summaryrefslogtreecommitdiff
path: root/Transport_Phenomena:_A_Unified_Approach/ch5.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Transport_Phenomena:_A_Unified_Approach/ch5.ipynb')
-rwxr-xr-xTransport_Phenomena:_A_Unified_Approach/ch5.ipynb373
1 files changed, 373 insertions, 0 deletions
diff --git a/Transport_Phenomena:_A_Unified_Approach/ch5.ipynb b/Transport_Phenomena:_A_Unified_Approach/ch5.ipynb
new file mode 100755
index 00000000..0cf91dab
--- /dev/null
+++ b/Transport_Phenomena:_A_Unified_Approach/ch5.ipynb
@@ -0,0 +1,373 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 5 : Transport with a net convective flux"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.9 - Page No :166\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "# given\n",
+ "v = 1.; \t\t\t #[cm/sec] - volume velocity or bulk velocity\n",
+ "vol = 1.; \t\t\t #[cm**3] - volume\n",
+ "na = 2.; \t\t\t # moles of a\n",
+ "nb = 3.; \t\t\t # moles of b\n",
+ "nc = 4.; \t\t\t # moles of c\n",
+ "mma = 2.; \t\t\t #molecular weight of a\n",
+ "mmb = 3.; \t\t\t #molecular weight of b\n",
+ "mmc = 4.; \t\t\t #molecular weight of c\n",
+ "ma = na*mma; \t\t\t #[g] weight of a\n",
+ "mb = nb*mmb; \t\t\t #[g] weight of b\n",
+ "mc = nc*mmc; \t\t\t #[g] weight of c\n",
+ "NabyA = 2.+2; \t\t\t #[mol/cm**2*s] - molar flux = diffusing flux +convected flux\n",
+ "NbbyA = -1.+3; \t\t\t #[mol/cm**2*s] - molar flux = diffusing flux +convected flux\n",
+ "NcbyA = 0.+4; \t\t\t #[mol/cm**2*s] - molar flux = diffusing flux +convected flux\n",
+ "NtbyA = NabyA+NbbyA+NcbyA; \t\t\t #[mol/cm**2*s] - total molar flux\n",
+ "\n",
+ "# Calculations\n",
+ "# on a mass basis,these corresponds to\n",
+ "nabyA = 4.+4; \t\t\t #[g/cm**2*s]; - mass flux = diffusing flux +convected flux\n",
+ "nbbyA = -3.+9; \t\t\t #[g/cm**2*s]; - mass flux = diffusing flux +convected flux\n",
+ "ncbyA = 0.+16; \t\t\t #[g/cm**2*s]; - mass flux = diffusing flux +convected flux\n",
+ "ntbyA = nabyA+nbbyA+ncbyA; \t\t\t #[g/cm**2*s] - total mass flux\n",
+ "\n",
+ "# concentrations are expressed in molar basis\n",
+ "CA = na/vol; \t\t\t #[mol/cm**3]\n",
+ "CB = nb/vol; \t\t\t #[mol/cm**3]\n",
+ "CC = nc/vol; \t\t\t #[mol/cm**3]\n",
+ "CT = CA+CB+CC; \t\t\t #[mol/cm**3] - total concentration\n",
+ "\n",
+ "# densities are on a mass basis\n",
+ "pa = ma/vol; \t\t\t #[g/cm**3]\n",
+ "pb = mb/vol; \t\t\t #[g/cm**3]\n",
+ "pc = mc/vol; \t\t\t #[g/cm**3]\n",
+ "pt = pa+pb+pc; \t\t\t #[g/cm**3]\n",
+ "Ua = NabyA/CA; \t\t\t #[cm/sec];\n",
+ "Ub = NbbyA/CB; \t\t\t #[cm/sec];\n",
+ "Uc = NcbyA/CC; \t\t\t #[cm/sec];\n",
+ "# the same result will be obtained from dividing mass flux by density\n",
+ "Uz = (pa*Ua+pb*Ub+pc*Uc)/(pa+pb+pc);\n",
+ "\n",
+ "# Results\n",
+ "print \" Uz = %.3f cm/sec\"%(Uz);\n",
+ "Uzstar = (NtbyA/CT);\n",
+ "print \" Uz* = %.2f cm/sec\"%(Uzstar);\n",
+ "print \" For this Example both Uz and Uz* are slightly greater than the volume \\\n",
+ " velocity of 1cm/sec, because there is a net molar and \\n mass diffusion in the positive direction.\"\n",
+ " "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Uz = 1.034 cm/sec\n",
+ " Uz* = 1.11 cm/sec\n",
+ " For this Example both Uz and Uz* are slightly greater than the volume velocity of 1cm/sec, because there is a net molar and \n",
+ " mass diffusion in the positive direction.\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.10 - Page No :171\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "# given (from Example 5.9)\n",
+ "na = 2.; \t\t\t # moles of a\n",
+ "nb = 3.; \t\t\t # moles of b\n",
+ "nc = 4.; \t\t\t # moles of c\n",
+ "mma = 2.; \t\t\t #molecular weight of a\n",
+ "mmb = 3.; \t\t\t #molecular weight of b\n",
+ "mmc = 4.; \t\t\t #molecular weight of c\n",
+ "ma = na*mma; \t\t\t #[g] weight of a\n",
+ "mb = nb*mmb; \t\t\t #[g] weight of b\n",
+ "mc = nc*mmc; \t\t\t #[g] weight of c\n",
+ "NabyA = 2.+2; \t\t\t #[mol/cm**2*s] - molar flux = diffumath.sing flux +convected flux\n",
+ "NbbyA = -1.+3; \t\t\t #[mol/cm**2*s] - molar flux = diffusing flux +convected flux\n",
+ "NcbyA = 0.+4; \t\t\t #[mol/cm**2*s] - molar flux = diffusing flux +convected flux\n",
+ "NtbyA = NabyA+NbbyA+NcbyA; \t\t\t #[mol/cm**2*s] - total molar flux\n",
+ "vol= 1.\n",
+ "# Calculations\n",
+ "# on a mass basis,these corresponds to\n",
+ "nabyA = 4+4; \t\t\t #[g/cm**2*s]; - mass flux = diffusing flux +convected flux\n",
+ "nbbyA = -3+9; \t\t\t #[g/cm**2*s]; - mass flux = diffusing flux +convected flux\n",
+ "ncbyA = 0+16; \t\t\t #[g/cm**2*s]; - mass flux = diffusing flux +convected flux\n",
+ "\n",
+ "# concentrations are expressed in molar basis\n",
+ "CA = na/vol; \t\t\t #[mol/cm**3]\n",
+ "CB = nb/vol; \t\t\t #[mol/cm**3]\n",
+ "CC = nc/vol; \t\t\t #[mol/cm**3]\n",
+ "CT = CA+CB+CC; \t\t #[mol/cm**3] - total concentration\n",
+ "\n",
+ "# densities are on a mass basis\n",
+ "pa = ma/vol; \t\t\t #[g/cm**3]\n",
+ "pb = mb/vol; \t\t\t #[g/cm**3]\n",
+ "pc = mc/vol; \t\t\t #[g/cm**3]\n",
+ "Ua = NabyA/CA; \t\t\t #[cm/sec];\n",
+ "Ub = NbbyA/CB; \t\t\t #[cm/sec];\n",
+ "Uc = NcbyA/CC; \t\t\t #[cm/sec];\n",
+ "U = (pa*Ua+pb*Ub+pc*Uc)/(pa+pb+pc);\n",
+ "Ustar = (NtbyA/CT);\n",
+ "\n",
+ "# the fluxes relative to mass average velocities are found as follows\n",
+ "JabyA = CA*(Ua-U); \t\t\t #[mol/cm**2*sec]\n",
+ "JbbyA = CB*(Ub-U); \t\t\t #[mol/cm**2*sec]\n",
+ "JcbyA = CC*(Uc-U); \t\t\t #[mol/cm**2*sec]\n",
+ "\n",
+ "# Results\n",
+ "print \" fluxes relative to mass average velocities are-\";\n",
+ "print \" Ja/A = %.4f mol/cm**2*sec\"%(JabyA);\n",
+ "print \" Jb/A = %.4f mol/cm**2*sec\"%(JbbyA);\n",
+ "print \" Jc/A = %.4f mol/cm**2*sec\"%(JcbyA);\n",
+ "jabyA = pa*(Ua-U); \t\t\t #[g/cm**2*sec]\n",
+ "jbbyA = pb*(Ub-U); \t\t\t #[g/cm**2*sec]\n",
+ "jcbyA = pc*(Uc-U); \t\t\t #[g/cm**2*sec]\n",
+ "print \" ja/A = %.4f g/cm**2*sec\"%(jabyA);\n",
+ "print \" jb/A = %.4f g/cm**2*sec\"%(jbbyA);\n",
+ "print \" jc/A = %.4f g/cm**2*sec\"%(jcbyA);\n",
+ "\n",
+ "# the fluxes relative to molar average velocity are found as follows\n",
+ "JastarbyA = CA*(Ua-Ustar); \t\t\t #[mol/cm**2*sec]\n",
+ "JbstarbyA = CB*(Ub-Ustar); \t\t\t #[mol/cm**2*sec]\n",
+ "JcstarbyA = CC*(Uc-Ustar); \t\t\t #[mol/cm**2*sec]\n",
+ "print \" fluxes relative to molar average velocities are-\";\n",
+ "print \" Ja*/A = %.4f mol/cm**2*sec\"%(JastarbyA);\n",
+ "print \" Jb*/A = %.4f mol/cm**2*sec\"%(JbstarbyA);\n",
+ "print \" Jc*/A = %.4f mol/cm**2*sec\"%(JcstarbyA);\n",
+ "jastarbyA = pa*(Ua-Ustar); \t\t\t #[g/cm**2*sec]\n",
+ "jbstarbyA = pb*(Ub-Ustar); \t\t\t #[g/cm**2*sec]\n",
+ "jcstarbyA = pc*(Uc-Ustar); \t\t\t #[g/cm**2*sec]\n",
+ "print \" ja*/A = %.4f g/cm**2*sec\"%(jastarbyA);\n",
+ "print \" jb*/A = %.4f g/cm**2*sec\"%(jbstarbyA);\n",
+ "print \" jc*/A = %.4f g/cm**2*sec\"%(jcstarbyA);\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " fluxes relative to mass average velocities are-\n",
+ " Ja/A = 1.9310 mol/cm**2*sec\n",
+ " Jb/A = -1.1034 mol/cm**2*sec\n",
+ " Jc/A = -0.1379 mol/cm**2*sec\n",
+ " ja/A = 3.8621 g/cm**2*sec\n",
+ " jb/A = -3.3103 g/cm**2*sec\n",
+ " jc/A = -0.5517 g/cm**2*sec\n",
+ " fluxes relative to molar average velocities are-\n",
+ " Ja*/A = 1.7778 mol/cm**2*sec\n",
+ " Jb*/A = -1.3333 mol/cm**2*sec\n",
+ " Jc*/A = -0.4444 mol/cm**2*sec\n",
+ " ja*/A = 3.5556 g/cm**2*sec\n",
+ " jb*/A = -4.0000 g/cm**2*sec\n",
+ " jc*/A = -1.7778 g/cm**2*sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.11 - Page No :176\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "import math\n",
+ "# Variables\n",
+ "# given\n",
+ "T = 0+273.15; \t\t\t #[K] - temperature in Kelvins\n",
+ "pa2 = 1.5; \t\t\t #[atm] - partial presuure of a at point2\n",
+ "pa1 = 0.5; \t\t\t #[atm] - partial pressure of a at point 1\n",
+ "z2 = 20.; \t\t\t #[cm] - position of point 2 from reference point\n",
+ "z1 = 0.; \t\t\t #[cm] - position of point1 from reference point\n",
+ "p = 2.; \t\t\t #[atm] - total pressure\n",
+ "d = 1.; \t\t\t #[cm] - diameter\n",
+ "D = 0.275; \t\t #[cm**2/sec] - diffusion coefficient\n",
+ "A = (math.pi*((d)**2))/4.;\n",
+ "R = 0.082057; \t\t\t #[atm*m**3*kmol**-1*K**-1] - gas constant\n",
+ "\n",
+ "# Calculations\n",
+ "# (a) using the formula Na/A = -(D/(R*T))*((pa2-pa1)/(z2-z1))\n",
+ "Na = (-(D/(R*T))*((pa2-pa1)/(z2-z1)))*(A)/(10.**6);\n",
+ "print \" Na = %.2e kmol/sec \\n The negative sign indicates diffusion from point 2 to point 1\"%(Na);\n",
+ "pb2 = p-pa2;\n",
+ "pb1 = p-pa1;\n",
+ "\n",
+ "# (b) using the formula Na/A = ((D*p)/(R*T*(z2-z1)))*ln(pb2/pb1)\n",
+ "Na = (((D*p)/(R*T*(z2-z1)))*math.log(pb2/pb1))*(A)/(10**6);\n",
+ "\n",
+ "# Results\n",
+ "print \" Na = %.2e kmol/sec\"%(Na);\n",
+ "print \" The induced velocity increases the net transport of A by the ratio of 10.6*10**-10 \\\n",
+ "to 4.82*10**-10 or 2.2 times.This increse is equivalent to 120 percent\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Na = -4.82e-10 kmol/sec \n",
+ " The negative sign indicates diffusion from point 2 to point 1\n",
+ " Na = -1.06e-09 kmol/sec\n",
+ " The induced velocity increases the net transport of A by the ratio of 10.6*10**-10 to 4.82*10**-10 or 2.2 times.This increse is equivalent to 120 percent\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.12 - Page No :178\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "# given\n",
+ "T = 0+273.15; \t\t\t #[K] - temperature in Kelvins\n",
+ "pa2 = 1.5; \t\t\t #[atm] - partial presuure of a at point2\n",
+ "pa1 = 0.5; \t\t\t #[atm] - partial pressure of a at point 1\n",
+ "z2 = 20.; \t\t\t #[cm] - position of point 2 from reference point\n",
+ "z1 = 0.; \t\t\t #[cm] - position of point1 from reference point\n",
+ "p = 2.; \t\t\t #[atm] - total pressure\n",
+ "d = 1.; \t\t\t #[cm] - diameter\n",
+ "D = 0.275; \t\t\t #[cm**2/sec] - diffusion coefficient\n",
+ "\n",
+ "# Calculations\n",
+ "A = (math.pi*((d)**2.))/4;\n",
+ "R = 0.082057; \t\t\t #[atm*m**3*kmol**-1*K**-1] - gas consmath.tant\n",
+ "k = 0.75;\n",
+ "\n",
+ "# umath.sing the formula (Na/A) = -(D/(R*T*(z2-z1)))*ln((1-(pa2/p)*(1-k))/(1-(pa1/p)*(1-k)))\n",
+ "NabyA = -(D/(R*T*(z2-z1)))*(2*0.7854)*math.log((1-(pa2/p)*(1-k))/(1-(pa1/p)*(1-k)))/(10**6);\n",
+ "\n",
+ "# Results\n",
+ "print \" Na/A = %.2e kmol/sec\"%(NabyA);\n",
+ "print \" Note that this answer is larger than the rate for equimolar counter diffusion \\\n",
+ "but smaller tahn the rate for diffusion through a stagnant film. \\nSometimes the\\\n",
+ " rate for diffusin through a stagnant film can be considered as an upper bound\\\n",
+ " if k ties between zero and one\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Na/A = 1.38e-10 kmol/sec\n",
+ " Note that this answer is larger than the rate for equimolar counter diffusion but smaller tahn the rate for diffusion through a stagnant film. \n",
+ "Sometimes the rate for diffusin through a stagnant film can be considered as an upper bound if k ties between zero and one\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.13 - Page No :184\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "# given\n",
+ "l = 4.; \t\t\t #[m] - length of the tube\n",
+ "id_ = 1.6*10**-3; \t\t\t #[m] - insid_e diameter\n",
+ "Nkn = 10.; \t\t \t # - knudsen no.\n",
+ "Ma = 92.; \t\t\t # - molecular weight of gas\n",
+ "mu = 6.5*10**-4; \t\t\t #[kg/m*sec] - vismath.cosity\n",
+ "T = 300.; \t \t\t #[K] - temperature\n",
+ "R = 8314.; \t \t\t #[kPa*m**3*kmol**-1*K**-1] - gas consmath.tant\n",
+ "lambdaA = Nkn*id_; \t\t\t #[m] mean free path\n",
+ "\n",
+ "# Calculations\n",
+ "# for calculating pressure umath.sing the formula lamdaA = 32*(mu/p)*((R*T)/(2*pi*Ma))**(1/2)\n",
+ "p = 32*(mu/lambdaA)*((R*T)/(2*math.pi*Ma))**(1/2.);\n",
+ "patm = p/(1.01325*10**5);\n",
+ "\n",
+ "# Results\n",
+ "print \" p = %.2f kg/m*sec**2 = %.2f Pa = %.2e atm\"%(p,p,patm);\n",
+ "print \" The value of 10 for the knudsen number is on the border \\\n",
+ " between Knudsen diffusion and transition flow\";\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " p = 85.39 kg/m*sec**2 = 85.39 Pa = 8.43e-04 atm\n",
+ " The value of 10 for the knudsen number is on the border between Knudsen diffusion and transition flow\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file