math.asin(u/n)*180/math.pi;\n",
- "print'%s %.2f %s'%('critical internal reflection angle(in degree) is',alpha,'');\n",
- "theta=math.asin(math.sqrt(n**2-u**2))*180/math.pi;\n",
- "print'%s %.2f %s'%('critical acceptance angle(in degree) is',theta,'');\n",
- "N=n*math.sqrt(2.*x);\n",
- "print'%s %.2f %s'%('numerical aperture is',N,'');"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "cladding index is 1.50 \n",
- "critical internal reflection angle(in degree) is 88.19 \n",
- "critical acceptance angle(in degree) is 2.72 \n",
- "numerical aperture is 0.05 \n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex2-pg701"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "##Example 24.2\n",
- "##calculation of acceptance angle\n",
- "\n",
- "##given values\n",
- "n=1.59;##cladding refractive index\n",
- "u=1.33;##refractive index of water\n",
- "N=.20;##numerical aperture offibre\n",
- "##calculation\n",
- "x=math.sqrt(N**2+n**2.);##index of fibre\n",
- "N1=math.sqrt(x**2-n**2.)/u;##numerical aperture when fibre is in water\n",
- "alpha=math.asin(N1)*180./math.pi;\n",
- "print'%s %.2f %s'%('acceptance angle in degree is',alpha,'');"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "acceptance angle in degree is 8.65 \n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex3-pg705"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "##Example 24.3\n",
- "##calculation of normalised frequency\n",
- "\n",
- "##given values\n",
- "n=1.45;##core refractive index\n",
- "d=.6;##core diametre in m\n",
- "N=.16;##numerical aperture of fibre\n",
- "l=.9*10**-6.;##wavelength of light\n",
- "\n",
- "##calculation\n",
- "u=math.sqrt(n**2.+N**2.);##index of glass fibre\n",
- "V=math.pi*d*math.sqrt(u**2.-n**2.)/l;\n",
- "print'%s %.2f %s'%('normalised frequency is',V,'');"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "normalised frequency is 335103.22 \n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex4-pg705"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "##Example 24.4\n",
- "##calculation of normailsed frequency and no of modes\n",
- "\n",
- "##given values\n",
- "n=1.52;##core refractive index\n",
- "d=29*10**-6.;##core diametre in m\n",
- "l=1.3*10**-6.;##wavelength of light\n",
- "x=.0007;##fractional refractive index\n",
- "\n",
- "##calculation\n",
- "u=n*(1.-x);##index of glass fibre\n",
- "V=math.pi*d*math.sqrt(n**2-u**2)/l;\n",
- "print'%s %.2f %s'%('normalised frequency is',V,'');\n",
- "N=V**2./2.;\n",
- "print'%s %.2f %s'%('no of modes is',N,'');"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "normalised frequency is 3.99 \n",
- "no of modes is 7.94 \n"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex5-pg706"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "##Example 24.5\n",
- "##calculation of numerical aperture and maximum acceptance angle\n",
- "\n",
- "##given values\n",
- "n=1.480;##core refractive index\n",
- "u=1.47;##index of glass\n",
- "l=850*10**-9.;##wavelength of light\n",
- "V=2.405;##V-number\n",
- "\n",
- "##calculation\n",
- "r=V*l/math.sqrt(n**2-u**2)/math.pi/2;##in m\n",
- "print'%s %.2f %s'%('core radius in micrometre is',r*10**6,'');\n",
- "N=math.sqrt(n**2-u**2);\n",
- "print'%s %.2f %s'%('numerical aperture is',N,'');\n",
- "alpha=math.asin(N)*180/math.pi;\n",
- "print'%s %.2f %s'%('max acceptance angle is',alpha,'');"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "core radius in micrometre is 1.89 \n",
- "numerical aperture is 0.17 \n",
- "max acceptance angle is 9.89 \n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex6-pg712"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "##Example 24.6\n",
- "##calculation of power level\n",
- "\n",
- "##given values\n",
- "a=3.5;##attenuation in dB/km\n",
- "Pi=.5*10**-3.;##initial power level in W\n",
- "l=4.;##length of cable in km\n",
- "\n",
- "##calculation\n",
- "Po=Pi*10**6./(10**(a*l/10.));\n",
- "print'%s %.2f %s'%('power level after km(in microwatt) is',Po,'');\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "power level after km(in microwatt) is 19.91 \n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex7-pg712"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "##Example 24.7\n",
- "##calculation of power loss\n",
- "\n",
- "##given values\n",
- "Pi=1*10**-3.;##initial power level in W\n",
- "l=.5;##length of cable in km\n",
- "Po=.85*Pi\n",
- "\n",
- "##calculation\n",
- "a=(10./l)*math.log10(Pi/Po);\n",
- "print'%s %.2f %s'%('loss in dB/km is',a,'');\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "loss in dB/km is 1.41 \n"
- ]
- }
- ],
- "prompt_number": 7
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file