diff options
Diffstat (limited to 'Unified_Physics_by_S.L._Gupta,_Sanjeev_Gupta/Chapter6.ipynb')
-rw-r--r-- | Unified_Physics_by_S.L._Gupta,_Sanjeev_Gupta/Chapter6.ipynb | 557 |
1 files changed, 557 insertions, 0 deletions
diff --git a/Unified_Physics_by_S.L._Gupta,_Sanjeev_Gupta/Chapter6.ipynb b/Unified_Physics_by_S.L._Gupta,_Sanjeev_Gupta/Chapter6.ipynb new file mode 100644 index 00000000..c0b5df30 --- /dev/null +++ b/Unified_Physics_by_S.L._Gupta,_Sanjeev_Gupta/Chapter6.ipynb @@ -0,0 +1,557 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 6: Schroedinger Wave Equation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 1, Page number 211" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "least energy is 37.65 eV\n", + "answer given in the book is wrong\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration \n", + "h=6.63*10**-34; #plancks constant(J sec)\n", + "m=9.11*10**-31; #mass(kg)\n", + "a=10**-10; #width of box(m)\n", + "e=1.602*10**-19; #charge(coulomb)\n", + "\n", + "#Calculations\n", + "E1=(h**2)/(8*m*e*a**2); #least energy(eV)\n", + "\n", + "#Result\n", + "print \"least energy is\",round(E1,2),\"eV\"\n", + "print \"answer given in the book is wrong\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 2, Page number 211" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "probability of finding the particle is 0.4\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration \n", + "delta_x=5*10**-10; #interval(m)\n", + "a=25*10**-10; #width(m)\n", + "\n", + "#Calculations\n", + "P=2*delta_x/a; #probability of finding the particle\n", + "\n", + "#Result\n", + "print \"probability of finding the particle is\",P" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 3, Page number 212" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "probability of finding the particle is 19.84 %\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "from scipy.integrate import quad\n", + "\n", + "#Variable declaration \n", + "a=1; #assume\n", + "\n", + "#Calculations\n", + "def zintg(x):\n", + " return (2/a)*(1/2)*(1-math.cos(2*math.pi*x/a))\n", + "\n", + "P1=quad(zintg,0.45,0.55)[0]\n", + "\n", + "#Result\n", + "print \"probability of finding the particle is\",round(P1*100,2),\"%\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 4, Page number 213" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " least energy is 6 eV\n", + "energy in 2nd excited state is 24 eV\n", + "energy in 3rd excited state is 54 eV\n", + "difference of energy between 2nd and 1st excited states is 18 eV\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration \n", + "h=6.63*10**-34; #planks constant(Js)\n", + "m=9.1*10**-31; #mass(kg)\n", + "a=2.5*10**-10; #width(m)\n", + "e=1.6*10**-19; #charge(coulomb)\n", + "n1=1; \n", + "n2=2;\n", + "n3=3; #energy states\n", + "\n", + "#Calculations\n", + "E1=n1**2*(h**2)/(8*m*e*a**2); #least energy(eV)\n", + "E2=n2**2*E1; #energy in 2nd excited state(eV)\n", + "E3=n3**2*E1; #energy in 3rd excited state(eV)\n", + "delta_E=E2-E1; #difference of energy between 2nd and 1st excited states(eV)\n", + "\n", + "#Result\n", + "print \"least energy is\",int(E1),\"eV\"\n", + "print \"energy in 2nd excited state is\",int(E2),\"eV\"\n", + "print \"energy in 3rd excited state is\",int(E3),\"eV\"\n", + "print \"difference of energy between 2nd and 1st excited states is\",int(delta_E),\"eV\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 5, Page number 213" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "de-Broglie wavelength of first three energy states are 20 angstrom 10 angstrom 6.67 angstrom\n", + "energies of first three energy states are 0.38 eV 1.5095 eV 3.396 eV\n", + "answer in the book varies due to rounding off errors\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration \n", + "h=6.63*10**-34; #planks constant(Js)\n", + "m=9.1*10**-31; #mass(kg)\n", + "a=10; #width(angstrom)\n", + "e=1.6*10**-19; #charge(coulomb)\n", + "n1=1; \n", + "n2=2;\n", + "n3=3; #energy states\n", + "\n", + "#Calculations\n", + "lamda1=2*a/n1; #de-Broglie wavelength of first energy state(angstrom)\n", + "lamda2=2*a/n2; #de-Broglie wavelength of second energy state(angstrom)\n", + "lamda3=2*a/n3; #de-Broglie wavelength of third energy state(angstrom)\n", + "E1=n1**2*(h**2)/(8*m*e*(a*10**-10)**2); #energy in 1st excited state(eV)\n", + "E2=n2**2*E1; #energy in 2nd excited state(eV)\n", + "E3=n3**2*E1; #energy in 3rd excited state(eV)\n", + "\n", + "#Result\n", + "print \"de-Broglie wavelength of first three energy states are\",int(lamda1),\"angstrom\",int(lamda2),\"angstrom\",round(lamda3,2),\"angstrom\"\n", + "print \"energies of first three energy states are\",round(E1,2),\"eV\",round(E2,4),\"eV\",round(E3,3),\"eV\"\n", + "print \"answer in the book varies due to rounding off errors\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 6, Page number 214" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "energy in 1st excited state is 14.7 *10**-19 J\n", + "mass is 9.3 *10**-31 kg\n", + "quantum state is 10.4\n", + "as n is not an integer, En is not permitted value of energy\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration \n", + "h=6.63*10**-34; #planks constant(Js)\n", + "a=0.2*10**-9; #width(m)\n", + "e=1.602*10**-19; #charge(coulomb)\n", + "n5=5; #energy state\n", + "E5=230*e; #energy 0f 5th state(J)\n", + "En=10**3*e; #energy(eV)\n", + "\n", + "#Calculations\n", + "E1=E5/n5**2; #energy in 1st excited state(eV)\n", + "m=h**2/(8*E1*a**2); #mass(kg)\n", + "n=math.sqrt(En/E1); #quantum state\n", + "\n", + "#Result\n", + "print \"energy in 1st excited state is\",round(E1*10**19,1),\"*10**-19 J\"\n", + "print \"mass is\",round(m*10**31,1),\"*10**-31 kg\"\n", + "print \"quantum state is\",round(n,1)\n", + "print \"as n is not an integer, En is not permitted value of energy\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 7, Page number 225" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "reflection coefficient in 1st case is 0.05\n", + "answer given in the book is wrong\n", + "transmission coefficient in 1st case is 0.95\n", + "for E=0.025, E<V. so transmission coefficient is 0 and reflection coefficient is 1\n", + "reflection coefficient in 3rd case is 1\n", + "transmission coefficient in 3rd case is 0\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration \n", + "e=1.6*10**-19; #charge(coulomb)\n", + "E1=0.04*e; #energy(J)\n", + "V=0.03*e; #energy barrier(J) \n", + "E2=0.025*e; #energy(J)\n", + "E3=0.03*e; #energy(J)\n", + "m=1; #assume \n", + "k1=1; #assume\n", + "\n", + "#Calculations\n", + "x=math.sqrt(E1-V);\n", + "y=math.sqrt(E1+V);\n", + "R1=((math.sqrt(E1)-x)/(math.sqrt(E1)+y))**2; #reflection coefficient\n", + "T1=1-R; #transmission coefficient\n", + "k2=math.sqrt(2*m*(E3-V)); \n", + "R2=((k1-k2)/(k1+k2))**2; #reflection coefficient\n", + "T2=4*k1*k2/(k1+k2)**2; #transmission coefficient \n", + "\n", + "#Result\n", + "print \"reflection coefficient in 1st case is\",round(R1,2)\n", + "print \"answer given in the book is wrong\"\n", + "print \"transmission coefficient in 1st case is\",round(T1,2)\n", + "print \"for E=0.025, E<V. so transmission coefficient is 0 and reflection coefficient is 1\"\n", + "print \"reflection coefficient in 3rd case is\",int(R2)\n", + "print \"transmission coefficient in 3rd case is\",int(T2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 8, Page number 226" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "value of E/V is 1.03\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration \n", + "T=0.5; #transmission coefficient \n", + "a=1;\n", + "b=6;\n", + "c=1;\n", + "\n", + "#Calculations\n", + "k1byk2=(b+math.sqrt((b**2)-(4*a*c)))/(2*a); \n", + "x=k1byk2**2;\n", + "EbyV=x/(x-1); #value of E/V\n", + "\n", + "#Result\n", + "print \"value of E/V is\",round(EbyV,2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 9, Page number 226" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "transmission probabilities in 1st case are 4.5 *10**-5 and 1.4 *10**-4\n", + "transmission probabilities in 2nd case are 2.1 *10**-9 and 1.25 *10**-9\n", + "answer for transmission probability in 2nd case given in the book is wrong\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration \n", + "m=9.1*10**-31; #mass(kg)\n", + "a1=5*10**-10; #width(m)\n", + "a2=10*10**-10; #width(m)\n", + "e=1.6*10**-19; #charge(coulomb)\n", + "V0=5; #energy barrier(eV)\n", + "E1=1; #energy of electron(eV)\n", + "E2=2;\n", + "chi=1.054*10**-34; #plancks constant(Js)\n", + "\n", + "#Calculations\n", + "beta1=math.sqrt(2*m*(V0-E1)*e/chi**2); #value of beta(m-1)\n", + "x1=int(-2*a1*beta1);\n", + "beta2=math.sqrt(2*m*(V0-E2)*e/chi**2); #value of beta(m-1)\n", + "x2=round(-2*a1*beta2,1);\n", + "T1=math.exp(x1); #transmission probability in 1st case\n", + "T2=math.exp(x2); #transmission probability in 1st case\n", + "x3=int(-2*a2*beta1);\n", + "x4=round(-2*a2*beta1,1);\n", + "T1dash=math.exp(x3); #transmission probability in 2nd case\n", + "T2dash=math.exp(x4); #transmission probability in 1st case\n", + "\n", + "#Result\n", + "print \"transmission probabilities in 1st case are\",round(T1*10**5,1),\"*10**-5 and\",round(T2*10**4,1),\"*10**-4\"\n", + "print \"transmission probabilities in 2nd case are\",round(T1dash*10**9,1),\"*10**-9 and\",round(T2dash*10**9,2),\"*10**-9\"\n", + "print \"answer for transmission probability in 2nd case given in the book is wrong\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 10, Page number 227" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "transmission coefficient is 4 math.exp ( -1.625 )\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration \n", + "m=9.1*10**-31; #mass(kg)\n", + "a=10**-10; #width(m)\n", + "e=1.6*10**-19; #charge(coulomb)\n", + "V0=5; #energy barrier(eV)\n", + "E=2.5; #energy of electron(eV)\n", + "chi=1.05*10**-34; #plancks constant(Js)\n", + "\n", + "#Calculations\n", + "x=16*E*(V0-E)/V0**2;\n", + "y=-2*a*math.sqrt(2*m*(V0-E)*e/chi**2);\n", + "#T=x*math.exp(y); #transmission coefficient\n", + "\n", + "#Result\n", + "print \"transmission coefficient is\",int(x),\"math.exp (\",round(y,3),\")\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 11, Page number 227" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "average lifetime of nucleus is 3.7 *10**17 years\n", + "answer given in the book is wrong\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration \n", + "P=10**21; #probability(T per sec)\n", + "m=4*1.6*10**-27; #mass(kg)\n", + "a=2*10**-14; #width(m)\n", + "e=1.67*10**-19; #charge(coulomb)\n", + "V0=30; #energy barrier(eV)\n", + "E=4.2; #energy of electron(eV)\n", + "chi=1.05*10**-34; #plancks constant(Js)\n", + "\n", + "#Calculations\n", + "x=P*16*E*(V0-E)/V0**2;\n", + "y=-2*a*math.sqrt(2*m*(V0-E)*10**6*e/chi**2);\n", + "T=x*math.exp(y); #transmission coefficient\n", + "tow=1/T; #average lifetime of nucleus(years) \n", + "\n", + "#Result\n", + "print \"average lifetime of nucleus is\",round(tow/10**17,1),\"*10**17 years\"\n", + "print \"answer given in the book is wrong\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |